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Abstract

This paper presents new methodsfor computing the step sfzt®e subband-adaptive iterative shrinkage-
thresholding algorithms proposed by Bayram & Selesnickgddl Vonesch & Unser [12]. The method yields
tighter wavelet-domain bounds of the system matrix, thaslitey to improved convergence speeds. It is directly
applicable to non-redundant wavelet bases and we also &daptthe case of (redundant) frames. It turns out
that the simplest and most intuitive setting for the stegssithat ignores subband aliasing is often satisfactory
in practice. We show that our methods can be used to advantiigeeweighted least squares penalty functions
as well as L1 penalties. We emphasize that the algorithmsepted here are suitable for performing inverse
filtering on very large datasets, including 3D data, sinaerisions are applied only to diagonal matrices and
fast transforms are used to achieve all matrix-vector prtsdu

Index Terms

Deconvolution, Iterative algorithms, wavelets, multolegion, sparsity.

|. INTRODUCTION

The inverse filtering (or deconvolution) problem aims toowsr the true vectox from the distorted and
noisy observation vectoy,

where matrixH represents the convolution amdrepresents the noise. This problem is typically ill-posed a
hence furthera priori information is needed to provide regularization which reshithe uncertainty of the
solution and prevents overfitting.

Wavelet-based methods have had a successful history inefldeofiimage processing [1], [7], due to the fact
that wavelets provide sparse representations for a widgerahimages (i.e. many wavelet coefficients are close
to zero). Applying wavelets to the deconvolution problenméver a trivial task, because convolution operators
are generally quite difficult to represent in the wavelet domunlike the simple diagonalized representation
in the Fourier domain [7]. Several research groups havepmadgently proposed a forward-backward splitting
procedure to circumvent this problem [4], [7]. Using thenorm as the regularization, their procedure alternates

between a Landweber update and wavelet thresholding, arztlieis often called the Thresholded Landweber
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(TL) algorithm [11] or the iterative shrinkage/threshaidi(IST) algorithm [1]. The TL/IST algorithm offers
computational advantages for the deconvolution of largagies or 3D datasets, but its convergence speed is
often slow.

The Fast Thresholded Landweber (FTL) [11] algorithm ace¢és the convergence of the TL algorithm
by iteratively updating the estimate in a subband adaptghibn. The FTL was specific to the Shannon
wavelet because it exploits the ideal spectral localiraficoperty of the Shannon wavelet to set the subband
parameters to be as tight as possible. In [1], Bayram & Silkdnvestigated the problem of generalizing
to arbitrary wavelet frames by keeping to the all-subbandree structure of the original FTL, calling the
resulting algorithm subband-adaptive IST (SISTA), andppsed a way to set the subband gain parameters.
They also provided results suggesting that tighter sublpamdmeterstend to speed up convergence.

In this paper, we adopt a different approach from [1] to set shbband parameters (Section Ill). These
parameters appear to be tighter than those proposed by Ba§r&elesnick’s [1]. As a result, our modified
algorithm exhibits faster convergence.

While this result works elegantly for orthonormal transfer, it cannot be generalized to redundant transforms
directly, due to the difference between the range spaceeofatiundant transform and the overall vector space.
In Section 1lI-B, we show that our proposed method can beiegiple with redundant transforms which are
formed from a union of orthonormal transforms. Unfortuhgtevith other types of redundant transform, we
have to resort to a weaker argument, but we also derive ai@olfdr this case.

We start, in Section Il, by formulating the wavelet-based¢aiwolution problem with subband-separable
regularizations, as in [13]. Though the regularizationas restricted to the&; norm, the resulting iteration rule
comprises the Landweber update and all-subband-at-oreofsing steps” as in SISTA. With the improved
bounds, we therefore call our algorithm modified subbaraptde iterative shrinkage/thresholding (MSIST) to
differentiate it from the original SISTA.

Section IV provides evidence that supports our method cécsiely subband parameters. The results of
applying MSIST to several deconvolution problems are piedlito demonstrate the speed-up effect of MSIST

with different regularizations.

Il. THEMSIST

We list the notation that we will use throughout the paperabl@ I, and now introduce the basic algorithm.
We consider a general minimization problem for the function

F(w) = 3lly—HMw|? + v2¢(w)

=Llly-HY Mgwe) 2+ 023 s 65(Wi) 2)
€S
C

X

where ¢;(w;)) is the regularization function for subband The search fow which minimizes (2) covers

a broad range of wavelet based image/signal reconstruatidrrestoration (inverse filtering) problems. Many

1We say the subband parameter is tight when the parametensis t its lower limit for guaranteed convergence.
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TABLE |

NOTATION FOR WAVELET ANALYSIS

Notation Type Representation

W matrix forward wavelet transform.
w vector wavelet coefficients ok, w = Wx.

w; scalar thei-th entry ofw.
index of the subbandsj = 0 indexes the

J integer g hhand of the scaling function.
., forward wavelet transform in the given sub-
W)  matrix bandj, with all other subbands set to zero.

w(;) Vvector wavelet coefs in subband w; = W;)x.

M matrix inverse wavelet transformx = Mw.

., inverse wavelet transform in the given subband
M) matrix ; “yith all other subbands set to zero.
Py =M; W, transfer fn. of subbang;
Py  matrix . J
for perfect reconstructiony~:_, ;) = IL.

widely used sparse penalty functions are subband/subfgpaap separable, such as thenorms ( < p < 1),
group lasso [14], weighted least squares, etc.

To be consistent with the prior work in [1], we follow the ntiten there. For a system withi subbands, we
introduce the vectoex = [ag . . . ;] and the diagonal operatdr,, that multiplies thej** subspace/subband of
w by «;, such that:

(AQW)(j) = Q;W(j) for 73=0---J. (3)

Let 8; = v?/a; and use subscript to denotew at thenth iteration, we are then able to state the MSIST
algorithm as follows:

b=w, +A,'M"H” (y — Hx)

(Wn+1)(j) = proxﬁj% b(J) (4)

X = Mwn+1)
whereproxg , (.) denotes the unigue minimum

. 2
argmin [§ [[w(; — by | + 86 ()] (5)
W)

This is called the proximity operator in the literature [3jdais widely used [13]. The algorithm of (4) is
the direct result of applying the majorization-minimizati(MM) technique on (2). The MM technique was
introduced for the linear inverse problem by Daubechies|dttlaand the general convergence property is
also presented there and in [3]. The MM technique is veryulsefdealing with the convolution operator in
the deconvolution problem [6]. Instead of minimizing theget function F'(w) directly, the MM technique

minimizes an easier surrogate function that upper boun@s). In our case, the surrogate function is

G(w,v)=F(w)+ 3(w—v)TAo(w—v) — 3 |HM(W—V)||§ (6)

1
2

Equation (4) is then obtained by alternately minimizimgand v (w and v correspond tow,,,; and w,,
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respectively). For the MM algorithm to converge [3], [4]etBurrogate function needs to satisfy that,

G(w,v) > G(w,w), anyv # w

(7)
G(w,w) = F(w)
This requirement is equivalent to the positive-definite diban:
Ay — MTHTHM - 0 (8)

where A = B means thai” Au > u”Bu for any u # 0. A more formal derivation is elaborated in [6]
(replacingD in [6] by A,), and in [1] and [15] replacing the penalty function with ana@eneral form.

In [3], Combettes & Wajs proved that (4) leads to a global mizer of F(w) if the Landweber step
is non-expansive, and i#(-) is lower semi-continuous and convex In [1] Bayram & Selelsniproved that
the convergence rate of SISTA depends on the contractienafathe Landweber update and the proximity
operator. It is well known that the Landweber update coreeffgster if the spectral radius (largest eigenvalue)
of (A, — MTHTHM) is smaller. The design of the subband adaptive algorithns aonreduce the spectral
radius,p(A, — MTHTHM), and hence speed up the convergence of the Landweber update.

It should be noted that the proximity operator does not atMapd to a closed form solution. With tife
norm and the zero-mean Gaussian log priors, the proximigratpr is in closed form, but for a Generalized
Gaussian distribution (GGD) and Gaussian scale mixtureM)a8g prior, for example, the solutions are not.
Figueiredo et al in [6] discuss applying the MM techniquessooh penalty functions. Even and subquadratic
¢j(w(;y) can be majorized by even and quadratic functions. Altermateémization then leads to an algorithm
in the iterative reweighted least squares (IRLS) form. TRES algorithm in subband-adaptive form [15] will be
given particular weights in the numerical result sectiohjolu demonstrates that IRLS can be used to minimize
some difficult penalties, even non-convex ones. This isfoelghen we want to consider a broader variety
of penalties. The convergence analysis of IRLS is very diffjcout in practice, we have always observed
convergence and high quality image restorations as londv@sveights are properly initialized (all weights

significantly non-zero).

I1l. o; SELECTION

As stated above), needs to be properly set such that (8) holds to ensure theeggevce of the algorithm,
and for maximum convergence speéd, should be an upper bound " H”HM as tight as possible. This
means that, for any vectar # 0:

ul (A, — MTHTHM)u > 0. (9)

Note thatu need not be within the range space W, if W is a redundant frame. To make the argument
in the following sections valid, we need to make the follogvitlarification. We will uset to denoteWx, a
wavelet-coefficient vector in the range spaceWf andu to denote any vector that has the same dimension
asu and satisfiesxx = Mu. If W is orthonormalja = u, otherwise in generah # u. To keep the derivation

simple, we first assume th& is an orthonormal basis.
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A. The orthonormal wavelet case

For orthonormal waveletsi = u holds. From (9) the following expression must be positivedib non-zero

u’Ayu — "M THTHMu
7 T J T T T
- ijo GGG T ijo u(y Mg H HM g,
7 T T T
=Dy D, UM H HM ug (10)

where we calul., M7 H”HM; u;, an inband component and(l;)Ma)HTHM(l)u(l) (I # 4) a crossband

(=)
component. Note that the crossband components represeitatismission of a signal though subbdnaf
the inverse wavelet transform, blurring in the spatial donisy H” H, and then transmitting through subband
j (5 # 1) of the forward wavelet transform. Hence as long as the suiidbare relatively non-overlapping
in the frequency domain, the crossband summation term étylito be significantly smaller than the inband
summation term in (10), especially when bandand/ are non-adjacent.

Ignoring the crossband components,can simply be chosen to be larger th@lM@)HTHM(j)) to ensure
(10) is positive for all non-zerm. Though the crossband summation complicates the sityadigrotentially
beneficial question to ask is “can the crossband summatiodebemposed into only inband components?”.
We achieve this as follows.

First we define

0o =H"H (11)
andP ;) as in Table I. We can then state the following theorem.

Theorem 1. AssumeZ‘j]:O P ;) = I with J being a positive finite number. For a given Hermitian matfix
we introduce a positivity operataP, (©) that sets every negative eigenvalue®to 0. The matrix sequence
{©} then defined by

J
Opt1 = Pr(O — ZFO Pl 0P ;). (12)
has the propertyim;_,., ©; = 0 and }_, u” ©,u converges absolutely for any. Moreover,
7 o0
O =% PG ONPG), (13)
k=0
where A < B means tha1” Au < u”Bu. (See Appendix A for the proof.)

Corollary 1. For orthonormal waveletsM?©,M = Z‘j]:() M%(ZZ"ZO Or)M(;). (See Appendix B for the
proof.)

Because of Corollary 1, we can set

so as to ensurd, = MTHTHM (so that (10) 0), with o being a small constant.
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B. Extension to redundant frames

First recall that we have definel= Wx to be a wavelet coefficient vector in the range spac&8afand

u to be any vector that has the same dimensiom ad satisfiesx = Mu. We then have

W' MTHT"HMu = x"H Hx = a"MTH"HMu. (15)
Therefore,

u’Au —u"MTHTHMu

=ulAju—afAa+alAa—a" MTHTHMa (16)
p1 P2

wherep, is always non-negative ify; is set according to (14). Howeves; cannot always be nonnegative

without any assumptions. Since the null space of a frameti®gonal to its range space and= 1t + u,, a
will be the coefficient vector with the minimdh norm that satisfies = Mu. Therefore, for anyn satisfying

x = Mu, u"u > d”u and hencey; > 0 if A, = ol. However whemy; is set differently for each subband,
p1 > 0 no longer necessarily holds. This means that directly apgly14) will not guarantee the positivity
of (16); but we are able to provide some useful results fdnttffgame transforms formed from a number of

orthonormal transforms in parallel, as follows.

Let M; (! = 1,...,L) denoteL parallel orthonormal transforms, whetd,M] = I,VI. The forward
transforms aréw,; = MZT. Hence
1 T
a=—=[M; ... M| x
i an
X = E[Ml ML]U
Let oy = \%LMZTX so thata = [af ... ﬁf]T; and letu; be the equivalent components af Because of

Jensen’s inequality ,

1 L
T TyyT _
u M'H HMuzug lleMlul

2 (18)
L 2
<
<> IHMu;
We then have
u’Ayu — u"MTHTHMu
Lo . (19)
> _
> (uf Ay — [HMu3)
whereA; is the submatrix of\, that corresponds ta; in u. Because all of they; are applied to orthonormal
transforms, we can apply (14) on every orthonormal tramsfiorensure the positivity dfuf A, — ||[HM,u, Hg)
and thus ensure the positivity af A,u—u”M?H? HMu, so that convergence of MSIST will be guaranteed.
For other types of tight frames, we have to consider a weaigemaent for convergence. Instead of requiring

Ao — MTHTHM to be positive definite, we require
ulAgu —u"MTHTHMuUT > 0, (20)

whereu = w,41 — v, such that the cost function is monotonically reducé@w, ;) < J(w,). With a

properly choserx that ensures the positivity gf, in (16), this is equivalent to

u’Agu—aTA, >0 (21)
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because of (16), wher& = WMu. Therefore, when applying MSIST with a redundant frame, eguire
an extra step to test whether (21) holds at each iteratioit.dbes not, we need to increase the for that

iteration, one subband at a time, until (21) is satisfied.

IV. NUMERICAL RESULTS

We note here that the normalized eigenvectors of shiftriam&transforms and blurring filters are the Fourier
basis vectors. For shift-invariant systems (e.g. the unkged wavelet transform]?(Tj)HTHP(j) is circulant
and its DFT coefficients are real numbers and are also theneigees ong;.)HTHP(j). For shift-variant
systems©(k > 1) and P;. need to be evaluated explicitly, and the computation coeléxpensive for large

HTH. For ease of computation, we adopt some practical apprdicinsa

A. Practical approximations

Because) -, O converges absolutely, a few (sdy + 1) terms can approximate the right-hand term in

(13) as follows:
J

. T o N J T K
2 PO OPGH Y PLOQ ., OKP). (22)

The number of terms needed for a satisfactory approximatepends on how fasd, converges. For shift-
invariant systems, the computation is cheap and a l&fgean be used. For a shift-variant system with well-
designed wavelets, the crossband summation in (10) doeplagta significant role, so we expe€l; to
converge quite quickly. Table Il shows; of the critically sampled wavelet transform in the 1-dimiensl
case, calculated for the length-30 moving average filter §imgidifferent K for the approximation in (14).
This filter is chosen as in [1] to provide directly comparat@sults. The limiting values show that our method
clearly reaches a tighter bound than Bayram & SelesnicksHut the gap between the two methods shrinks
when the wavelets have better spectral localization. Wit $hannon wavelet (ideal localization), the two
methods will produce identical results.

We also see that the approximaieg with K = 9 for the db8 and db4 wavelet transforms are already very
close to the limiting values. For db4 and db8 wavelets, itveoges faster due to the much better selectivity of
the wavelet subbands.

Combettes & Wajs's result [3], and, more directly, Bayram &eSnick’s result [1] assure convergence with
a relaxed conditio2A, = MTHTHM. This suggests that we can afford more losse3 Ji®; by using an
even smallerk’ (typically only 0 or 1) and still assure convergence. In Table I, we note thatvith K = 0
is larger than half of the limitingy; for db8. Therefore, we suggest the following approximafionease of

computation, especially for the shift-variant wavelenstrm with good frequency selectivity:
a; = p(M{}00M;)). (23)

[1] and [12] propose fast algorithms for caIcuIatipg\/[g;)GoM(j)).

B. Applications to deconvolution

In this section, we show by examples that the subband-agagtidate rule of (4) is significantly more efficient
than the standard TL algorithm. Note that Bayram & Selesh@ke also demonstrated similar conclusions on

1-D and 2-D deconvolution problems in [1].

November 13, 2012 DRAFT



TABLE Il

o FOR THE NORMALIZED LENGTH30MOVING AVERAGE FILTER WITH 6-LEVELS WITH DIFFERENT WAVELETS ANDK . 0 = le — 5.

K |Level 1 2 3 4 5 6 0

[1]| 0.0779 0.1532 0.3023 0.5851 1.1558 1.3763 1.6780
oo | 0.0634 0.1112 0.1951 0.3385 0.5926 1.1175 1.0964
dbl| 9 | 0.0431 0.0902 0.1715 0.3059 0.5740 1.0791 1.0600
1| 0.0047 0.0139 0.0531 0.1645 0.4522 0.8383 1.0000
0 | 0.0022 0.0044 0.0210 0.0915 0.3757 0.6878 1.0000
[1] | 0.0036 0.0121 0.0473 0.1646 0.7155 1.0694 1.1467
oo | 0.0031 0.0101 0.0406 0.1576 0.6192 0.9155 1.0003
db4| 9 | 0.0029 0.0100 0.0340 0.1491 0.6106 0.9119 1.0000
1| 0.0023 0.0064 0.0238 0.0720 0.4982 0.8594 1.0000
0 | 0.0022 0.0042 0.0185 0.0489 0.4524 0.8240 1.0000
[1] | 0.0028 0.0098 0.0342 0.0948 0.5950 0.9753 1.0558
oo | 0.0025 0.0093 0.0321 0.0754 0.5447 0.8544 1.0000
9 | 0.0025 0.0092 0.0320 0.0719 0.5424 0.8524 1.0000
1| 0.0022 0.0060 0.0209 0.0518 0.4713 0.8361 1.0000
0 | 0.0022 0.0048 0.0173 0.0456 0.4568 0.8317 1.0000

e [1] indicates that those subband parameters are calculated

db8

cording to Bayram & Selesnick’s paper on undecimated wavele
transform.

e The limiting value, denoted byo, is obtained by running the
algorithm until p(©x41) < le — 5.

First we implemented a simple 1-D example with a 6-leveliaalty sampled db4 transform. This example
is taken from [1}. The signal is blurred by a length-30 moving average filtedt aith added Gaussian noise
of variance 0.02. Hence in Figure 1 we compare the conveegspeed of oury; (dash-dot lines) with those
calculated by Bayram & Selesnick (dash lines) [1] and badic MISIST and SISTA are noticeably faster
to converge than IST, but the differences between MSIST dB8d/ are moderate because computed on
db4 with our proposed method and Bayram & Selesnick’s metredvery close as shown in Table Il. The
approximatedv further speeds up the convergence, but again the diffesearoeng the compared approximated
« are small, therefore we can opt for the simplest soluti@n,aur method with’’ = 0.

Secondly, we tested algorithms on the image deconvolutioblem. We chose to use the DOWT [9] as
the analysis tool for two main reasons: (a) it has good fraqueelectivity so we can expe€l; to converge
quickly and hence we need only ugé = 0 to calculate they; for each tree; and (b) it is an over-complete
tight-frame wavelet transform consisting of 4 paralleeBeso we can test the theory in Section IlI-B in this
example. In addition, the DTWT is almost shift invariant, which reduces many of the @tes of the critically
sampled and much more shift-dependent DWT, and hence sigmilfy enhances the wavelet-based processing
[9].

For comparative purposes, we have performed a series ofimqrgs on the standard test image, Cameraman.

We convolved the image with @ x 9 uniform blur kernel.a computed by our method is shown numerically

2The authors would like to acknowledge Dr Bayram for gendyoabiowing us access to his code.
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Fig. 1. Convergence speed of 1D signal with the blur kerneida length-30 moving average filtdSNR(z,) = 10log; Tem—xll3"
zZn —X||5

TABLE Il
@ USING THE K = 0 APPROXIMATION FOR THE9 X 9 UNIFORM BLUR KERNEL AND DT CWT. THERE ARE6 SUBBANDS FOR EACH

LEVEL'SDT CWT DECOMPOSITION ‘LL’ STANDS FOR THE SCALING SUBBAND AT LEVEL4.0 = le — 4.

LL: ap =1
Other subbands:
Subband 1 2 3 4 5 6

Level 1  0.0079 0.0002 0.0079 0.0079 0.0002 0.0079
Level 2 0.0265 0.0023 0.0265 0.0265 0.0023 0.0265
Level 3 0.1084 0.0288 0.1084 0.1084 0.0288 0.1084
Level 4 0.4997 0.3642 0.4997 0.4997 0.3642 0.4997

in Table 1ll. We also compared against SISTA wghx computed according to [1]. We added white Gaussian

noise to the blurred images and used the blurred signabigerratio (BSNR) to define the noise level ovér

pels:
T2
IHx, — Hx, || (24)

BSNR =101
0810 N2

where x,. is the original reference imagé&]x, denotes the mean dfix, and N is the pixel number. We

adopted the improvement in signal-to-noise ratio (ISNRyiaent to SERG in [11]) to evaluate each estimate

z of x,.:

B 2
ISNR(z) = 10log,o (1Y =2 (25)

1z — %, [?
For each test case, we used the same initial estimate as]imfiiith was obtained using the under-regularized

Wiener-type filter:
zo = (HTH +1073,°T) " 'HTy. (26)

Figure 2 compares the ISNR of MSIST to IS&;(= p(HTH)) and SISTA (witha; computed as in [1])
with different penalty functions. The BSNR of the obseroatly is 40dB. In each graph, the subband adaptive

a;; of MSIST is as shown in Table Ill. Figure 2 (a) plots the resuf the/;-norm regularized algorithm, and

November 13, 2012 DRAFT



10

75

| ST :
............ | A

....... I

1

—IST a=0.5

!
< v S SISTA
e 2 i - - -SISTA 0.5
ol —steos L— ot == MSISTA K=0

r « SISTAG ,
s - - -SISTA 0.5 | st
== MSIST o (K=0)

45

4‘0 6‘0 slo 160 1&0 11‘10 1é0 1;0 200
Iteration Number

2‘0 4‘0 6‘0 slo 160 1&0 11‘10 1é0 1;0 200 2‘0
Iteration Number
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Fig. 2. ISNR versus iteration number, on Cameraman, BSNRdB40

Figure 2 (b) plots the results of the iterative reweighteabtesquares (IRL8)regularized algorithm.

We then considered another 2 different noise levels, BSNRd&B2 50dB; and averaged the ISNR results
over 30 noise realizations. Results are summarized in Tehlerhich shows that MSIST requires significantly
fewer iterations to achieve a given quality of recovery ungeth /,-norm and IRLS regularization when the
noise is lower (50db).

We believe that the fast convergence of MSIST, shown in bajbrE 1 and Figure 2, is directly dependent on
how well the diagonal approximation to the blurring funatiproduced by\,, approximates the true blurring
function MTH”HM in the wavelet domain. This in turn is related to the decatiet) properties of the
chosen wavelet transform when applied to typical blurripgratorsH. (Full decorrelation would result in a
perfect diagonal representation being possible.) Henapgrrchoice of a good transform, when combined with
expected forms of blurring, is an important factor in achigvgood performance with this algorithm.

In the Cameraman example, another important observasaihai IRLS reached a better ISNR than methods
based on the&; norm. This is presumably because IRLS minimizes a penaly ith closer to the/y, norm
than the/; norm does. It would also be possible to use MSIST-based IRL&ihimize/,(0 < p < 1) norms
that could generate high-quality restorations. In our expents, we found that having a whitenning parameter
e in the in the IRLS weights, which slowly decreases from atietly large value to a small value as the

iterations proceed, is important for the IRLS to reach goddt®ns [2]. It has been observed by other authors
that initializing each of the weights far from zero helps BRRkeach good results [6]. This explains why we
need to set whitening parameterelatively large in the beginning, but there are currentlyakear guidelines
on how best to decrease it. Further work is needed here, mibigyond the scope of this paper.

We have also applied the subband-adaptive IRLS algoritreoessfully to a 3D microscopy dataset {M
voxels) as shown in Figure 4y; in this example was again computed by (14) with= 0. A similar result

using an earlier version of MSIST was previously shown in][THhis demonstrates that MSIST is suitable for

2 2
3The weights are set al/(|w;|? + €) with w; from the previous iteration. The corresponding penaltylénent-wiselog "“‘%

which is the log of the Cauchy Lorentz distribution. The Gautaurentz distribution is very heavy-tailed and henceoithices sparsity.
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(a) adaptive o (SISTA), £;- (b) adaptive Lo (SISTA),

norm, ISNR= 6.2910 dB IRLS, ISNR= 7.1405 dB

(c) Adaptiveax (MSISTA, K = (d) Adaptivea (MSISTA, K =
0), ¢1-norm, ISNR = 7.1754 0), IRLS, ISNR= 7.4064 dB
dB

Fig. 3. The deconvolution results after 50 iterations wittiie range space, on Cameraman, BSNR = 40dB.

use on large datasets.

V. CONCLUSIONS

In this paper, we have considered ways to improve the esimatf subband dependent parametess
to further speed up SISTA. The proposed MSIST technique eanded straightforwardly on deconvolution
problems with subband separable penalties and it can beegsq in a consistent form incorporating the
Landweber update and denoising steps, with different fasfmggularization.

Unlike Bayram & Selesnick’s approach for calculating, our method of computing the subband dependant
parametersy; is based on the geometric expansionMf H” HM on the orthonormal basis, and we obtain
a A, which appears to be tighter than than the one of [1]. We dssc¢his further in the appendix. By
utilizing the result of Combettes & Wajs [3], we show that simplest estimation that ignores the crossband
components is sufficient to ensure convergence for typicalelet bases, and that the convergence speed is
good. More importantly, we consider the MSIST family of alifams with redundanttransforms and provide
some useful results on setting the parameters in this caappears in our 1-D example that the covergence-
speed improvement of MSIST with respect to the existing 8I¢l] is only small, but the improvement in
the 2-D case is more significant. This is because our appedioms are then tighter than those of SISTA and

result in a smaller error betweexy, and MTHTHM.
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TABLE IV
ISNRRESULTS OVER30 RANDOM REALIZATIONS OF NOISE ‘I’ STANDS FOR THE NONADAPTIVE ALGORITHM IST; ‘S’ STANDS FOR

SISTAWITH %a PROPOSED IN1], ‘M’ STANDS FOR OUR PROPOSED ALGORITHIMSIST.

/1 norm
BSNR 20 dB 50 dB
Methods | S M | S M

10 iters | 2.3183| 2.5045| 2.8604| 6.2148| 6.3137| 7.8205
30 iters | 2.4948| 2.7633| 2.9945| 6.2798| 6.5609| 8.3353
50 iters | 2.6113| 2.8875| 3.0131| 6.3444| 6.7872| 8.6479
70 iters | 2.6946| 2.9622| 3.0173| 6.4088| 6.9927| 8.8562
100 iters| 2.7829| 3.0315| 3.0217| 6.5048| 7.2638| 9.0559

IRLS
BSNR 20 dB 50 dB
Methods | S M | S M

10 iters | 2.3994| 2.5749| 2.5836| 6.2691| 6.8777| 8.7598
30 iters | 2.7973| 2.9830| 2.9897| 6.3792| 7.9687| 10.2900
50 iters | 2.9959| 3.1867| 3.1911| 6.5393| 8.8984| 10.6011
70 iters | 3.1129| 3.3044| 3.3077| 6.7153| 9.4842| 10.6691
100 iters| 3.2112| 3.3997| 3.4029| 6.9744| 9.9490| 10.6827

(a) blurred image (b) after initial Wiener filter

(c) after 10 iters (d) after 30 iters

Fig. 4. One slice of a 3D fluorescence microscopy data setzef2§i6 x 256 x 81 voxels.

APPENDIXA

PROOF FORTHEOREM 1

To prove theorem 1, we need the following result.

Let Ay > --- > A\, > 0 denote the eigenvalues of the positive semi-definite (PS&)ritian matrix®, and
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uy,--- ,u, denote the corresponding eigenvectors. Therefore, forvantor x:
xTex = xT Z Ai(ul x)u; = Z Ai(ul'x)?
i=1 i=1 (27)
> A (uf x)?
And, becaus{jjzo P =1,
J
Z uiTP(j)ui =ulw = 1. (28)
j=0

Using 2(3-1, [@4]?) > (2307, |2])?, for any setx, then gives

XJ: [l Pyu* = (XJ: u/Pw)?/ (J+1)
5=0 = (29)
=1/(J+1).
Proof:
1) Because9, is PSD andP, (-) makes any othe®; PSD also, ever;Pg;)GkP(j) is PSD, and hence
>io Pl ©;_1Py;) is also PSD.
Now we prove thatz,{(:0 p(Oy) converges absolutely. This leads to the convergencgﬁiO xTO,x for

any x becausé) < x70;x < p(Oy) ||x|\§. If v, be the eigenvector corresponding to the largest eigenvdlue

Oy, then:
J
p(@k):vg@kvk:vg((%k,l 7ZP6)@k71P(j))Vk (30)
§=0
Let \y > --- > )\, > 0 denote the eigenvalue of PSD Hermitian mai#ix_,, anduy, --- ,u,, denote the

corresponding eigenvectors. Lét = u} v, and hencev;, = >i, Biu;. Therefore, we have

VEOr 1V = > Aif37 (31)

i=1

and

J J n
T T T
7=0

j=0 i=1

n J

2

=Y x> ulPryvall;
=1 j=0

) (32)
n 1 - .
YN SR
i=1 7=0
= i N (ulve)? = —— i i
B A B JH1eT
Substituting the above two equations into (30), we have
J < J
p(Or) < —— Z&ﬂ? = Vi Op_1Vy
1 1
J+1 J+ (33)
J
< — _1).
S 1P(@k 1)

Therefore,z,{iO p(©y) converges absolutely.
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2) Finally, we prove that
J o0
T
O =% PG ONPG). (34)
k=0

Becaused,, 1 = O, — Z;’:O P7 ©,P(;, we have

J
O, — On1 2 Y Pl 0,P). (35)
j=0
Therefore,
K K J
Z (O = Opng1) = Z Z P(Tj)@nP(j)- (36)
n=0 n=0 j=0
Letting K — oo completes the argument. |

Under a shift-invariant conjugate mirror system whexg, = W(Tj)W(j) can be diagonalized by the Fourier
matrix, PE)GP(]-) + P%;.)@P(Z—) is also PSD for any that is PSD and can be diagonalized by the Fourier

matrix. This leads t®y41 = 0 — Y.7_ P7, ©,P ;) and results in

90 =) P> OnP(), (37)
k=0

which means the rhs is the tightest upper bounddgr
For the DWT, the above bound also appears to be tighter tharotie in [1] in practice. Their system

considers the upper bound

>3 ox"Pl 0P j)x

i j>i
<D > 2|lwallp(MG00Me) [wip || (38)
i g>i
<3027 MG M) ([w || + [wip )
i g>i

For any giveni and;j and non-zerc, the equality a holds only ifv(;) = W;x andw ;) = W ;)x are both
both in the direction of the largest eigenvector/xﬁtvla)@OM(j)) andw(;) = kw(;*. This means we can
swapw ;) andwy;), i.e. wly M 00M;w(;) = w; M{; ©oM;yw(;), but the way thatv, is constructed
ensures thaM ;yw;) = 0 for any # j. Therefore, the inequality a is strict if there is aM/(TZ.)G)OM(j) # 0.

In contrast to [1], our system upper bourmgP(Ti)eoP(j)x by taking the negative eigenvalues out without
changing the maximum positive values.

For the redundant frame formed by a union of orthonormalsfiaams where there is significant aliasing
between subbands, the system in [1] considﬁM%@OM(j)) from different orthonormal bases, while our
system does not need to. This makes our parameter muchrtiphatre theirs.

Note that the equality of (33) holds when tInl.%FP(j)v;c equal each other for alJ. For a well-designed
wavelet system which has good frequency selectivity, theeenormally only a few dominarltiTP(j)vk which
makest:O(uiTP(j)vk)2 much bigger thar{u! ijo P;yvk)?/(J + 1) and hence the convergence rate is
much better tha//(.J + 1) per iteration.

4There is one exception, whdh(Ti)GoP(j) =0 for anys andj, equality a and b hold for whatever ;) andw ;) are. This happens

when ©g is the identity matrix.
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APPENDIXB

PROOF FORCOROLLARY 1

For anyx = Mu,

u'M7TO;Mu = x"0yx

i (39)

The last line of the above equation holds because the wavafedform is orthonormal, i.e1; = u;.

(1]

(2]

(31

(4

(5]
6]

(7]

(8]
El

[10]

(11]

[12]

(13]

[14]

[19]
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