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Abstract— This paper proposes a new algorithm for wavelet-
based multidimensional image deconvolution which employs
subband-dependent minimization and the dual-tree complex
wavelet transform in an iterative Bayesian framework. In
addition, this algorithm employs a new prior instead of the
popular ℓ1 norm, and is thus able to embed a learning
scheme during the iteration which helps it to achieve better
deconvolution results and faster convergence.

I. I NTRODUCTION

In this paper we consider improved methods for image
deconvolution with application to 3D datasets, such as fluo-
rescence microscopy data.

Traditional frequently used approaches to deconvolution
are based on the least squares (LS) formulation using the
differences between the measured and deconvolved images
as the cost function during optimization. It is well known that
the LS formulation usually leads to an ill-posed problem that
needs extra regularization. Under appropriate assumptions,
the regularized deconvolution problem can be derived using
a Bayesian framework and controlled by different prior
assumptions.

Wavelet regularization is a relatively recent technique in
the area of deconvolution. Figueiredo and Nowak in [3]
define the basic idea of wavelet regularized deconvolution,
which alternates between wavelet-coefficient shrinkage and
a Landweber update. Daubechies et al. in [1] provided
a general convergence proof of the algorithm. Recently,
Vonesch & Unser explored subband-dependent minimiza-
tion and proposed the fast thresholding Landweber (FTL)
algorithm[6], with Shannon wavelets.

Based on the work of Daubechies et al.[1] and Vonesch
& Unser[6], we formulate the wavelet-regularized subband-
dependent minimization problem with a different prior in-
stead of the traditionalℓ1 norm. Hence, in our algorithm, we
are able to update the prior during deconvolution which is
shown to give better results in our experiments.

In addition, we choose to use the dual-tree complex
wavelet transform[4] (DTCWT) instead of the Shannon
wavelet[6]. The DTCWT is different from the Shannon
wavelet because it is:

1) compactly supported in the spatial domain;
2) a redundant frame instead of an orthonormal basis;
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but equivalent to the Shannon wavelet in that it is:

1) a tight frame that conserves energy;
2) shift-invariant so that the wavelet transform commutes

with the blurring operator.

Although redundancy requires more memory and com-
putation, we still prefer the DTCWT, since its compact-
support property in the spatial domain offers the following
advantages:

1) effects of coefficient shrinkage or other modification
remain strongly localised;

2) it allows very efficient implementation with separable
spatial domain filters;

3) it allows spatially varying algorithms for optimal pro-
cessing of data with spatially varying statistics.

II. I MAGE-FORMATION MODEL AND BAYESIAN WAVELET

DECONVOLUTION

Normally, the image measurement process can be repre-
sented by a known stationary linear filter followed by the
addition of white noise of zero mean and varianceσ2:

y = Hx + n (1)

wherex andy are vectors containing the original image and
the observed image, respectively;n represents independent
white noise. These vectors haveN = N1 × N2 × . . . × NK

components, whereNk stands for the number of samples
along dimensionk. H is a square, block-circulant matrix
that approximates the convolution(blurring function).

It is well known that we can get the MAP estimate ofx

by minimising a cost function

J(x) =
1

2
‖Hx− y‖2 − σ2 log(p(x)) (2)

wherelog(p(x)) corresponds to the prior expectations about
image structure[2].

These expectations can most easily be formulated in the
wavelet domain, since the wavelet transform of images tends
to be sparse (i.e. many coefficients are close to zero)[3].

We choose to formulate this problem with the wavelet
coefficientsw of the dual-tree complex wavelet transform
(DT CWT) of x due to the transform’s good signal energy
compaction and shift invariant properties.

DT CWT is an overcomplete wavelet transform, which is
implemented inK dimentions by2K wavelet filterbanks in
parallel. The coefficients produced by these filterbanks are



combined to give the real and imaginary parts of complex
coefficientsw̃i.

By treating the real and imaginary parts of the wavelet
coefficients separately, we use real matricesW and M to
represent the forward and inverse DTCWT, and a column
vectorw to denote the wavelet coefficients of the transform
of the imagex, such thatw = Wx; andx = Mw is the
image reconstructed fromw. We arrange the entries of the
w such thatw2k−1 = Re(w̃k), w2k = Im(w̃k) .

In our prior model, we assume the wavelet coefficients are
independently distributed according to Gaussian distributions
with zero mean and spatially adaptable variance[2]; and that
the real and imaginary parts of a given DTCWT coefficient
are independently drawn from the same Gaussian distribu-
tion. Hence, following Wanget al[7], the prior pdf p(ω)
is proportional toexp{− 1

2w
T Ãw} whereÃ is a diagonal

matrix with Ã−1
ii being the expected variance ofwi[2].

For simplicity, letAii = σ2Ãii = σ2/var(wi). Therefore
the cost function in terms of wavelet coefficients can be
written as:

J(w) =
1

2
‖HMw − y‖2 +

1

2
wT Aw (3)

III. A LGORITHM

The above cost function(3) results in a correction direction

∇wJ(w) = MTHT (y − HMw) − Aw (4)

whose term,HT (y−HMw), actually blurs the differences
between the observed imagey and the estimated observed
image,HMw. This in fact prevents the fine details of the
image from being recovered since the PSF is often a low-
pass filter. Therefore we need to emphasise the sub-bands
which contain the fine details of the differences.

A. Derivation of a sub-band pre-emphasis bound

Following Vonesch & Unser [6], we denote by(Wj)j∈S

and (Mj)j∈S the different decomposition and reconstruc-
tion wavelet subspaces (subbands) respectively, whereS =
0, 1, . . . J , J is the number of wavelet subspaces,0 indexes
the scaling function subspace. And specifically, regarding
DT CWT, Wj andMj are masked versions ofW and
M, respectively, such thatW =

∑

j∈S Wj and M =
∑

j∈S Mj . For simplicity, we denoteWjx as column vector
wj , with non-zero coefficients only in subbandj.
Additionally, we assume that the real and imaginary parts
of the transform’s outputs are treated as separate coefficients
so thatWj and Mj are real matrices. And thus for a real
imagex, wj = Wjx andMjwj are real.
Since the DTCWT is a tight frame[4], it yields:

x =
∑

j∈S

Mjwj =
∑

j∈S

MjWj
︸ ︷︷ ︸

Pj

x (5)

‖x‖2 = ‖w‖2 =
∑

j∈S

‖wj‖
2 (6)

Mj = WT
j (7)

At the same time, we can obtain:

PjH = HPj (8)

because the DTCWT is shift invariant, and thusPj =
MjWj acts just like a spatially invariant filter, which enables
it to commute withH.

By defining

(Aj)ii =

{
Aii, if wi is in subbandj
0, otherwise

We obtain

J(w) =
1

2
‖y − HMw

︸︷︷︸

x

‖2 +
∑

j∈S

1

2
wT Ajw (9)

=
1

2
‖y − H

∑

j∈S

Mjwj

︸ ︷︷ ︸

x

‖2 +
1

2

∑

j∈S

wT
j Ajwj (10)

The above result contains a difficult term for minimization
of J(w):

‖Hx‖2 = (
∑

j∈S

Mjwj)
T HTH(

∑

j∈S

Mjwj),

which gives a coupled system of nonlinear equations ofwj

[1]. In order to eliminate this term from (10), we apply
Daubechies’ idea of an upper-bound function[1], to give the
following auxiliary function:

J̄n(w) = J(w) +
1

2

∑

j∈S

αj‖Wjx
(n) − Wjx‖

2

−
1

2
‖Hx(n) − Hx‖2 (11)

wherex =
∑

j∈S Mjwj , x(n) is thenth iteration ofx and
the αj must be properly chosen to make sure thatJ̄(w) −
J(w) ≥ 0. If we let ǫ = x(n)−x, this inequality is equivalent
to

∑

j∈S

αj‖Wjǫ‖
2 ≥ ‖Hǫ‖2 (12)

and so
∑

j∈S

αjǫ
T WT

j Wj
︸ ︷︷ ︸

Pj

ǫ ≥ ǫTHTHǫ (13)

1) The value of αj:
Since Pj , andH are convolution matrices (shift invari-

ant), we may letǫk = CejωT k and analyse this in the
frequency domain. LetPj(ω) be the gain ofPj and|H(ω)|2

be the gain ofHTH at frequencyω.

Thus
∑

j∈S

αjPj(ω) ≥ |H(ω)|2 ∀ω (14)

Since Pj(ω) ≥ 0 and
∑

j∈S Pj(ω) = 1 for all ω and
Pj(ω) ≈ 1 at the center frequency of each subband where
all the other subbands have approximately zero gain, we
may find an approximate value forαj by setting it equal
to |H(ωj)|

2/Pj(ωj), whereωj is the centre frequency of
subbandj. The above analysis assumes that|H(ω)|2 is
smooth enough to be approximated by

∑

j∈S αjPj(ω).
For rapid convergence [6] shows that eachαj should be as
small as (13) allows.



2) The resulting algorithm:
Let w

(n)
j = Wjx

(n), and rewrite2J̄n(w) as

2J̄n(w) = ‖y − Hx‖2 +
∑

j∈S

αj‖w
(n)
j − wj‖

2

− ‖Hx(n) − Hx‖2 +
∑

j∈S

wT
j Ajwj

= −2yTHx +
∑

j∈S

αj‖w
(n)
j − wj‖

2+

2(HTHx(n))Tx +
∑

j∈S

wT
j Ajwj + C(x(n),y)

= −2(HTy)T
∑

j∈S

Mjwj +
∑

j∈S

αj‖w
(n)
j − wj‖

2

+ 2(HTHx(n))T
∑

j∈S

Mjwj

+
∑

j∈S

wT
j Ajwj + C(x(n),y) (15)

whereC(x(n),y) = ‖y‖2−‖Hx(n)‖2 is a function that does
not depend onwj .

Equation (15) is clearly a quadratic equation inwj .
Its global minimum, given x(n), is achieved when
∂J̄n(w) /∂wj = 0, which results in

(αjI+Aj)wj = αjw
(n)
j +WjH

T (y−Hx(n)), ∀j (16)

Hence we get the new estimates ofwj andx

w
(n+1)
j = (αjI + Aj)

−1
(

αjw
(n)
j + WjH

T (y − Hx(n))
)

(17)

x(n+1) =
∑

j∈S

Mjw
(n+1)
j (18)

B. Updating the prior A

The iteration rule of (17) and (18) can also be divided into
two building blocks:

• the Landweber iteration:

z
(n)
j = αjw

(n)
j + WjH

T (y − Hx(n))

• the projection operation that actually projects the new
coefficients back into the space dominated by the prior
A:

w
(n)
j = (αjI + Aj)

−1
z
(n)
j

We can expect a good estimate ofw if we have an accurate
prior, because the priorA represents the image structure,
and also because the prior helps to suppress the noise and
artifacts which are unlikely to be part of the image structure.

In general, we don’t know the exact information about the
prior. Thus a coarse estimate ofA from the blurred image
is often used instead. The wavelet variance estimates are
given by the energy of the wavelet coefficients of an estimate
of the original image; and the diagonal entriesAii are the
reciprocals of the estimated variances.

Since the estimated image is often contaminated by arti-
facts and noise, this straightforward approach often failsto

obtain a satisfactory estimate ofA. A heuristic alternative
approach is to update the estimate ofA as the restored image
structure gets closer to the true one.

An intuitive approach to overcome such difficulties is to
denoise the coefficients before we calculateA. Becausew
is sparse, we may therefore estimateŵ by wavelet shrinkage
of w, and we useσ2/ŵ2

i for each termAii in A.

IV. EXPERIMENTAL RESULTS

In our experiments, we choose to use the bivariate shrink-
age denoising rule with the DTCWT as described in [5] in
our estimation ofA. This is because this shrinkage algo-
rithm exploits the interscale dependencies between wavelet
coefficients while being relatively simple.

For comparative purposes, we performed a series of exper-
iments on 2 standard test images (Cameraman, House). We
convolved these images with a9 × 9 uniform blur kernel,
and added white Gaussian noise to the results in order to
replicate the experimental setup of Vonesch & Unser[6]. We
use the blurred signal-to-noise ratio (BSNR) to define the
noise level overN pels:

BSNR = 10 log10

‖Hx‖2 − N(Hx)2

Nσ2
(19)

We considered 5 different noise levels: BSNR = 10dB, 20dB,
30dB, 40dB, 50dB. We also adopted improvement in signal-
to-noise ratio (ISNR, same as SERG in [6]) to evaluate each
estimatex(n):

ISNR(x(n)) = 10 log10(
‖y − x‖2

‖x(n) − x‖2
) (20)

For each test case, we used the same initial estimate as [6],
which was obtained using the under-regulized Wiener-type
filter:

x(0) = (HT H + 10−3σ2I)−1HTy

We averaged the ISNR results over 30 noise realizations, and
summarize them in Table I. The numerical results of the FTL
method are quoted from Vonesch & Unser[6].
When the image House was used and BSNR was set to 50dB,
we found that the algorithm became less efficient because
σ is so small that it has weakened the prior. Hence, we
used 2σ2 instead ofσ2 on the same images and got the
data marked by * in the table. We also amplifiedσ2 a little
to 1.1σ2 when BSNR was set to 40dB, and got the data
marked by†. This correponds to the need for a small amount
of regularization even in the absence of additive noise. We
show blurred and restored images in Fig.1, and convergence
curves in Fig.2.

To demonstrate the effect of updating matrixA, we ran
the algorithm while holdingA constant from the begining,
and compared the ISNR with those obtained when updating
A after each iteration. It is clear that updating of the prior
knowledge does help to improve the performance. We have
also applied the algorithm successfully to 3D microscopy
data as shown in Fig. 3.



(a) observed image (b) after intitial Wiener filter (c) after10 iters (d) after 30 iters

Fig. 3. One slice of a 3D fluorescence microscopy data set of size 256 × 256 × 81.

TABLE I

NUMBERS OF ITERATIONS TO REACH A GIVEN LEVEL OFISNR

BSNR BWSE BWSE FTL BWSE FTL
2 iter. 10 iter. 10 iter. 30 iter. 30 iter.

10dB 2.44 2.82 2.90 2.98 2.94
20dB 2.34 2.57 2.62 2.76 2.74
30dB 4.31 4.57 4.31 4.79 4.43

C
am

er
am

an

40dB 5.66 6.90 6.03 7.24 6.61
50dB 6.62 7.86 7.80 9.23 8.38

10dB 3.54 4.34 3.73 4.75 3.82
20dB 4.11 4.45 3.81 4.95 3.99

H
ou

se

30dB 5.70 7.18 6.25 7.59 6.39

40dB 4.48 7.13 7.30 9.67 9.074.93† 8.14† 9.86†

50dB
4.50 6.56

7.49
8.60

8.905.49* 8.08* 10.73*
Note: number marked by * or† is the results whenA is amplified a little.

BWSE is the acronym for our proposed algorithm Bayesian
wavelet subband emphasis.

(a) blurred image (b) after initial Wiener filter

(c) after 10 iters (d) after 30 iters

Fig. 1. Experiment on Cameraman with white additive noise 40dB. The
images were obtained by the proposed algorithm with an evolving A.
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Fig. 2. ISNR as a function of the iteration number when applying the
proposed algorithm. Blue-filled circles are the markers forthe results of FTL
algorithm.−o− marks the ISNR curve whenA gets updates while− ∗−
marks the ISNR curve whenA stays constant. (a) the result of Cameraman
with BSNR=40dB; (b) the result of House with BSNR = 40dB.

V. CONCLUSION

We have shown how the fast thresholding Landweber
algorithm of [6] can be modified to use the redundant
DT CWT[4] instead of Shannon wavelets, and how the
algorithm can be improved by updating the regularizing prior
matrixA using the bivariate shrinkage rule[5]. The DTCWT
gives more compact support than the Shannon wavelet, and
improved results over those reported in [6].
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