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ABSTRACT

This paper introduces the Interlevel Product (ILP) which is a
transform based upon the Dual-Tree Complex Wavelet. Co-
efficients of the ILP have complex values whose magnitudes
indicate the amplitude of multilevel features, and whose
phases indicate the nature of these features (e.g. ridges
vs. edges). In particular, the phases of ILP coefficients
are approximately invariant to small shifts in the original
images. We accordingly introduce this transform as a so-
lution to coarse scale template matching, where alignment
concerns between decimation of a target and decimation of
a larger search image can be mitigated, and computational
efficiency can be maintained. Furthermore, template match-
ing with ILP coefficients can provide several intuitive “near-
matches” that may be of interest in image retrieval applica-
tions.

1. INTRODUCTION

This paper considers the problem of efficient recognition of
objects in images. We introduce a new method of process-
ing the outputs of a directional multiscale transform so as to
provide approximate invariance to local shifts of the image
data while retaining a strong ability to distinguish different
patterns within the pixels of a local region. Our method
is based on the Dual-Tree Complex Wavelet transform (DT
CWT) [1] and we use the name InterLevel Product (ILP)
to describe the subsequent processing of the complex DT
CWT coefficients. The phases of the ILP coefficients indi-
cate the type of features present at each scale and subband
orientation, and the ILP magnitudes are proportional to the
magnitudes (importance) of these features at two adjacent
scales. These coefficients exhibit strong invariance to shifts
of the decimation grid, and therefore provide a rich, reliable
representation of the original image at multiple scales.

With this new tool, we demonstrate multiscale measures
that can simultaneously accelerate template-matching meth-
ods for 2-D object recognition and increase the information
available to evaluate near-matches. This report concentrates
mainly on introducing the ILP, describing its relationship to
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semantic image content, and showing its ability to success-
fully match images at coarse scales. Alternate coarse-level
matching methods can be found in [2] and [3].

2. MULTISCALE MATCHING METHODS

Classic template matching with a normalized cross-
covariance (NCC) is performed pixel-by-pixel with the cal-
culation below:

γ(x, y) =
∑

α,β [S(α−x,β−y)−S̄α,β ][T (α,β)−T̄ ]√∑
α,β [S(α−x,β−y)−S̄α,β ]2

∑
α,β [T (α,β)−T̄ ]2

(1)

γ(x, y) is the correlation value between anN ×M tar-
get image,T , and equivalently sized candidate regions, cen-
tered at(x, y) of a (typically) much largerX × Y search
database imageS. The location of the best match candidate
is found at(x, y) = max(x,y)∈(X,Y ) γ(x, y), andγ(x, y) it-
self indicates the strength of the match, withγ(x, y) = 1
indicating a perfect match.

The NCC method has several disadvantages of note.
First, its computational complexity is high, due to the need
for pixel-by-pixel comparison at each(x, y) offset of the
candidate image. Several methods have been introduced
that successfully reduce these computations, such as nor-
malization after matching in Fourier domain [4]. A second
disadvantage of the NCC is that the correlation measure,
γ(x, y), is a simple scalar value that does not provide sig-
nificant insight into the nature by which the targetT and
candidate regionS(x, y) differ.

Multiscale template matches have the potential to solve
the two disadvantages highlighted above. Computation can
be reduced by first matching coarse-level, decimated repre-
sentations of the target and the search database. Each deci-
mation by 2:1 reduces the block size by 4:1 and the number
of search locations also by 4:1. Hence we obtain a 16:1
reduction in the computation for each level of decimation.

The largest difficulty with multiscale template matching
is that, in the general case, a decimated representation of the
target will be based upon a reference grid that is different
from that of the search image. There is potential for mis-
alignment of up to 75%, where the closest matching search



coefficient for a given target coefficient is calculated from
only 25% of the same pixel values. For example, Figure
1 shows a target and search image, each decimated by 3
levels, so that an8 × 8 (23 × 23) patch of image is repre-
sented by a single coefficient. In this case, the candidate
subimages (shown by circles) could be misaligned by up to
4 pixels verticallyand 4 pixels horizontally from the tar-
get subimages (shown by triangles). Hence each triangle
coefficient in the target would be calculated from no more
than 25% of the pixels which contribute to each of the four
surrounding circle coefficients in the candidate image. To

Fig. 1. Example of misalignment in decimated multiscale
template matching.

compensate for this potential error, one could blur the origi-
nal image prior to decimation in order to extend the overlap
of image content into several coefficients; but then critical
details, particularly edge information, will be lost. The Dis-
crete Wavelet Transform (DWT) provides a good basis for
preserving relevant edge information at a given decimation
level; however, the DWT is highly shift-dependent, and will
still therefore suffer from reference grid misalignment. We
therefore consider complex wavelets, specifically the Dual-
Tree Complex Wavelet Transform (DT CWT) introduced in
[1]. The coefficients of the DT CWT accurately reflect local
edge content; the magnitudes are relatively shift invariant,
and phases change linearly with the offset of a local edge
relative to the coefficient. The simplest way to use the DT
CWT in a decimated template match is to match the mag-
nitudes of the coefficients (a similar approach can be found
in [5] for stereo matching). As can be seen in section 5, this
method shows distinct advantages to other methods of the
same resolution.

DT CWT coefficient magnitudes are shift-invariant, but
they tell us little about the structure of the underlying im-
age. For instance, it is difficult to distinguish a ridge from
a step edge using just DT CWT coefficient magnitudes at a
coarse scale. Such ambiguities increase the probability of
false matches at coarse scales, and so increase the search
time for coarse-to-fine matching. We therefore look at the
relative phases of DT CWT coefficients across scale to pro-
vide us with such structural information.
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Fig. 2. Magnitude (a) and phase (b) of a DT CWT coeffi-
cient at level 3 in the presence of a step edge at pixel offset
x, and the equivalent phase of a level 4 coefficient (c). Verti-
cal lines indicate the position of the central level 3 DT CWT
coefficient and its adjacent neighbours at a distance of23=8
pixels.

3. THE INTERLEVEL PRODUCT

If we observe a 1-D level-3 DT CWT coefficient while a
step edge is translated past it, its magnitude and phase be-
have as shown in Figure 2. The horizontal axes show the
translationx and fig 2(a) shows the complex components of
the coefficient magnitudes while fig 2(b) shows the phase.
Note that the phase of the coefficientθ3 changes approxi-
mately linearly withx, as long as the step edge is within the
inter-coefficient distance, which is23 pixels for level 3 and
2l for level l in general.

The same step edge “wave” is also observable at level 4 -
as it is a multiscale edge present in both scales - so the parent
of the original level 3 coefficient will undergo rotation by
θ4; however, the rotation will occur at half the speed ofθ3.
Hence the spatial rotation rates are related bydθ3

dx = 2dθ4
dx .

The constancy of this ratio allows us to create a coarse-
level shift-invariant complex feature, the InterLevel Product
(ILP), whose phase isθ∆ = θ3− 2θ4 and whose magnitude
is the product of the level-3 and level-4 coefficient magni-
tudes. This can easily be achieved by taking the product of
each level-3 coefficient with the complex conjugate of a cor-
responding level-4 coefficient whose phase has been dou-
bled. Figure 3 shows this process. Each of the 16 columns
in the whole figure shows the coefficients corresponding to
16 different shifts of an input step, as in (a). (b) and (c) show
the level-4 and level-3 coefficients, while (d) shows the re-
sult of bandpass interpolating the level-4 coefficients at the



level-3 sample locations and then phase-doubling them. Fi-
nally (e) shows the result of multiplying the coefficients in
(c) by the conjugates of those in (d) to give the ILP coef-
ficients. Note the almost constant (shift-invariant) phases
of the larger ILP coefficients and the very slow variation of
their magnitudes with shift. The phase of an ILP coefficient,
θ∆, is dependent mainly upon the nature of the dominant
multiscale feature in its vicinity (see Table 1).

This operation can be applied to the six individual sub-
bands of a 2-dimensional DT CWT at each level, to repre-
sent edges and ridges in each direction of a 2-D image. In
this case, ILP coefficients describe 2-D edges or edges near
the orientation of each subband. Calculation of the 2-D ILP
values is equivalent to the 1-D ILP, although the bandpass
interpolation step in (d) involves a 2-D frequency shift to the
origin of the frequency plane, a lowpass interpolator, and a
reversal of the frequency shift.

4. ILP OBJECT RECOGNITION

As described above, we first transform theN0 ×M0 target
T to aNl ×Ml × 6 complex ILP representationχ(T )

l , and
theX×Y candidate imageS to aXl×Yl×6 representation
χ

(S)
l . As Nl = N0

2l , Ml = M0
2l , Xl = X0

2l , andYl = Y0
2l , this

operation greatly reduces the size of the compared datasets
when the decimation levell > 2.

We then wish to find areas of the candidate image whose
ILP phases match the ILP phases of our target at points of
strong saliency. Thus, we simply multiply each ILP coeffi-
cient in the targetχ(T )

l by the complex conjugate of corre-
sponding ILP coefficients from an equivalently sized, deci-
mated, candidate region of S,χ

(S)
l (i, j), as below:

r(i,j,α,β,d)(l) =
[
χ

(S)
l (α− i, β − j, d)

]∗
× χ

(T )
l (α, β, d)

In our models,(i, j) represents the top left corner of the re-
gion of comparison in the search image ILP;α = 1...Nl,
β = 1...Ml are the non-negative integers representing each
spatial coefficient location; andd = 1...6 is the directional
subband. At each coefficient location, the resultr(i,j,α,β,d)(l)

is a complex value that will be closely aligned with the pos-
itive real axis, in the case of a match, or of random phase
otherwise. Where the aligned coefficients are of large mag-
nitude (strongly salient) the result will be a large positive
real number. Accordingly, a summation of the real compo-
nents of theser values will give us a correlation measure for
the match. We also normalize this sum by the magnitudes
of the ILP coefficients, in a manner analogous to the NCC:

R(i,j)(l) =

<
[ ∑

α,β,d r(i,j,α,β,d)(l)√
(
∑

α,β,d |χ(S)
l (α−i,β−j,d)|2)×(

∑
α,β,d |χ(T )

l (α,β,d)|2)

]

(2)
The estimated location of the upper left corner of the

target at levell is (̂il, ĵl) = arg max(i,j) R(i,j)(l) in ILP
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Fig. 3. 1-D Interlevel Product Calculation: a) 16 shifts of a
step edge (horizontal lines show level 4 wavelet locations);
b) level-4 DT CWT coefficients for each shift position; c)
level-3 DT CWT coefficients; d) bandpass interpolated and
phase-doubled level-4 coefficients; e) ILP coefficients.

Feature ILP Angle
Positive Step 45◦

Positive Impulse 135◦

Negative Step −135◦

Negative Impulse −45◦

Table 1. Relationship between 1-D feature and complex
phase of ILP coefficients.



coefficients, and is consequently(x̂, ŷ) = (̂il × 2l, ĵl × 2l)
in the original pixels.

5. ILP TEMPLATE MATCHING RESULTS

For testing, our search targets are64 × 64 pixel images,
selected from seven4000× 4000 pixel search images (Ob-
tained from the “Window on the UK 2000” CD, available
athttp://www.bnsc.org/wouk/wouk1.htm ). 200
of these targets contain buildings, with strong edges and cor-
respondingly salient ILP coefficients, and the remaining 200
targets contain forest and vegetation.

For each of 400 target searches, we perform a compari-
son of coarse levell = 3 matches using the following dec-
imation operators on the target,T , as well as the search
databaseS (the contributing image):

• ILP. χl(i, j, d), d = 1...6, as calculated in section 3,
from the DT CWT of image T.

• DT CWT Magnitudes. |Wl(i, j, d)|, d = 1 . . . 6,
whereW is the DT CWT of T.

• Blurred and Decimated. Bl(i, j);B = AT
l TAl;

Al = INl×Ml

⊗
11×m, where

⊗
is the Kronecker

product andI is the identity matrix. (from [2])

• DWT Magnitudes. |Dl(i, j, d)|, d = 1 . . . 3, where
D is the DWT of T.

Approaches to date ([2], [3]) have not addressed the specific
effect of misalignment, and may assume that the decima-
tion operator is aligned in both the target and search image.
For our testing, the search image is deliberately offset by
four pixels in each direction, creating the worst-case mis-
alignment situation shown in Figure 1. We then calculate
R(i,j)(l) and a best estimate(x̂, ŷ) as described above.

In Table 2, we show the following values:

• ”First Match” indicates the percentage of the 400 match
attempts in which the estimated location was correct.
This value should be as large as possible.

• P3(k) refers to the number of candidates in a sub-
set of locations that is expected to contain the correct
match, with k=98% and k=90% confidence respec-
tively. This value should be as small as possible.

The ability of the ILP to estimate the correct match in
the first instance is notably superior to other methods; note
that, in particular, the DWT operator completely fails to
cope with misalignment due to its excessive shift variance.
For our test data of typical urban and vegetation images,
93% of the ILP match attempts at coarse-level were suc-
cessful with a single match. It is only when one attempts
to set the probability of a correct match tok = 98% that
the P3 window of candidates increases greatly. This in-
crease occurs because certain objects - such as sections of

Decimation Operator First
Match

P3(k)
(k=98%)

P3(k)
(k=90%)

ILP 93% 156 1
DT CWT Magnitudes 71% 717 14
Blurred and Decimated 16% 5050 1265
DWT Magnitudes 0% > 106 > 106

Table 2. Summary of the relative abilities of different deci-
mation operators to prune candidate regions at level 3.

a long empty road or fine-textured vegetation - require finer
minutiae to distinguish an actual target from a similar patch.
And, indeed, an operator may wish to preserve these near-
matches for legitimate consideration as alternative targets,
depending upon the application.

6. CONCLUSIONS AND FUTURE WORK

Our ILP transform has the ability to characterize an ob-
ject’s coarse-level features (ridges and edges) consistently
with parsimonious, decimated coefficients. These coeffi-
cients are strongly invariant with respect to the alignment
of the decimation operation. We have demonstrated high
performance at target matching to illustrate these proper-
ties and the accelerative potential of performing recogni-
tion tasks with the ILP. We intend to develop a metric by
which the ILP magnitudes of a target at each level dictates
the coarsest level at which one can efficiently begin a tar-
get match. We are also investigating the relationship be-
tween ILP phase and image content further, and developing
rotation- and scale-invariant models of image objects.

7. REFERENCES

[1] N.G. Kingsbury, “Complex wavelets for shift invariant
analysis and filtering of signals,”Journal of Applied
and Computational Harmonic Analysis, vol. 10, no. 3,
pp. 234–253, 2001.

[2] M. Gharavi-Alkhansari, “A fast globally optimal algo-
rithm for template matching using low-resolution prun-
ing,” IEEE Transactions on Image Processing, vol. 10,
no. 4, pp. 526–533, April 2001.

[3] Sumit Basu, “Efficient multiscale template matching
with orthogonal wavelet decompositions.,” Tech. Rep.,
MIT Media Lab, May 1997.

[4] J. Lewis, “Fast normalized cross-correlation,”Vision
Interface, pp. 120–123, 1995.

[5] Fangmin Shi, Neil Rothwell Hughes, and Geoff
Roberts, “SSD matching using shift-invariant wavelet
transform.,” in British Machine Vision Conference,
September 2001.


