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ABSTRACT
This paper proposes to use an extended Gaussian Scale Mixtures
(GSM) model instead of the conventionalℓ1 norm to approximate
the sparseness constraint in the wavelet domain. We combine this
new constraint with subband-dependent minimization to formulate
an iterative algorithm on two shift-invariant wavelet transforms, the
Shannon wavelet transform and dual-tree complex wavelet transform
(DTCWT). This extented GSM model introduces spatially varying
information into the deconvolution process and thus enables the al-
gorithm to achieve better results with fewer iterations in our experi-
ments.

Index Terms— Image restoration, Wavelet transforms

1. INTRODUCTION

In this paper we consider improved methods for image deconvolu-
tion, using the Gaussian Scale Mixture (GSM) model to approximate
the sparseness constrants with shift-invariant wavelet frames.

Normally, the image measurement process can be represented
by a known stationary linear filter followed by the addition of white
noise of zero mean and varianceσ2:

y = Hx + n (1)

wherex andy are vectors containing the original image and the ob-
served image, respectively;n represents independent white noise.
These vectors haveN = N1 × N2 × . . . × NK components, where
Nk stands for the number of samples along dimensionk. H is
a square, block-circulant matrix that approximates the convolution
(blurring function).

Traditional frequently used approaches to deconvolution are
based on the least squares (LS) formulation using the differences
between the measured and deconvolved images as the cost function
during optimization. It is well known that the LS formulation usu-
ally leads to an ill-posed problem that needs extra regularization.
Under appropriate assumptions, the regularized deconvolution prob-
lem can be derived using a Bayesian framework and controlled by
different prior assumptions. Hence we can get the MAP estimate of
x by minimising a cost function

J(x) =
1

2
‖Hx − y‖2 − σ2 log(p(x)) (2)

wherep(x) is the regularising prior.
Wavelet-based deconvolution is a relatively recent technique in

the area of deconvolution. It minimises the cost function w.r.t the
wavelet coefficientsw:

J(w) =
1

2
‖HMw − y‖2 − σ2 log(p(w)) (3)
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whereM is the inverse wavelet transform and− log(p(w)) is called
the wavelet domain penalty function.

State-of-art wavelet-based deconvolution algorithms mostly ex-
ploit the sparseness penalty [1, 2, 3], because the wavelet coefficients
tend to give an economical representation of the image [4, 3], espe-
cially when there are no other obvious options for alternative penal-
ties. Direct measurement of sparseness is theℓ0 norm which counts
the number of the nonzero elements. However, theℓ0 norm results
in an NP-complex minimisation problem, because the only known
method to search for the exact solution is combinatorial [5]. Hence,
theℓ1 norm is used most often in practice. Indeed, the minimisation
of the ℓ1 norm promotes sparsity, which has been known for many
years, and put to use in a wide range of applications [6]. Donoho
[5] showed that the minimalℓ1-norm near-solution is the sparsest
near-solution for most large underdetermined systems of equations.

However, theℓ1 norm is not spatially adaptive. It is often con-
nected with marginal statistics of wavelet coefficients. It may well
depict the wavelet coefficients in a subband, but it does not describe
the correlations within a small patch. Better results can be expected
if a prior that can depict spatially varying statistics is used.

Extending the work of Vonesch & Unser [1], we formulate the
wavelet-regularized subband-dependent minimization problem with
a GSM prior instead of the traditionalℓ1 norm and compare two
shift-invariant wavelets, the Shannon wavelet and dual-tree complex
wavelet transform (DTCWT), both of which provide shift invariance
[1, 7].

We follow the same notation conventions as in [1, 7]:

Name Type Representation

W matrix forward wavelet transform

Wj matrix forward wavelet transform in a given subbandj
with all other subbands set to zero

M matrix inverse wavelet transform

Mj matrix inverse wavelet transform in the given subbandj
with all other subbands set to zero

Pj matrix Pj = MjWj , the transfer function of subbandj

w vector wavelet coefficients ofx, w = Wx

wj vector
wavelet coefficients ofx in subbandj,
wj = Wjx

Aj matrix (Aj)ii
=

(

Aii, if wi is in subbandj

0, otherwise

2. THE ℓ02 PENALTY

Besidesℓ1 norms, other spareseness approximations can be used.
Here we use the penalty



− log(p(w)) =
X

i

|wi|2
E(|wi|2) + ǫ2

≈ ‖w‖0 (4)

whereE(|wi|2) is the expectation of|wi|2, andǫ2 is a small posi-
tive constant. WhenE(|wi|2) is zero, the penalty ofwi will be so
large thatwi will be forced to be near zero. In a Bayesian view, this
penalty corresponds to a Gaussian pdfp(w) that is proportional to
exp{− 1

2
wT Aw} whereA is a diagonal matrix withA−1

ii beingǫ2

plus the expected variance of the zero-meanwi, such that

w ∼ N (0,A−1) (5)

For convenience, we call this penalty theℓ02 penalty.

2.1. Relation with the GSM model

Theℓ02 penalty can be considered as a simple extension to the GSM
model. The GSM model describes the non-stationary behaviour of
the wavelet coefficients of natural signal [8, 9], using:

wi =
√

ziri (6)

It assumes that each coefficientwi is specified by a stationary zero
mean Gaussian probability density functionri and a spatially fluctu-
ating variancezi. i is a position index.

It has been shown that for varyingzi this model can successfully
simulate the high kurtosis and longer tails of the marginal distribu-
tions in addition to the bow-tie shape of the marginal histograms of
wavelet coefficients of natural signals [10, 9].

The ℓ02 penalty can be obtained by simply settingzi = A−1
ii ,

whereAii varies in different positions.

2.2. Discussion on theℓ02 penalty

When comparing with theℓ1 norm, theℓ02 penalty has the following
advantages:

• It is closer to theℓ0 norm than theℓ1 norm.
• It does not need to adjust the regularisation parameterλ.

When usingℓ1 norms, the prior pdf is actuallyexp(λ‖x‖1),
whereλ is a statistical parameter of the prior distribution of
wavelet coefficients. On the contrary, the penalty we propose
here does not have such an explicit parameter.

• It is smooth and differentiable.
• It corresponds to an adaptive GSM model.E(|wi|2) is lo-

calised and spatially adaptable.

Successful application of theℓ02 penalty relies on the estimation
of E(|wi|2). E(|wi|2) represents the expectation of the image struc-
ture [4], which should be shift independent, i.e. a small shift in the
signal should not result in dramatically change inE(|wi|2). When
applied with a non-redundant wavelet basis, which is well-known
to suffer from the oscillation problem of shifting [11](Figure 1), the
estimation ofE(|wi|2) needs to be handled very carefully.

3. ALGORITHM

We combine theℓ02 penalty with the Shannon wavelet based sub-
band emphasis factorαj derived by Vonesch & Unser [1], which
results in the following cost function for each subbandj:

J̃j(x) =αj‖Pj

h

x
(n) + α−1

j H
T (y − Hx

(n))
i

− Pjx‖2

+ σ2(Wjx)T
A(Wjx) + Cj(x

(n),y) (7)
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Fig. 1. The distribution of|wi| in the high-pass subband on level 3.
When the signal has a shift, the distribution of the DTCWT wavelet
coefficients magnitudes maintains a relatively stable pattern around
the singularity compared with that of the Shannon wavelet, which is
a shift-invariant non-redundant Discrete Wavelet Transform (DWT).
This is because the DTCWT makes use of the complex modulus
operation, which helps to reduce the variance of|wi|2.

wherex(n) is the current estimate ofx, Cj(x
(n),y) = α‖Pjx

(n)‖2+

‖Pjy‖2 − ‖PjHx(n)‖2 does not dependent onx, and αj =
max‖v‖2=1,v∈Wj

‖Hv‖2. It results in the following update rule:

• The Landweber iteration:

z
(n)
j = αjw

(n)
j + WjH

T (y − Hx
(n))

• The denoising operation, which projects the new coeffi-
cients back into the space dominated by the priorA by
soft-thresholdingz(n)

j :

w
(n+1)
j =

`

αjI + σ2
Aj

´−1
z
(n)
j (8)

Rewriting this in element-wise form, we have

w
(n+1)
i =

E(|wi|2) + ǫ2

αj(E(|wi|2) + ǫ2) + σ2
z
(n)
i (9)

wherew(n+1)
i andz

(n)
i are in the subbandj. Then the spatial-

domain estimate is gained byx(n+1) = Mw(n+1).

The subband emphasis factorαj derived by Vonesch & Unser [1]
was modified to work with the DTCWT instead of the Shannon basis
[7].

3.1. Estimation and update of the priorA

A represents the expected variance of the wavelet coefficients; how-
ever, the exact information ofE(|wi|2) is usually unavailable. Thus
a coarse estimate ofA from the blurred image has to be used in-
stead: the wavelet variance estimates are given by the energy of the
wavelet coefficients of an estimate of the original image; and the di-
agonal entriesAii are the reciprocals of the estimated variances plus
ǫ2.

Since the estimated image is often contaminated by artifacts and
noise, this straightforward approach fails to obtain a satisfactory es-
timate ofA. An intuitive approach to overcome such difficulties is
to denoise the coefficients before we calculateA, which will give



us a smoother prior. Becausew is sparse, we may estimatêw by
bivariate wavelet shrinkage [13] ofw, and we use1/(|ŵi|2 + ǫ2)
for each termAii in A.

Meanwhile, we also adopt a heuristic complementary approach,
which is to update the estimate ofA every several iterations, be-
cause the restored image structure gets closer to the true one. This
updating approach can be viewed as being similar to the iteratively
re-weighted least squares (IRLS) algorithm [12]. The penalty func-
tion ‖w‖0 is replaced by a sequence of least squares problems:

− log(pn(w)) =
X

i

1

|ŵ(n)
i |2 + ǫ2

|wi|2. (10)

4. EXPERIMENTAL RESULTS

We have space for only one example here. Results are shown in
Figure 2 and 3.

4.1. Experiment settings

For comparative purposes, we performed the experiments on the
standard test image, Cameraman. We convolved the image with a
9 × 9 uniform blurring kernel, and added white Gaussian noise to
the results in order to replicate the experimental setup of Vonesch
and Unser [1] and others. We use the Blurred Signal-to-Noise
Ratio (BSNR) to define the noise level overN pels: BSNR =

10 log10
‖Hx‖2−N(Hx)2

Nσ2 . In our experiments, the BSNR was set
to 40dB. We also adopted Improvement in Signal-to-Noise Ra-
tio (ISNR, same as SERG in [1]) to evaluate each estimatex(n):

ISNR(x(n)) = 10 log10(
‖y−x‖2

‖x(n)−x‖2 ). For each test case, we used

the same initial estimate as [1], which was obtained using the under-
regularised Wiener-type filter:x(0) = (HT H + 10−3σ2I)−1HT y.
We averaged the ISNR results over 30 noise realisations, see Figure
2. The numerical results of the fast thresholded Landweber (FTL)
algorithm are quoted from Vonesch and Unser’s paper [1].

4.2. Implementation details

As described above, before the iterations start, it is necessary to
estimateA. In our experiments, we choose to use the bivariate
shrinkage denoising rule [13] to calculatêwi, and henceA−1

ii =
E(|ŵi|2) + ǫ2. This is because this shrinkage algorithm exploits
the interscale dependencies between wavelet coefficients while be-
ing relatively simple. In order to keep the influence of different de-
noising schemes to a minimum, the denoising is implemented on
the DTCWT coefficients ofx(n) and then we inverse transform the
denoised coefficients back to bex̂(n) for estimatingA.

For estimation ofE(|wi|2) when applying the algorithm based
on the Shannon wavelet, we use the following method to reduce
the uncertainty in estimatingE(|wi|2) introduced by the oscillation
problem of the Shannon wavelet:

1. apply undecimated Shannon wavelet transform on the de-
noisedx̂(k) to obtain undecimated coefficients̄w;

2. partition the undecimated coefficientsw̄ into regionsgi cor-
responding to decimated Shannon wavelet coefficientswi;

3. take the mean of|w̄j |2 in regiongi asE(|wi|2)
For convenience, we call it the undec-mean estimate. The undec-
mean estimates are shown in the middle column of Figure 3. We
compare the undec-mean estimate with the direct estimate (Figure
3, the left-hand column), which is given byE(|wi|2) ≈ |w(k)

i |2.

The undec-mean estimate ofE(|wi|2) preserves more image fea-
tures than the direct estimate (Figure 3, the first row). However, the
method causes the energy of singularities near region boarders to dis-
perse over a small neighbourhood. This energy dispersion problem
puts limits on the performance of this algorithm.

We update the estimate ofA after every 5 iterations in our ex-
periments. The results show that updating with the direct estimate
causes the results to deteriorate instead of continuing improve (Fig-
ure 2 (a)), while updating with the undec-mean estimate improves
the convergence speed and overall performance in terms of ISNR
(Figure 2 (b)).

When applying with the DTCWT, we use the direct estimate of
E(|wi|2), because the DTCWT has a relatively stable pattern around
the singularity (Figure 1) due to its improved subsampling lattice,
and we also want to avoid the energy dispersion problem. We update
the estimate ofA after every 5 iterations. We show the estimates of
E(|wi|2) in the right column of Figure 3.

In order to show the evolution of the estimate ofE(|wi|2) in
each subband and compare the difference of the estimates, we scale
all the subband images in the same level by a common factor. Hence
there are 4 scale factors corresponding to each level respectively in
Figure 3. The coarest-scale images are scaled such that their maxima
equal 1.

5. DISCUSSION AND CONCLUSION

With the Gaussian scale mixture model, the modified FTL algorithm
produces a better result with fewer iterations than the original FTL
algorithm [1], primarily due to the spatially varying knowledge in-
troduced by the Gaussian scale mixture prior. However, good results
are only achieved when the energy oscillation problem of Shannon
wavelets is counteracted by complementary approaches, e.g. the
undec-mean estimate used in our experiments, or the random shift
approach [14]. We also observed that the updating ofA only im-
proved the result by a very small amount after the 15th iteration in
Figure 2(b).

When using the DTCWT as the wavelet frame instead of the
Shannon wavelet bases, we found that this algorithms outperformed
the modified FTL algorithm by nearly 0.7 dB. The direct estimation
method we used in the estimation ofA keeps the estimate as lo-
cal as possible. This direct estimate is applicable with the DTCWT
primarily due to the complex modulus operation, which gives near
shift-invariance to the estimate.
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