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Abstract— This paper proposes a new algorithm for wavelet- but equivalent to the Shannon wavelet in that it is:
based multidimensional image deconvolution which employs 1) a tight frame that conserves energy:

subband-dependent minimization and the dual-tree complex 2 shift-i iant so that th let t f t
wavelet transform in an iterative Bayesian framework. In ) shift-invariant so that the wavelet transform commutes

addition, this algorithm employs a new prior instead of the with the blurring operator.
popular ¢, norm, and is thus able to embed a leamning  Although redundancy requires more memory and com-
scheme dgrlng the iteration which helps it to achieve better putation, we still prefer the DTWT, since its compact-
deconvolution results and faster convergence. . . . .
support property in the spatial domain offers the following
I. INTRODUCTION advantages:

In th|s paper we Consider improved methods for image 1) eﬁeCtS Of Coef‘fiCient Shrinkage or Othel’ modiﬁcation
deconvolution with application to 3D datasets, such as fluo-  emain strongly localised;
rescence microscopy data. 2) it allows very efficient implementation with separable
Traditional frequently used approaches to deconvolution  SPatial domain filters;
are based on the least squares (LS) formulation using the3) it allows spatially varying algorithms for optimal pro-
differences between the measured and deconvolved images C€ssing of data with spatially varying statistics.
as the cost function during optimization. It is well knowath || | MAGE-FORMATION MODEL AND BAYESIAN WAVELET
the LS formulation usually leads to an ill-posed problent tha DECONVOLUTION
needs extra regularization. Under appropriate assungtion
the regularized deconvolution problem can be derived usin
a Bayesian framework and controlled by different prio
assumptions.
Wavelet regularization is a relatively recent technique in y=Hx+n (1)
the area of deconvolution. Figueiredo and Nowak in [3] o o
define the basic idea of wavelet regularized deconvolutioifN€réx andy are vectors containing the original image and
which alternates between wavelet-coefficient shrinkage ari® observed image, respectively;represents independent
a Landweber update. Daubechies et al. in [1] provide§hite noise. These vectors hate= N; x Nz x ... x N
a general convergence proof of the algorithm. Recentifomponents, wherev,, stands for the number of samples
Vonesch & Unser explored subband-dependent minimiz&/0ng dimensionk. H is a square, block-circulant matrix
tion and proposed the fast thresholding Landweber (FTLHiat approximates the convolution(blurring function).
algorithm[6], with Shannon wavelets. It is yve_ll_known that we can get the MAP estimate sof
Based on the work of Daubechies et al.[1] and Vonesdfy Minimising a cost function
& Unser[6], we formulate the wavelet-regularized subband- 1
depende[ng minimization problem with agdiﬁerent prior in- J(x) = §HHX —¥|* = o*log(p(x)) 2)
stead of the traditional, norm. Hence, in our algorithm, we wherelog(p(x)) corresponds to the prior expectations about
are able to update the prior during deconvolution which ir°mage structure[2].
shown to give better results in our experiments. These expectations can most easily be formulated in the
In addition, we choose to use the dual-tree compleyayelet domain, since the wavelet transform of images tends
wavelet transform[4] (DTCWT) instead of the Shannon g pe sparse (i.e. many coefficients are close to zero)[3].
wavelet[6]. The DTCWT is different from the Shannon  \ye choose to formulate this problem with the wavelet
wavelet because it is: coefficientsw of the dual-tree complex wavelet transform
1) compactly supported in the spatial domain; (DT CWT) of x due to the transform’s good signal energy
2) aredundant frame instead of an orthonormal basis; compaction and shift invariant properties.
We thank Thorlabs Ltd, UK, who provided the data which pratlthe . DT CWT |s_an oyercomplete ngelet trans.form’ WhIC.h IS
images in fig. 3. implemented ink dimentions by2* wavelet filterbanks in
Thanks for CSC scholarship. parallel. The coefficients produced by these filterbanks are

Normally, the image measurement process can be repre-
nted by a known stationary linear filter followed by the
addition of white noise of zero mean and variance



combined to give the real and imaginary parts of compleAt the same time, we can obtain:
coefﬂment;wi. _ _ P,H - HP, ®)
By treating the real and imaginary parts of the wavelet h T
coefficients separately, we use real matris%¥sand M to because the DTWT is shift invariant, and thus®?; =
represent the forward and inverse @WT, and a column M;W ; acts just like a spatially invariant filter, which enables
vectorw to denote the wavelet coefficients of the transfornif to commute withH.
of the imagex, such thatw = Wx; andx = Mw is the By defining
image reconstructed frorw. We arrange the entries of the Ay, if w; is in subband;
w such thatwyy, 1 = Re(wy,), war, = Im(wy) . (Aj)ii = 0, otherwise
In our prior model, we assume the wavelet coefficients ang, -
. o . . o e obtain
independently distributed according to Gaussian digtiobg

. . . 1 1
with zero mean and spatially adaptable variance[2]; antd tha J(w) = =|ly — HMw ||? + E —wlA;w 9)
. X i L. 2 N~~~ - 2
the real and imaginary parts of a given [CWT coefficient x jes

are independently drawn from the same Gaussian distribu- 1 5 1 T
tion. Hence, following Wanget al[7], the prior pdf p(w) - §Hy B HZSMJWJ "+ 2 z;wj Ajw; (10)
is proportional toexp{—3w” Aw} where A is a diagonal &V_/ 7€
matrix with A;il being the expected variance of[2]. x
For simplicity, letA;; = 02 A, = o2 /var(w;). Therefore The above result contains a difficult term for minimization

the cost function in terms of wavelet coefficients can b8&f J(w):

written as: ||HXH2 — (Z M_]Wj)THTH(Z M_]Wj)v
1 1 i i
J(w) = 5 [HMw — y|? + w” Aw @ 7es es .
2 2 which gives a coupled system of nonlinear equationsrpf
I1l. ALGORITHM [1]. In order to eliminate this term from (10), we apply

) ) ) ) . Daubechies’ idea of an upper-bound function[1], to give the
The above cost function(3) results in a correction d'r“t'ofollowing auxiliary function:

—MTHT (v — _ - 1
whose termH” (y — HMw), actually blurs the differences jes
between the observed imageand the estimated observed - l”Hx(n) — Hx|? (11)
2

image, HMw. This in fact prevents the fine details of the
image from being recovered since the PSF is often a lowherex = Y. ¢ M;w;, x(") is thenth iteration ofx and
pass filter. Therefore we need to emphasise the sub-barntis o; must be properly chosen to make sure thiae) —

which contain the fine details of the differences. J(w) > 0. If we lete = x(™) —x, this inequality is equivalent
to
A Denvziltlon of a sub-band pre-emphasis bound Zaj||Wje||2 > ||He|? (12)
Following Vonesch & Unser [6], we denote W), cs jes
a}nd (M;);es the different decomposition apd reconstruc- and so ZO"ET WIW. e > THTHe  (13)
tion wavelet subspaces (subbands) respectively, wHere . 7 Y
0,1,...J, J is the number of wavelet subspacésndexes jes P;
the scaling function subspace. And specifically, regarding 1) The value of aj:
DT CWT, W; andM; are masked versions oW and  since P;, andH are convolution matrices (shift invari-
M, respectively, such thaW = > ;¢ W; and M = anny we may lete, = Cei2' £ and analyse this in the
>_jes M. For simplicity, we denotd&V ;x as column vector frequency domain. LéP; (w) be the gain oP; and|[H (w)|?
w;, with non-zero coefficients only in subbayid be the gain ofI”H at frequency.
Additionally, we assume that the real and imaginary parts
of the transform’s outputs are treated as separate coeficie ~ 1hUs Y aPiw) > [Hw)® Ve (14)
so thatW; and M; are real matrices. And thus for a real jes
imagex, w; = W;x andM,w; are real. Since Pj(w) > 0 and }>; ¢ P;(w) = 1 for all w and
Since the DTCWT is a tight frame[4], it yields: P;(w) ~ 1 at the center frequency of each subband where
all the other subbands have approximately zero gain, we
x =» Myw; =) M;W,x (®)  may find an approximate value far; by setting it equal
j€s €S g, to [H(w,;)?/P;(w;), wherew; is the centre frequency of
9 9 9 subbandj. The above analysis assumes thEE(w)|? is
el = fwi* = ;s Ilwll ©®)  smooth enough to be approximated By, . ¢ aﬁpjgg;!

M. — W @) For rapid convergence [6] shows that eachshould be as
J J small as (13) allows.



2) The resulting algorithm: obtain a satisfactory estimate &. A heuristic alternative

Let W;n) = ij(”), and rewrite2.J,,(w) as approach is to update the estimatefofs the restored image
~ ) (n) ) structure gets closer to the true one.
2T (w) = [ly — Hx||> + > aj|w}™ — w;]| An intuitive approach to overcome such difficulties is to
Jjes denoise the coefficients before we calculAte Becausew
— [IHx" — Hx|* + > " wlAjw; is sparse, we may therefore estimétdy wavelet shrinkage
J o .
jes of w, and we user?/w? for each term4;; in A.
= —2y"H Jw™ — w2
Y x+j€z;a'7|‘wﬂ Wil IV. EXPERIMENTAL RESULTS
2(HTHx(™) x + ZW,TA w; +C(x"™y) In our experiments, we choose to use the bivariate shrink-
J J ’ .. . . . .
s age denoising rule with the DTWT as described in [5] in
e TnT . RTNCO BT our estimation ofA. This is because this shrinkage algo-
=—2(Hy) ZMJWJ + Z%HWJ wil rithm exploits the interscale dependencies between wavele
. JGST jes coefficients while being relatively simple.
+2(H Hx(n)) Z M;w; For comparative purposes, we performed a series of exper-
jes iments on 2 standard test images (Cameraman, House). We
+ ZWJ,TAjo +C(x™.y) (15) convolved the;e images_with ng 9 uniform blur I_<erne|,
jes and added white Gaussian noise to the results in order to

replicate the experimental setup of Vonesch & Unser[6]. We
use the blurred signal-to-noise ratio (BSNR) to define the
noise level overN pels:

whereC (x| y) = ||y||>—||Hx™||? is a function that does
not depend orw ;.

Equation (15) is clearly a quadratic equation ;.
Its global minimum, given x(™), is achieved when |Hx||2 — N (Hx)?
dJy(w) /Ow; = 0, which results in BSNR = 10log,, No? (19)

(T+Aj)w; = angn) +W,H” (y—Hx™), Vj (16) We considered 5 different noise levels: BSNR = 10dB, 20dB,
30dB, 40dB, 50dB. We also adopted improvement in signal-
to-noise ratio (ISNR, same as SERG in [6]) to evaluate each

n - n i (n)-
ngl +1) _ (a; 1+ A;) 1 (ang )+WjHT(y_HX(n))) estimatex'™:

Hence we get the new estimateswj andx

ISNR(x(™) = 10log (M) (20)
(17) 10 ||X(") — X||2
(n+1) _ it
X - Z M;w; (18) For each test case, we used the same initial estimate as [6],
jes which was obtained using the under-regulized Wiener-type
B. Updating the prior A filter:
The iteration rule of (17) and (18) can also be divided into xO = H"H +107%:%1) " 'H y
two building blocks:
. the Landweber iteration: We avergged the .ISNR results over 30.noise realizations, and
summarize them in Table I. The numerical results of the FTL
zg»n) = ozjwlg-") + W,;H" (y — Hx(™) method are quoted from Vonesch & Unser[6].

_ . . When the image House was used and BSNR was set to 50dB,
« the projection operation that actually projects the new

- ) . - we found that the algorithm became less efficient because
coefficients back into the space dominated by the prior . . .
A o is so small that it has weakened _the prior. Hence, we
W = (a, T+ A,;) " 2™ used 202 instead pf02 on the same images and got the
J J J J data marked by * in the table. We also amplifiet! a little
We can expect a good estimatevoff we have an accurate to 1.16> when BSNR was set to 40dB, and got the data
prior, because the prioA represents the image structure marked by;. This correponds to the need for a small amount
and also because the prior helps to suppress the noise afdegularization even in the absence of additive noise. We
artifacts which are unlikely to be part of the image struetur show blurred and restored images in Fig.1, and convergence
In general, we don’t know the exact information about theurves in Fig.2.
prior. Thus a coarse estimate 4f from the blurred image  To demonstrate the effect of updating matAx we ran
is often used instead. The wavelet variance estimates dhe algorithm while holdingA constant from the begining,
given by the energy of the wavelet coefficients of an estima&nd compared the ISNR with those obtained when updating
of the original image; and the diagonal entridg are the A after each iteration. It is clear that updating of the prior
reciprocals of the estimated variances. knowledge does help to improve the performance. We have
Since the estimated image is often contaminated by ar@dso applied the algorithm successfully to 3D microscopy
facts and noise, this straightforward approach often fails data as shown in Fig. 3.



(a) observed image

(b) after intitial Wiener filter

(c) afted iters (d) after 30 iters

Fig. 3. One slice of a 3D fluorescence microscopy data setzef2i6 x 256 x 81.

TABLE |
NUMBERS OFI TERATIONS TO REACH A GIVEN LEVEL OFISNR
BSNR BWSE | BWSE FTL BWSE FTL
2iter. | 10 iter. 10 iter.| 30 iter. 30 iter.
© 10dB 2.44 2.82 2.90 2.98 2.94
% 20dB 2.34 2.57 2.62 2.76 2.74
@ 30dB 4.31 457 4.31 4.79 4.43
E | 40dB | 566 | 6.90 6.03 | 7.24 6.61
O 50dB 6.62 7.86 7.80 9.23 8.38
10dB 3.54 4.34 3.73 4.75 3.82
o 20dB 411 4.45 3.81 4.95 3.99
3 30dB 5.70 7.18 6.25 7.59 6.39
T 4.48 7.13 9.67
40dB 4.93 8.14 7.30 9.86t 9.07
4.50 6.56 8.60
50dB 5,49+ 8.08* 7.49 10.73* 8.90

Note: number marked by * of is the results whem is amplified a little.
BWSE is the acronym for our proposed algorithm Bayesian

wavelet subband emphasis.

(a) blurred image

(c) after 10 iters

Fig. 1. Experiment on Cameraman with white additive noisdBi0The

Ly .

(d) after 30 iters

images were obtained by the proposed algorithm with an eI
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Fig. 2. ISNR as a function of the iteration number when apythe
proposed algorithm. Blue-filled circles are the markerglierresults of FTL
algorithm. —o— marks the ISNR curve wheA gets updates while- « —
marks the ISNR curve wheA stays constant. (a) the result of Cameraman
with BSNR=40dB; (b) the result of House with BSNR = 40dB.

V. CONCLUSION

We have shown how the fast thresholding Landweber
algorithm of [6] can be modified to use the redundant
DT CWT[4] instead of Shannon wavelets, and how the
algorithm can be improved by updating the regularizingprio
matrix A using the bivariate shrinkage rule[5]. The WT
gives more compact support than the Shannon wavelet, and
improved results over those reported in [6].
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