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Abstract

This paper presents new methodsfor computing the step sizesof the subband-adaptive iterative shrinkage-

thresholding algorithms proposed by Bayram & Selesnick [1]and Vonesch & Unser [12]. The method yields

tighter wavelet-domain bounds of the system matrix, thus leading to improved convergence speeds. It is directly

applicable to non-redundant wavelet bases and we also adaptit for the case of (redundant) frames. It turns out

that the simplest and most intuitive setting for the step sizes that ignores subband aliasing is often satisfactory

in practice. We show that our methods can be used to advantagewith reweighted least squares penalty functions

as well as L1 penalties. We emphasize that the algorithms presented here are suitable for performing inverse

filtering on very large datasets, including 3D data, since inversions are applied only to diagonal matrices and

fast transforms are used to achieve all matrix-vector products.

Index Terms

Deconvolution, Iterative algorithms, wavelets, multiresolution, sparsity.

I. I NTRODUCTION

The inverse filtering (or deconvolution) problem aims to recover the true vectorx from the distorted and

noisy observation vectory,

y = Hx+ n, (1)

where matrixH represents the convolution andn represents the noise. This problem is typically ill-posed and

hence furthera priori information is needed to provide regularization which reduces the uncertainty of the

solution and prevents overfitting.

Wavelet-based methods have had a successful history in the field of image processing [1], [7], due to the fact

that wavelets provide sparse representations for a wide range of images (i.e. many wavelet coefficients are close

to zero). Applying wavelets to the deconvolution problem isnever a trivial task, because convolution operators

are generally quite difficult to represent in the wavelet domain, unlike the simple diagonalized representation

in the Fourier domain [7]. Several research groups have independently proposed a forward-backward splitting

procedure to circumvent this problem [4], [7]. Using theℓ1 norm as the regularization, their procedure alternates

between a Landweber update and wavelet thresholding, and hence it is often called the Thresholded Landweber

November 13, 2012 DRAFT



2

(TL) algorithm [11] or the iterative shrinkage/thresholding (IST) algorithm [1]. The TL/IST algorithm offers

computational advantages for the deconvolution of large images or 3D datasets, but its convergence speed is

often slow.

The Fast Thresholded Landweber (FTL) [11] algorithm accelerates the convergence of the TL algorithm

by iteratively updating the estimate in a subband adaptive fashion. The FTL was specific to the Shannon

wavelet because it exploits the ideal spectral localization property of the Shannon wavelet to set the subband

parameters to be as tight as possible. In [1], Bayram & Selesnick investigated the problem of generalizing

to arbitrary wavelet frames by keeping to the all-subband-at-once structure of the original FTL, calling the

resulting algorithm subband-adaptive IST (SISTA), and proposed a way to set the subband gain parameters.

They also provided results suggesting that tighter subbandparameters1 tend to speed up convergence.

In this paper, we adopt a different approach from [1] to set the subband parameters (Section III). These

parameters appear to be tighter than those proposed by Bayram & Selesnick’s [1]. As a result, our modified

algorithm exhibits faster convergence.

While this result works elegantly for orthonormal transforms, it cannot be generalized to redundant transforms

directly, due to the difference between the range space of the redundant transform and the overall vector space.

In Section III-B, we show that our proposed method can be applicable with redundant transforms which are

formed from a union of orthonormal transforms. Unfortunately, with other types of redundant transform, we

have to resort to a weaker argument, but we also derive a solution for this case.

We start, in Section II, by formulating the wavelet-based deconvolution problem with subband-separable

regularizations, as in [13]. Though the regularization is not restricted to theℓ1 norm, the resulting iteration rule

comprises the Landweber update and all-subband-at-once “denoising steps” as in SISTA. With the improved

bounds, we therefore call our algorithm modified subband-adaptive iterative shrinkage/thresholding (MSIST) to

differentiate it from the original SISTA.

Section IV provides evidence that supports our method of selecting subband parameters. The results of

applying MSIST to several deconvolution problems are provided to demonstrate the speed-up effect of MSIST

with different regularizations.

II. T HE MSIST

We list the notation that we will use throughout the paper in Table I, and now introduce the basic algorithm.

We consider a general minimization problem for the function:

F (w) = 1
2‖y−HMw‖2 + ν2φ(w)

= 1
2‖y−H

∑

j∈S

M(j)w(j)

︸ ︷︷ ︸

x

‖2 + ν2
∑

j∈S φj(w(j)) (2)

whereφj(w(j)) is the regularization function for subbandj. The search forw which minimizes (2) covers

a broad range of wavelet based image/signal reconstructionand restoration (inverse filtering) problems. Many

1We say the subband parameter is tight when the parameter is close to its lower limit for guaranteed convergence.
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TABLE I

NOTATION FOR WAVELET ANALYSIS

Notation Type Representation

W matrix forward wavelet transform.

w vector wavelet coefficients ofx, w = Wx.

wi scalar the i-th entry ofw.

j integer index of the subbands;j = 0 indexes the
subband of the scaling function.

W(j) matrix forward wavelet transform in the given sub-
bandj, with all other subbands set to zero.

w(j) vector wavelet coefs in subbandj; w(j) = W(j)x.

M matrix inverse wavelet transform;x = Mw.

M(j) matrix inverse wavelet transform in the given subband
j, with all other subbands set to zero.

P(j) matrix
P(j)=M(j)W(j), transfer fn. of subbandj;

for perfect reconstruction,
∑J

j=0 P(j) = I.

widely used sparse penalty functions are subband/subspace/group separable, such as theℓp-norms (0 ≤ p ≤ 1),

group lasso [14], weighted least squares, etc.

To be consistent with the prior work in [1], we follow the notation there. For a system withJ subbands, we

introduce the vectorα = [α0 . . . αJ ] and the diagonal operatorΛα that multiplies thejth subspace/subband of

w by αj , such that:

(Λαw)(j) = αjw(j) for j = 0 · · ·J . (3)

Let βj = ν2/αj and use subscriptn to denotew at thenth iteration, we are then able to state the MSIST

algorithm as follows:

b = wn + Λ−1
α MTHT (y −Hx)

(wn+1)(j) = proxβjφj
b(j)

x = Mwn+1,







(4)

whereproxβjφj
(.) denotes the unique minimum

argmin
w(j)

[
1
2

∥
∥w(j) − b(j)

∥
∥
2
+ βjφj(w(j))

]

. (5)

This is called the proximity operator in the literature [3] and is widely used [13]. The algorithm of (4) is

the direct result of applying the majorization-minimization (MM) technique on (2). The MM technique was

introduced for the linear inverse problem by Daubechies et al [4] and the general convergence property is

also presented there and in [3]. The MM technique is very useful in dealing with the convolution operator in

the deconvolution problem [6]. Instead of minimizing the target functionF (w) directly, the MM technique

minimizes an easier surrogate function that upper boundsF (w). In our case, the surrogate function is

G(w,v) = F (w) + 1
2 (w − v)TΛα(w − v) − 1

2 ‖HM(w − v)‖22 . (6)

Equation (4) is then obtained by alternately minimizingw and v (w and v correspond town+1 and wn
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respectively). For the MM algorithm to converge [3], [4], the surrogate function needs to satisfy that,

G(w,v) > G(w,w), anyv 6= w

G(w,w) = F (w)
. (7)

This requirement is equivalent to the positive-definite condition:

Λα −MTHTHM ≻ 0 (8)

whereA ≻ B means thatuTAu > uTBu for any u 6= 0. A more formal derivation is elaborated in [6]

(replacingD in [6] by Λα), and in [1] and [15] replacing the penalty function with a more general form.

In [3], Combettes & Wajs proved that (4) leads to a global minimizer of F (w) if the Landweber step

is non-expansive, and ifφ(·) is lower semi-continuous and convex In [1] Bayram & Selesnick proved that

the convergence rate of SISTA depends on the contraction rate of the Landweber update and the proximity

operator. It is well known that the Landweber update converges faster if the spectral radius (largest eigenvalue)

of (Λα −MTHTHM) is smaller. The design of the subband adaptive algorithm aims to reduce the spectral

radius,ρ(Λα −MTHTHM), and hence speed up the convergence of the Landweber update.

It should be noted that the proximity operator does not always lead to a closed form solution. With theℓ1

norm and the zero-mean Gaussian log priors, the proximity operator is in closed form, but for a Generalized

Gaussian distribution (GGD) and Gaussian scale mixture (GSM) log prior, for example, the solutions are not.

Figueiredo et al in [6] discuss applying the MM techniques onsuch penalty functions. Even and subquadratic

φj(w(j)) can be majorized by even and quadratic functions. Alternateminimization then leads to an algorithm

in the iterative reweighted least squares (IRLS) form. The IRLS algorithm in subband-adaptive form [15] will be

given particular weights in the numerical result section, which demonstrates that IRLS can be used to minimize

some difficult penalties, even non-convex ones. This is helpful when we want to consider a broader variety

of penalties. The convergence analysis of IRLS is very difficult, but in practice, we have always observed

convergence and high quality image restorations as long as the weights are properly initialized (all weights

significantly non-zero).

III. αj SELECTION

As stated above,Λα needs to be properly set such that (8) holds to ensure the convergence of the algorithm,

and for maximum convergence speed,Λα should be an upper bound ofMTHTHM as tight as possible. This

means that, for any vectoru 6= 0:

uT (Λα −MTHTHM)u > 0. (9)

Note thatu need not be within the range space ofW, if W is a redundant frame. To make the argument

in the following sections valid, we need to make the following clarification. We will usêu to denoteWx, a

wavelet-coefficient vector in the range space ofW, andu to denote any vector that has the same dimension

as û and satisfiesx = Mu. If W is orthonormal,̂u = u, otherwise in general̂u 6= u. To keep the derivation

simple, we first assume thatW is an orthonormal basis.
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A. The orthonormal wavelet case

For orthonormal wavelets,̂u = u holds. From (9) the following expression must be positive for all non-zero

u:

uTΛαu− uTMTHTHMu

=
∑J

j=0
αju

T
(j)u(j) −

∑J

j=0
uT
(j)M

T
(j)H

THM(j)u(j)

−
∑J

j=0

∑

l 6=j
uT
(j)M

T
(j)H

THM(l)u(l) (10)

where we calluT
(j)M

T
(j)H

THM(j)u(j) an inband component anduT
(j)M

T
(j)H

THM(l)u(l) (l 6= j) a crossband

component. Note that the crossband components represent the transmission of a signal though subbandl of

the inverse wavelet transform, blurring in the spatial domain by HTH, and then transmitting through subband

j (j 6= l) of the forward wavelet transform. Hence as long as the subbands are relatively non-overlapping

in the frequency domain, the crossband summation term is likely to be significantly smaller than the inband

summation term in (10), especially when bandsj and l are non-adjacent.

Ignoring the crossband components,αj can simply be chosen to be larger thanρ(MT
(j)H

THM(j)) to ensure

(10) is positive for all non-zerou. Though the crossband summation complicates the situation, a potentially

beneficial question to ask is “can the crossband summation bedecomposed into only inband components?”.

We achieve this as follows.

First we define

Θ0 = HTH (11)

andP(j) as in Table I. We can then state the following theorem.

Theorem 1. Assume
∑J

j=0 P(j) = I with J being a positive finite number. For a given Hermitian matrixΘ,

we introduce a positivity operatorP+(Θ) that sets every negative eigenvalue ofΘ to 0. The matrix sequence

{Θk} then defined by

Θk+1 = P+(Θk −
∑J

j=0
PT

(j)ΘkP(j)), (12)

has the propertylimk→∞ Θk = 0 and
∑

k u
TΘku converges absolutely for anyu. Moreover,

Θ0 �
∑J

j=0
PT

(j)(
∞∑

k=0

Θk)P(j), (13)

whereA � B means thatuTAu ≤ uTBu. (See Appendix A for the proof.)

Corollary 1. For orthonormal wavelets,MTΘ0M �
∑J

j=0 M
T
(j)(

∑∞
k=0 Θk)M(j). (See Appendix B for the

proof.)

Because of Corollary 1, we can set

αj = ρ(MT
(j)(

∑∞

k=0
Θk)M(j)) + σ (14)

so as to ensureΛα ≻ MTHTHM (so that (10)> 0), with σ being a small constant.
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B. Extension to redundant frames

First recall that we have defined̂u = Wx to be a wavelet coefficient vector in the range space ofW, and

u to be any vector that has the same dimension asu and satisfiesx = Mu. We then have

uTMTHTHMu = xTHTHx = ûTMTHTHMû. (15)

Therefore,

uTΛαu− uTMTHTHMu

= uTΛαu− ûTΛαû
︸ ︷︷ ︸

p1

+ ûTΛαû− ûTMTHTHMû
︸ ︷︷ ︸

p2

(16)

wherep2 is always non-negative ifαj is set according to (14). However,p1 cannot always be nonnegative

without any assumptions. Since the null space of a frame is orthogonal to its range space andu = û+ u⊥, û

will be the coefficient vector with the minimalℓ2 norm that satisfiesx = Mu. Therefore, for anyu satisfying

x = Mu, uTu ≥ ûT û and hencep1 ≥ 0 if Λα = αI. However whenαj is set differently for each subband,

p1 ≥ 0 no longer necessarily holds. This means that directly applying (14) will not guarantee the positivity

of (16); but we are able to provide some useful results for tight-frame transforms formed from a number of

orthonormal transforms in parallel, as follows.

Let Ml (l = 1, . . . , L) denoteL parallel orthonormal transforms, whereMlM
T
l = I, ∀ l. The forward

transforms areWl = MT
l . Hence

û =
1√
L
[M1 . . . ML]

T
x

x =
1√
L
[M1 . . . ML]u

(17)

Let ûl =
1√
L
MT

l x, so thatû =
[
ûT
1 . . . ûT

L

]T
; and letul be the equivalent components ofu. Because of

Jensen’s inequality

uTMTHTHMu =
1

L

∥
∥
∥
∥

∑L

l=1
HMlul

∥
∥
∥
∥

2

2

≤
∑L

l=1
‖HMlul‖22

(18)

We then have
uTΛαu− uTMTHTHMu

≥
∑L

l=1
(uT

l Λlul − ‖HMlul‖22)
(19)

whereΛl is the submatrix ofΛα that corresponds toul in u. Because all of theul are applied to orthonormal

transforms, we can apply (14) on every orthonormal transform to ensure the positivity of(uT
l Λlul−‖HMlul‖22)

and thus ensure the positivity ofuTΛαu−uTMTHTHMu, so that convergence of MSIST will be guaranteed.

For other types of tight frames, we have to consider a weaker argument for convergence. Instead of requiring

Λα −MTHTHM to be positive definite, we require

uTΛαu− uTMTHTHMuT > 0, (20)

whereu = wn+1 − v, such that the cost function is monotonically reduced,J(wn+1) ≤ J(wn). With a

properly chosenα that ensures the positivity ofp2 in (16), this is equivalent to

uTΛαu− ûTΛαû ≥ 0 (21)
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because of (16), wherêu = WMu. Therefore, when applying MSIST with a redundant frame, we require

an extra step to test whether (21) holds at each iteration. Ifit does not, we need to increase theαj for that

iteration, one subband at a time, until (21) is satisfied.

IV. N UMERICAL RESULTS

We note here that the normalized eigenvectors of shift-invariant transforms and blurring filters are the Fourier

basis vectors. For shift-invariant systems (e.g. the undecimated wavelet transform),PT
(j)H

THP(j) is circulant

and its DFT coefficients are real numbers and are also the eigenvalues ofPT
(j)H

THP(j). For shift-variant

systems,Θk(k ≥ 1) andP+ need to be evaluated explicitly, and the computation could be expensive for large

HTH. For ease of computation, we adopt some practical approximations.

A. Practical approximations

Because
∑∞

k=0 Θk converges absolutely, a few (sayK + 1) terms can approximate the right-hand term in

(13) as follows:
∑J

j=0
PT

(j)(
∑∞

k=0
Θk)P(j) ≈

∑J

j=0
PT

(j)(
∑K

k=0
Θk)P(j). (22)

The number of terms needed for a satisfactory approximationdepends on how fastΘk converges. For shift-

invariant systems, the computation is cheap and a largeK can be used. For a shift-variant system with well-

designed wavelets, the crossband summation in (10) does notplay a significant role, so we expectΘk to

converge quite quickly. Table II showsαj of the critically sampled wavelet transform in the 1-dimensional

case, calculated for the length-30 moving average filter by using differentK for the approximation in (14).

This filter is chosen as in [1] to provide directly comparableresults. The limiting values show that our method

clearly reaches a tighter bound than Bayram & Selesnick’s [1], but the gap between the two methods shrinks

when the wavelets have better spectral localization. With the Shannon wavelet (ideal localization), the two

methods will produce identical results.

We also see that the approximatedαj with K = 9 for the db8 and db4 wavelet transforms are already very

close to the limiting values. For db4 and db8 wavelets, it converges faster due to the much better selectivity of

the wavelet subbands.

Combettes & Wajs’s result [3], and, more directly, Bayram & Selesnick’s result [1] assure convergence with

a relaxed condition2Λα ≻ MTHTHM. This suggests that we can afford more losses in
∑

Θk by using an

even smallerK (typically only 0 or 1) and still assure convergence. In Table II, we note thatαj with K = 0

is larger than half of the limitingαj for db8. Therefore, we suggest the following approximationfor ease of

computation, especially for the shift-variant wavelet transform with good frequency selectivity:

αj = ρ(MT
(j)Θ0M(j)). (23)

[1] and [12] propose fast algorithms for calculatingρ(MT
(j)Θ0M(j)).

B. Applications to deconvolution

In this section, we show by examples that the subband-adaptive update rule of (4) is significantly more efficient

than the standard TL algorithm. Note that Bayram & Selesnickhave also demonstrated similar conclusions on

1-D and 2-D deconvolution problems in [1].
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TABLE II

α FOR THE NORMALIZED LENGTH-30 MOVING AVERAGE FILTER WITH 6-LEVELS WITH DIFFERENT WAVELETS ANDK . σ = 1e− 5.

K Level 1 2 3 4 5 6 0

db1

[1] 0.0779 0.1532 0.3023 0.5851 1.1558 1.3763 1.6780

∞ 0.0634 0.1112 0.1951 0.3385 0.5926 1.1175 1.0964

9 0.0431 0.0902 0.1715 0.3059 0.5740 1.0791 1.0600

1 0.0047 0.0139 0.0531 0.1645 0.4522 0.8383 1.0000

0 0.0022 0.0044 0.0210 0.0915 0.3757 0.6878 1.0000

db4

[1] 0.0036 0.0121 0.0473 0.1646 0.7155 1.0694 1.1467

∞ 0.0031 0.0101 0.0406 0.1576 0.6192 0.9155 1.0003

9 0.0029 0.0100 0.0340 0.1491 0.6106 0.9119 1.0000

1 0.0023 0.0064 0.0238 0.0720 0.4982 0.8594 1.0000

0 0.0022 0.0042 0.0185 0.0489 0.4524 0.8240 1.0000

db8

[1] 0.0028 0.0098 0.0342 0.0948 0.5950 0.9753 1.0558

∞ 0.0025 0.0093 0.0321 0.0754 0.5447 0.8544 1.0000

9 0.0025 0.0092 0.0320 0.0719 0.5424 0.8524 1.0000

1 0.0022 0.0060 0.0209 0.0518 0.4713 0.8361 1.0000

0 0.0022 0.0048 0.0173 0.0456 0.4568 0.8317 1.0000

• [1] indicates that those subband parameters are calculatedac-

cording to Bayram & Selesnick’s paper on undecimated wavelet

transform.

• The limiting value, denoted by∞, is obtained by running the

algorithm untilρ(Θk+1) < 1e− 5.

First we implemented a simple 1-D example with a 6-level critically sampled db4 transform. This example

is taken from [1]2. The signal is blurred by a length-30 moving average filter and with added Gaussian noise

of variance 0.02. Hence in Figure 1 we compare the convergence speed of ourαj (dash-dot lines) with those

calculated by Bayram & Selesnick (dash lines) [1] and basic TL. MSIST and SISTA are noticeably faster

to converge than IST, but the differences between MSIST and SISTA are moderate becauseα computed on

db4 with our proposed method and Bayram & Selesnick’s methodare very close as shown in Table II. The

approximatedα further speeds up the convergence, but again the differences among the compared approximated

α are small, therefore we can opt for the simplest solution, i.e. our method withK = 0.

Secondly, we tested algorithms on the image deconvolution problem. We chose to use the DTCWT [9] as

the analysis tool for two main reasons: (a) it has good frequency selectivity so we can expectΘk to converge

quickly and hence we need only useK = 0 to calculate theαj for each tree; and (b) it is an over-complete

tight-frame wavelet transform consisting of 4 parallel trees, so we can test the theory in Section III-B in this

example. In addition, the DTCWT is almost shift invariant, which reduces many of the artefacts of the critically

sampled and much more shift-dependent DWT, and hence significantly enhances the wavelet-based processing

[9].

For comparative purposes, we have performed a series of experiments on the standard test image, Cameraman.

We convolved the image with a9× 9 uniform blur kernel.α computed by our method is shown numerically

2The authors would like to acknowledge Dr Bayram for generously allowing us access to his code.
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(a) with α (b) with approximatedα (note the expanded vertical

scale here)

Fig. 1. Convergence speed of 1D signal with the blur kernel being a length-30 moving average filter.ISNR(zn) = 10 log10
‖z0−x‖2

2

‖zn−x‖2
2

.

TABLE III

α USING THEK = 0 APPROXIMATION FOR THE9× 9 UNIFORM BLUR KERNEL AND DT CWT. THERE ARE6 SUBBANDS FOR EACH

LEVEL’ S DT CWT DECOMPOSITION. ‘LL’ STANDS FOR THE SCALING SUBBAND AT LEVEL4.σ = 1e− 4.

LL: α0 = 1

Other subbands:

Subband 1 2 3 4 5 6

Level 1 0.0079 0.0002 0.0079 0.0079 0.0002 0.0079

Level 2 0.0265 0.0023 0.0265 0.0265 0.0023 0.0265

Level 3 0.1084 0.0288 0.1084 0.1084 0.0288 0.1084

Level 4 0.4997 0.3642 0.4997 0.4997 0.3642 0.4997

in Table III. We also compared against SISTA with12α computed according to [1]. We added white Gaussian

noise to the blurred images and used the blurred signal-to-noise ratio (BSNR) to define the noise level overN

pels:

BSNR = 10 log10
‖Hxr −Hxr‖2

Nν2
(24)

wherexr is the original reference image,Hxr denotes the mean ofHxr and N is the pixel number. We

adopted the improvement in signal-to-noise ratio (ISNR, equivalent to SERG in [11]) to evaluate each estimate

z of xr:

ISNR(z) = 10 log10(
‖y − xr‖2
‖z− xr‖2

). (25)

For each test case, we used the same initial estimate as in [11], which was obtained using the under-regularized

Wiener-type filter:

z0 = (HTH+ 10−3ν2I)−1HTy. (26)

Figure 2 compares the ISNR of MSIST to IST (αj = ρ(HTH)) and SISTA (withαj computed as in [1])

with different penalty functions. The BSNR of the observationsy is 40dB. In each graph, the subband adaptive

αj of MSIST is as shown in Table III. Figure 2 (a) plots the results of theℓ1-norm regularized algorithm, and
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(a) ℓ1-norm (b) IRLS

Fig. 2. ISNR versus iteration number, on Cameraman, BSNR = 40dB.

Figure 2 (b) plots the results of the iterative reweighted least-squares (IRLS)3 regularized algorithm.

We then considered another 2 different noise levels, BSNR = 20dB, 50dB; and averaged the ISNR results

over 30 noise realizations. Results are summarized in TableIV, which shows that MSIST requires significantly

fewer iterations to achieve a given quality of recovery under both ℓ1-norm and IRLS regularization when the

noise is lower (50db).

We believe that the fast convergence of MSIST, shown in both Figure 1 and Figure 2, is directly dependent on

how well the diagonal approximation to the blurring function, produced byΛα, approximates the true blurring

function MTHTHM in the wavelet domain. This in turn is related to the decorrelating properties of the

chosen wavelet transform when applied to typical blurring operatorsH. (Full decorrelation would result in a

perfect diagonal representation being possible.) Hence proper choice of a good transform, when combined with

expected forms of blurring, is an important factor in achieving good performance with this algorithm.

In the Cameraman example, another important observations is that IRLS reached a better ISNR than methods

based on theℓ1 norm. This is presumably because IRLS minimizes a penalty that is closer to theℓ0 norm

than theℓ1 norm does. It would also be possible to use MSIST-based IRLS to minimizeℓp(0 < p < 1) norms

that could generate high-quality restorations. In our experiments, we found that having a whitenning parameter

ǫ in the in the IRLS weights, which slowly decreases from a relatively large value to a small value as the

iterations proceed, is important for the IRLS to reach good solutions [2]. It has been observed by other authors

that initializing each of the weights far from zero helps IRLS reach good results [6]. This explains why we

need to set whitening parameterǫ relatively large in the beginning, but there are currently no clear guidelines

on how best to decrease it. Further work is needed here, but itis beyond the scope of this paper.

We have also applied the subband-adaptive IRLS algorithm successfully to a 3D microscopy dataset (∼ 5M

voxels) as shown in Figure 4.αj in this example was again computed by (14) withK = 0. A similar result

using an earlier version of MSIST was previously shown in [15]. This demonstrates that MSIST is suitable for

3The weights are set as1/(|wi|
2 + ǫ) with wi from the previous iteration. The corresponding penalty is element-wiselog |w|2+ǫ2

ǫ
,

which is the log of the Cauchy Lorentz distribution. The Cauchy Laurentz distribution is very heavy-tailed and hence introduces sparsity.
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(a) adaptive 1
2
α (SISTA), ℓ1-

norm, ISNR= 6.2910 dB

(b) adaptive 1
2
α (SISTA),

IRLS, ISNR= 7.1405 dB

(c) Adaptiveα (MSISTA,K =

0), ℓ1-norm, ISNR = 7.1754

dB

(d) Adaptiveα (MSISTA,K =

0), IRLS, ISNR= 7.4064 dB

Fig. 3. The deconvolution results after 50 iterations within the range space, on Cameraman, BSNR = 40dB.

use on large datasets.

V. CONCLUSIONS

In this paper, we have considered ways to improve the estimation of subband dependent parametersαj

to further speed up SISTA. The proposed MSIST technique can be used straightforwardly on deconvolution

problems with subband separable penalties and it can be expressed in a consistent form incorporating the

Landweber update and denoising steps, with different formsof regularization.

Unlike Bayram & Selesnick’s approach for calculatingαj , our method of computing the subband dependant

parametersαj is based on the geometric expansion ofMTHTHM on the orthonormal basis, and we obtain

a Λα which appears to be tighter than than the one of [1]. We discuss this further in the appendix. By

utilizing the result of Combettes & Wajs [3], we show that thesimplest estimation that ignores the crossband

components is sufficient to ensure convergence for typical wavelet bases, and that the convergence speed is

good. More importantly, we consider the MSIST family of algorithms with redundanttransforms and provide

some useful results on setting the parameters in this case. It appears in our 1-D example that the covergence-

speed improvement of MSIST with respect to the existing SISTA [1] is only small, but the improvement in

the 2-D case is more significant. This is because our approximations are then tighter than those of SISTA and

result in a smaller error betweenΛα andMTHTHM.
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TABLE IV

ISNR RESULTS OVER30 RANDOM REALIZATIONS OF NOISE. ‘I’ STANDS FOR THE NON-ADAPTIVE ALGORITHM IST; ‘S’ STANDS FOR

SISTA WITH 1
2
α PROPOSED IN[1], ‘M’ STANDS FOR OUR PROPOSED ALGORITHMMSIST.

ℓ1 norm

BSNR 20 dB 50 dB

Methods I S M I S M

10 iters 2.3183 2.5045 2.8604 6.2148 6.3137 7.8205

30 iters 2.4948 2.7633 2.9945 6.2798 6.5609 8.3353

50 iters 2.6113 2.8875 3.0131 6.3444 6.7872 8.6479

70 iters 2.6946 2.9622 3.0173 6.4088 6.9927 8.8562

100 iters 2.7829 3.0315 3.0217 6.5048 7.2638 9.0559

IRLS

BSNR 20 dB 50 dB

Methods I S M I S M

10 iters 2.3994 2.5749 2.5836 6.2691 6.8777 8.7598

30 iters 2.7973 2.9830 2.9897 6.3792 7.9687 10.2900

50 iters 2.9959 3.1867 3.1911 6.5393 8.8984 10.6011

70 iters 3.1129 3.3044 3.3077 6.7153 9.4842 10.6691

100 iters 3.2112 3.3997 3.4029 6.9744 9.9490 10.6827

(a) blurred image (b) after initial Wiener filter

(c) after 10 iters (d) after 30 iters

Fig. 4. One slice of a 3D fluorescence microscopy data set of size 256 × 256 × 81 voxels.

APPENDIX A

PROOF FORTHEOREM 1

To prove theorem 1, we need the following result.

Let λ1 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues of the positive semi-definite (PSD) Hermitian matrixΘ, and
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u1, · · · ,un denote the corresponding eigenvectors. Therefore, for anyvectorx:

xTΘx = xT

n∑

i=1

λi(u
T
i x)ui =

n∑

i=1

λi(u
T
i x)

2

≥ λ1(u
T
1 x)

2

(27)

And, because
∑J

j=0 P(j) = I,
J∑

j=0

uT
i P(j)ui = uT

i ui = 1. (28)

Using 1
n
(
∑n

i=1 |xi|2) ≥ ( 1
n

∑n

i=1 |xi|)2, for any setx, then gives

J∑

j=0

∥
∥uT

i P(j)ui

∥
∥
2 ≥ (

J∑

j=0

uT
i P(j)ui)

2/ (J + 1)

= 1 / (J + 1).

(29)

Proof:

1) BecauseΘ0 is PSD andP+(·) makes any otherΘk PSD also, everyPT
(j)ΘkP(j) is PSD, and hence

∑J

j=0 P
T
(j)Θk−1P(j) is also PSD.

Now we prove that
∑K

k=0 ρ(Θk) converges absolutely. This leads to the convergence of
∑K

k=0 x
TΘkx for

anyx because0 < xTΘkx ≤ ρ(Θk) ‖x‖22. If vk be the eigenvector corresponding to the largest eigenvalueof

Θk, then:

ρ(Θk)=vT
k Θkvk=vT

k (Θk−1 −
J∑

j=0

PT
(j)Θk−1P(j))vk (30)

Let λ1 ≥ · · · ≥ λn ≥ 0 denote the eigenvalue of PSD Hermitian matrixΘk−1, andu1, · · · ,un denote the

corresponding eigenvectors. Letβi = uT
i vk and hencevk =

∑n

i=1 βiui. Therefore, we have

vT
k Θk−1vk =

n∑

i=1

λiβ
2
i (31)

and

vT
k

J∑

j=0

PT
(j)Θk−1P(j)vk =

J∑

j=0

n∑

i=1

λi(u
T
i P(j)vk)

2

=

n∑

i=1

λi

J∑

j=0

∥
∥uT

i P(j)vk

∥
∥
2

2

≥
n∑

i=1

λi

1

J + 1
(uT

i

J∑

j=0

P(j)vk)
2

=

n∑

i=1

λi

1

J + 1
(uT

i vk)
2 =

1

J + 1

n∑

i=1

λiβ
2
i

. (32)

Substituting the above two equations into (30), we have

ρ(Θk) ≤
J

J + 1

n∑

i=1

λiβ
2
i =

J

J + 1
vT
k Θk−1vk

≤ J

J + 1
ρ(Θk−1).

(33)

Therefore,
∑K

k=0 ρ(Θk) converges absolutely.
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2) Finally, we prove that

Θ0 �
∑J

j=0
PT

(j)(

∞∑

k=0

Θk)P(j). (34)

BecauseΘn+1 � Θn −∑J
j=0 P

T
(j)ΘnP(j), we have

Θn −Θn+1 �
J∑

j=0

PT
(j)ΘnP(j). (35)

Therefore,
K∑

n=0

(Θn −Θn+1) �
K∑

n=0

J∑

j=0

PT
(j)ΘnP(j). (36)

Letting K → ∞ completes the argument.

Under a shift-invariant conjugate mirror system whereP(j) = WT
(j)W(j) can be diagonalized by the Fourier

matrix, PT
(i)ΘP(j) + PT

(j)ΘP(i) is also PSD for anyΘ that is PSD and can be diagonalized by the Fourier

matrix. This leads toΘk+1 = Θk −
∑J

j=0 P
T
(j)ΘkP(j) and results in

Θ0 =
∑

j
PT

(j)(

∞∑

k=0

Θk)P(j), (37)

which means the rhs is the tightest upper bound forΘ0.

For the DWT, the above bound also appears to be tighter than the one in [1] in practice. Their system

considers the upper bound
∑

i

∑

j>i

2xTPT
(i)Θ0P(j)x

≤
a

∑

i

∑

j>i

2
∥
∥w(i)

∥
∥ ρ(MT

(i)Θ0M(j))
∥
∥w(j)

∥
∥

≤
b

∑

i

∑

j>i

ρ(MT
(i)Θ0M(j))(

∥
∥w(i)

∥
∥
2
+
∥
∥w(j)

∥
∥
2
)

. (38)

For any giveni andj and non-zerox, the equality a holds only ifw(i) = W(i)x andw(j) = W(j)x are both

both in the direction of the largest eigenvector ofρ(MT
(i)Θ0M(j)) andw(i) = kw(j)

4. This means we can

swapw(i) andw(j), i.e. wT
(i)M

T
(i)Θ0M(j)w(j) = wT

(j)M
T
(i)Θ0M(j)w(i), but the way thatw(i) is constructed

ensures thatM(j)w(i) = 0 for any i 6= j. Therefore, the inequality a is strict if there is anyMT
(i)Θ0M(j) 6= 0.

In contrast to [1], our system upper bounds2xTPT
(i)Θ0P(j)x by taking the negative eigenvalues out without

changing the maximum positive values.

For the redundant frame formed by a union of orthonormal transforms where there is significant aliasing

between subbands, the system in [1] considersρ(MT
(i)Θ0M(j)) from different orthonormal bases, while our

system does not need to. This makes our parameter much tighter than theirs.

Note that the equality of (33) holds when theuT
i P(j)vk equal each other for allj. For a well-designed

wavelet system which has good frequency selectivity, thereare normally only a few dominantuT
i P(j)vk which

makes
∑J

j=0(u
T
i P(j)vk)

2 much bigger than(uT
i

∑J

j=0 P(j)vk)
2/(J + 1) and hence the convergence rate is

much better thanJ/(J + 1) per iteration.

4There is one exception, whenPT
(i)

Θ0P(j) = 0 for any i andj, equality a and b hold for whateverw(i) andw(j) are. This happens

whenΘ0 is the identity matrix.
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APPENDIX B

PROOF FORCOROLLARY 1

For anyx = Mu,

uTMTΘ0Mu = xTΘ0x

≤ xT

J∑

j=0

PT
(j)(

∞∑

k=0

Θk)P(j)x

=

J∑

j=0

ûT
j M

T
(j)(

∞∑

k=0

Θk)M(j)ûj

= uT

J∑

j=0

MT
(j)(

∞∑

k=0

Θk)M(j)u,

(39)

The last line of the above equation holds because the wavelettransform is orthonormal, i.e.̂uj = uj .
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