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Complex Wavelets: What are they and what can they do?

• Basic form of the DT CWT

• Shift invariance of subband transfer functions

• DT CWT in 2-D – directional selectivity

• DT CWT in 3-D

• Denoising

• Image Registration

• Accumulated maps for keypoint detection

• Rotation-invariant local feature matching
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Features of the (Real) Discrete Wavelet Transform (DWT)

• Good compression of signal energy.

• Perfect reconstruction with short support filters.

• No redundancy.

• Very low computation – order-N only.

But

• Severe shift dependence.

• Poor directional selectivity in 2-D, 3-D etc.

The DWT is normally implemented with a tree of highpass and lowpass filters,
separated by 2 : 1 decimators.
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Real Discrete Wavelet Transform (DWT) in 1-D
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Figure 1: (a) Tree of real filters for the DWT. (b) Reconstruction filter block for 2 bands at a time,

used in the inverse transform.
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Visualising Shift Invariance

• Apply a standard input (e.g. unit step) to the transform for a range of shift
positions.

• Select the transform coefficients from just one wavelet level at a time.

• Inverse transform each set of selected coefficients.

• Plot the component of the reconstructed output for each shift position at each
wavelet level.

• Check for shift invariance (similarity of waveforms).

See Matlab demonstration.



Complex Wavelets – 5 Nick Kingsbury

Features of the Dual Tree Complex Wavelet Transform (DT
CWT)

• Good shift invariance = negligible aliasing. Hence transfer function
through each subband is independent of shift and wavelet coefs can be
interpolated within each subband, independent of all other subbands.

• Good directional selectivity in 2-D, 3-D etc. – derives from analyticity in
1-D (ability to separate positive from negative frequencies).

• Perfect reconstruction with short support filters.

• Limited redundancy – 2:1 in 1-D, 4:1 in 2-D etc.

• Low computation – much less than the undecimated (à trous) DWT.

Each tree contains purely real filters, but the two trees produce the real and
imaginary parts respectively of each complex wavelet coefficient.
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Q-shift Dual Tree Complex Wavelet Transform in 1-D
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Figure 2: Dual tree of real filters for the Q-shift CWT, giving real and imaginary parts of complex

coefficients from tree a and tree b respectively. Figures in brackets indicate the approximate delay for

each filter, where q = 1
4 sample period.
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Features of the Q-shift Filters

Below level 1:

• Half-sample delay difference is obtained with filter delays of 1
4 and 3

4 of a sample
period (instead of 0 and 1

2 a sample for our original DT CWT).

• This is achieved with an asymmetric even-length filter H(z) and its time
reverse H(z−1).

• Due to the asymmetry (like Daubechies filters), these may be designed to give an
orthonormal perfect reconstruction wavelet transform.

• Tree b filters are the reverse of tree a filters, and reconstruction filters are the
reverse of analysis filters, so all filters are from the same orthonormal set.

• Both trees have the same frequency responses.

• The combined complex impulse responses are conjugate symmetric about
their mid points, even though the separate responses are asymmetric. Hence
symmetric extension still works at image edges.
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Q-shift DT CWT Basis Functions – Levels 1 to 3
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Frequency Responses of 18-tap Q-shift filters
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Frequency Responses of 14-tap Q-shift filters
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Frequency Responses of 6-tap Q-shift filters
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The DT CWT in 2-D

When the DT CWT is applied to 2-D signals (images), it has the following features:

• It is performed separably, with 2 trees used for the rows of the image and 2 trees
for the columns – yielding a Quad-Tree structure (4:1 redundancy).

• The 4 quad-tree components of each coefficient are combined by simple sum and
difference operations to yield a pair of complex coefficients. These are part
of two separate subbands in adjacent quadrants of the 2-D spectrum.

• This produces 6 directionally selective subbands at each level of the 2-D
DT CWT. Fig 4 shows the basis functions of these subbands at level 4, and
compares them with the 3 subbands of a 2-D DWT.

• The DT CWT is directionally selective (see fig 6) because the complex filters can
separate positive and negative frequency components in 1-D, and
hence separate adjacent quadrants of the 2-D spectrum. Real separable
filters cannot do this!
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2-D Basis Functions at level 4
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Figure 4: Basis functions of 2-D Q-shift complex wavelets (top), and of 2-D real wavelet filters (bottom),

all illustrated at level 4 of the transforms. The complex wavelets provide 6 directionally selective filters,

while real wavelets provide 3 filters, only two of which have a dominant direction. The 1-D bases, from

which the 2-D complex bases are derived, are shown to the right.
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Frequency Responses of 2-D Q-shift filters at levels 3 and 4

Contours shown at −1 dB and −3 dB.
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Test Image and Colour Palette for Complex Coefficients
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2-D DT-CWT Decomposition into Subbands

Figure 5: Four-level DT-CWT decomposition of Lenna into 6 subbands per level (only the central

128 × 128 portion of the image is shown for clarity). A colour-wheel palette is used to display the

complex wavelet coefficients.
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2-D DT-CWT Reconstruction Components from Each Subband

Figure 6: Components from each subband of the reconstructed output image for a 4-level DT-CWT

decomposition of Lenna (central 128× 128 portion only).
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2-D Shift Invariance of DT CWT vs DWT
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Figure 7: Wavelet and scaling function components at levels 1 to 4 of an image of a light circular disc

on a dark background, using the 2-D DT CWT (upper row) and 2-D DWT (lower row). Only half of

each wavelet image is shown in order to save space.
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The DT CWT in 3-D

When the DT CWT is applied to 3-D signals (eg medical MRI or CT datasets), it
has the following features:

• It is performed separably, with 2 trees used for the rows, 2 trees for the columns
and 2 trees for the slices of the 3-D dataset – yielding an Octal-Tree structure
(8:1 redundancy).

• The 8 octal-tree components of each coefficient are combined by simple sum and
difference operations to yield a quad of complex coefficients. These are
part of 4 separate subbands in adjacent octants of the 3-D spectrum.

• This produces 28 directionally selective subbands (4× 8− 4) at each
level of the 3-D DT CWT. The subband basis functions are now planar waves
of the form ej(ω1x+ω2y+ω3z) , modulated by a 3-D Gaussian envelope.

• Each subband responds to approximately flat surfaces of a particular orientation.
There are 7 orientations on each quadrant of a hemisphere.
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3D subband orientations on
one quadrant of a hemisphere

3D frequency
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3D Gabor-like basis functions:

hk1,k2,k3(x, y, z) ' e−(x2 + y2 + z2)/2σ2 × ej(ωk1 x + ωk2 y + ωk3 z)

These are 28 planar waves (7 per quadrant of a hemisphere) whose orientation
depends on ωk1 ∈ {ωL, ωH} and ωk2, ωk3 ∈ {±ωL,±ωH}, where ωH ' 3ωL.
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Applications of the DT CWT

• Motion estimation [Magarey 98] and compensation

• Registration [Kingsbury 02]

• Denoising [Choi 00, Miller 06] and deconvolution [Jalobeanu 00, De Rivaz
01, J Ng 07]

• Texture analysis [Hatipoglu 99] and synthesis [De Rivaz 00]

• Segmentation [De Rivaz 00, Shaffrey 02]

• Classification [Romberg 00] and image retrieval [Kam & T T Ng 00,
Shaffrey 03]

• Watermarking of images [Loo 00] and video [Earl 03]

• Compression / Coding [Reeves 03]

• Seismic analysis [van Spaendonck & Fernandes 02, Miller 05]

• Diffusion Tensor MRI visualisation [Zymnis 04]

• Object matching & recognition [Anderson & Fauqueur 06]



Complex Wavelets – 22 Nick Kingsbury

De-Noising – Method:

• Transform the noisy input image to compress the image energy into as few
coefs as possible, leaving the noise well distributed.

• Suppress lower energy coefs (mainly noise).

• Inverse transform to recover de-noised image.

What is the Optimum Transform ?

• DWT is better than DCT or DFT for compressing image energy.

• But DWT is shift dependent – Is a coef small because there is no signal
energy at that scale and location, or because it is sampled near a zero-crossing in
the wavelet response?

• The undecimated DWT can solve this problem but at significant cost –
redundancy (and computation) is increased by 3M : 1, where M is no. of DWT
levels.

• The DT CWT has only 4 : 1 redundancy, is directionally selective, and works
well.
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Figure 8: Probability density functions (pdfs) of small and large variance Gaussian distributions,

typical for modelling real and imaginary parts of complex wavelet coefficients.
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Image Denoising with different Wavelet Transforms - Lenna
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Image Denoising with different Wavelet Transforms - Peppers
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Heirarchical Denoising with Gaussian Scale Mixtures (GSMs)
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Denoising a 3-D dataset

e.g. Medical 3-D MRI or helical CT scans.

Method:

• Perform 3-D DT CWT on the dataset.

• Attenuate smaller coefficients, based on their magnitudes, as for 2-D denoising.
(Heirarchical methods are also quite feasible.)

• Perform inverse 3-D DT CWT to recover the denoised dataset.

A Matlab example shows denoising of an ellipsoidal surface, buried in Gaussian
white noise.
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Image Registration

Key Features of Robust Registration Algorithms

• Edge-based methods are more robust than point-based ones.

• Must be automatic (no human picking of correspondence points) in order to
achieve sub-pixel accuracy in noise.

• Bandlimited multiscale (wavelet) methods will allow spatially adaptive denoising.

• Phase-based bandpass methods can give rapid convergence and immunity to
illumination changes between images.

• Displacement field should be smooth, so use of a wide-area parametric (affine)
model is preferable to local translation-only models.
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Selected Method

• Dual-tree Complex Wavelet Transform (DT CWT):

◦ provides complex coefficients whose phase shift depends approximately linearly
with displacement;

◦ allows each subband of coefficients to be interpolated independently of other
subbands (because of shift invariance).

• Parametric model of displacement field, whose solution is based on local
edge-based motion constraints (Hemmendorf et al., IEEE Trans Medical
Imaging, Dec 2002):

◦ derives straight-line contraints from directional subbands of DT CWT;
◦ solves for model parameters which minimise constraint error energy over

multiple directions and scales.
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Basic Linear Flow Model

Key Assumption for local translation model:

• Time derivative of the phase θ of each complex wavelet coefficient depends
approximately linearly on the local velocity vector v.

This can be expressed as a flow equation in time and spatial derivatives:

∂θ

∂t
= ∇x θ . v

We can rearrange this to be in the form:

∇x θ . v − ∂θ

∂t
= 0

or [∇x θ
−∂θ

∂t

]T

ṽ = 0 where ṽ =
[
v
1

]



Complex Wavelets – 34 Nick Kingsbury

Parametric Model: Constraint equations

Let the displacement vector at the ith location xi be v(xi); and let ṽi =
[
v(xi)

1

]
.

A straight-line constraint on v(xi) can be written

cT
i ṽi = 0 or c1,iv1,i + c2,iv2,i + c3,i = 0

For a phase-based system in which wavelet coefficients at xi in images A and B
have phases θA and θB, approximate phase linearity means that

ci = Ci

[ ∇x θ(xi)
θB(xi)− θA(xi)

]

In practise we compute this by averaging finite differences at the centre of a
2× 2× 2 block of coefficients from images A and B.

Ci is a constant which does not affect the line defined by the constraint, but which
is important later.
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Parameters of the Model

We can define an affine parametric model for v such that

v(x) =
[

a1

a2

]
+

[
a3 a5

a4 a6

] [
x1

x2

]

or in a more useful form

v(x) =
[

1 0 x1 0 x2 0
0 1 0 x1 0 x2

]
.




a1
...

a6


 = K(x) . a

Affine models can synthesise translation, rotation, constant zoom, and shear.

A quadratic model, which allows for linearly changing zoom (approx perspective),
requires up to 6 additional parameters and columns in K of the form

[
. . . x1x2 0 x2

1 0 x2
2 0

. . . 0 x1x2 0 x2
1 0 x2

2

]
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Solving for the Model Parameters

Let K̃i =
[
K(xi) 0

0 1

]
and ã =

[
a
1

]
so that ṽi = K̃i ã .

Ideally for a given image locality X , we wish to find the parametric vector ã such
that

cT
i ṽi = 0 when ṽi = K̃i ã for all i such that xi ∈ X .

In practise this is an overdetermined set of equations, so we find the LMS solution,
the value of a which minimises the squared error

EX =
∑

i∈X
||cT

i ṽi||2 =
∑

i∈X
||cT

i K̃i ã||2 =
∑

i∈X
(ãT K̃T

i ci)(cT
i K̃i ã)

= ãT Q̃X ã where Q̃X =
∑

i∈X
(K̃T

i ci cT
i K̃i)
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Solving for the Model Parameters (cont.)

Since ã =
[
a
1

]
and Q̃X is symmetric, we define Q̃X =

[
Q q
qT q0

]

X
so that

EX = ãT Q̃X ã = aT Q a + 2 aTq + q0

EX is minimised when ∇a EX = 2 Q a + 2 q = 0 , so aX ,min = − Q−1 q .

The choice of locality X will depend on application:

• If it is expected that the affine (or quadratic) model will apply accurately to the
whole image, then X can be the whole image and maximum robustness will be
achieved.

• If not, then X should be a smaller region, chosen to optimise the tradeoff
between robustness and model accuracy. A good way to produce a smooth field
is to make X fairly small (e.g. a 32× 32 pel region) and then to apply a
smoothing filter across all the Q̃X matrices, element by element, before solving
for aX ,min in each region.
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Constraint Weighting Factors

Returning to the equation for the constraint vectors, ci = Ci

[ ∇x θ(xi)
θB(xi)− θA(xi)

]
,

the constant gain parameter Ci will determine how much weight is given to each

constraint in Q̃X =
∑

i∈X
(K̃T

i ci cT
i K̃i) .

Hemmendorf proposes some quite complicated heuristics for computing Ci, but for
the DT CWT, we find the following works well:

Ci =
|dAB|2

4∑

k=1

|uk|3 + |vk|3
where dAB =

4∑

k=1

u∗k vk

and

[
u1 u2

u3 u4

]
and

[
v1 v2

v3 v4

]
are 2× 2 blocks of wavelet coefficients centred on xi

in images A and B respectively.
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Demonstration of Registration and Image Fusion

• House on a hillside, viewed on a video camera with telephoto lens through air
with significant heat turbulence (due to a hot runway).

• Aim: to recover the best still image from the jittery video sequence of 75 frames.

• Video sequence is courtesy of Don Fraser, Australian Defence Forces Academy,
Canberra.

• Fusion: based on max of each wavelet coefficient magnitude across the 75
frames, combined with the mean of each coefficient’s phase.
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Multi-scale Keypoint Detection using Accumulated Maps

Subject of work by Julien Fauqueur.
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Rotation-Invariant Local Feature Matching

Aims:

• To derive a local feature descriptor for the region around a detected
keypoint, so that keypoints from similar objects may be matched reliably.

• Matching must be performed in a rotationally invariant way if all rotations
of an object are to be matched correctly.

• The feature descriptor must have sufficient complexity to give good
detection reliability and low false-alarm rates.

• The feature descriptor must be simple enough to allow rapid pairwise
comparisons of keypoints.

• Raw DTCWT coefficients provide multi-resolution local feature descriptors, but
they are tied closely to a rectangular sampling system (as are most other
multi-resolution decompositions).

Hence we first need better rotational symmetry for the DTCWT.
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Frequency Responses of 2-D Q-shift filters at levels 3 and 4

Contours shown at −1 dB and −3 dB.
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Modification of 45◦ and 135◦ subband responses for improved
rotational symmetry (shown at level 4).

(a) Dual−Tree Complex Wavelets: Real Part

Imaginary Part

 15  45  75 105 135 165 

(b) Modified Complex Wavelets: Real Part

Imaginary Part

 15  45  75 105 135 165 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3
(c) Frequency responses of original and modified 1−D filters

frequency / output sample rate

originalmodified

(a) Original 2-D impulse responses;

(b) 2-D responses, modified to have lower centre

frequencies (reduced by 1/
√

1.8) in the 45◦

and 135◦ subbands, and even / odd symmetric
real / imaginary parts;

(c) Original and modified 1-D filters.

Better rotational symmetry is achieved,
but we have lost Perfect Reconstruction.
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13-point circular pattern for sampling DTCWT coefs at each
keypoint location

M is a precise keypoint location, obtained from the keypoint detector.
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L

M

Bandpass interpolation calculates the
required samples and can be performed on each
subband independently because of the
shift-invariance of the transform:

1. Shift by {−ω1,−ω2} down to zero
frequency (i.e. multiply by e−j(ω1x1+ω2x2) at
each point {x1, x2});
2. Lowpass interpolate to each new point
(spline / bi-cubic / bi-linear);

3. Shift up by {ω1, ω2} (multiply by
ej(ω1y1+ω2y2) at each new point {y1, y2}).
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Form the Polar Matching Matrix P

P =

266666666666666666664

m1 j1 k1 l1 a1 b1 c1

m2 i2 j2 k2 l2 a2 b2

m3 h3 i3 j3 k3 l3 a3

m4 g4 h4 i4 j4 k4 l4
m5 f5 g5 h5 i5 j5 k5

m6 e6 f6 g6 h6 i6 j6

m∗
1 d∗1 e∗1 f∗1 g∗1 h∗1 i∗1

m∗
2 c∗2 d∗2 e∗2 f∗2 g∗2 h∗2

m∗
3 b∗3 c∗3 d∗3 e∗3 f∗3 g∗3

m∗
4 a∗4 b∗4 c∗4 d∗4 e∗4 f∗4

m∗
5 l∗5 a∗5 b∗5 c∗5 d∗5 e∗5

m∗
6 k∗6 l∗6 a∗6 b∗6 c∗6 d∗6

377777777777777777775

Column 1
1

2
34

5
6
7

8
9 10

11
12

Column 2
1 2

3

4

5
678

9

10

11
12

Column 3

1 2 3
4

5

6
789

10

11

12

Column 4

1
2 3 4

5

6

7
8910

11

12

Column 5

1

2
3 4 5

6

7

8
91011

12

Column 6

1

2

3
4 5 6

7

8

9
101112

Column 7

1
2

3

4
5 6 7

8

9

10
1112

Each column of P comprises a set of rotationally symmetric samples from the
6 subbands and their conjugates (∗), whose orientations are shown by the arrows.

Numbers for each arrow give the row indices in P .
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Efficient Fourier-based Matching

Columns of P shift cyclically with rotation of the object about keypoint M.
Hence we perform correlation matching in the Fourier domain, as follows:

• First, take 12-point FFT of each column of Pk at every keypoint k to give P k.

• Then, for each pair of keypoints (k, l) to be matched:

◦ Multiply P k by P
∗
l element-by-element to give Sk,l.

◦ Accumulate the 12-point columns of Sk,l into a 48-element spectrum vector
sk,l (to give a 4-fold extended frequency range and hence finer correlation
steps). Different columns of Sk,l are bandpass signals with differing centre
frequencies, so optimum interpolation occurs if zero-padding is introduced over
the part of the spectrum which is likely to contain least energy in each case.

◦ Take the real part of the inverse FFT of sk,l to obtain the 48-point
correlation result sk,l.

◦ The peak in sk,l gives the rotation and value of the best match.

• Extra columns can be added to P for multiple scales.
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Correlation plots for two simple images

Test image (a)

0 90 180 270 360
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Rotation (degrees)

Test image (b)

0 90 180 270 360
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0

0.5

1

Rotation (degrees)

Each set of curves shows the

output of the normalised

correlator for 48 angles in 7.5◦

increments, when the test

image is rotated in 5◦

increments from 0◦ to 90◦.

Levels 4 and 5 of the DTCWT

were used in an 8-column P

matrix format.

The diameter of the 13-point

sampling pattern is half the

width of the subimages shown.
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Correlation plots for more complicated images

Test image (c)
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Test image (d)
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Improving resilience to errors in keypoint location and scale

The basic P -matrix normalised correlation measure is highly resilient to
changes in illumination, contrast and rotation.

BUT it is still rather sensitive to discrepancies in keypoint location and
estimated dominant scale.

To correct for small errors (typically a few pixels) in keypoint location, we modify
the algorithm as follows:

• Measure derivatives of P k with respect to shifts x in the sampling circle.

• Using the derivatives, calculate the shift vectors xi which maximise the
normalised correlation measures sk,l at each of the 48 rotations i (using LMS
methods with approximate adjustments for normalised vectors).

• By regarding the 48-point IFFT as a sparse matrix multiplication, the
computation load is only 3 times that of the basic algorithm.

We propose to do the same for small scale errors using a derivative of P k wrt scale.
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Conclusions

The Dual-Tree Complex Wavelet Transform provides shift invariance and
orientation selectivity, in addition to the usual properties of the DWT. We
have shown how to apply the DTCWT in the following areas:

• Denoising of images and 3D data to achieve performance that equals or
exceeds other approaches requiring much more computation.

• Image Registration with an efficient multi-resolution iterative algorithm -
particularly suited to non-rigid motion.

• Rotation-invariant local feature matching at detected keypoints for
object detection and keypoint matching applications.

Papers on complex wavelets are available at:
http://www.eng.cam.ac.uk/˜ngk/

A Matlab DTCWT toolbox is available on request from:
ngk@eng.cam.ac.uk


