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Abstract

The speed of sound in soft tissues is assumed as 1540 m/s in medical pulse-echo ultrasound

imaging systems. When the true speed is different, the mismatch can lead to distortions in

the acquired images, and so reduce their clinical value. Previously we reported a new method

of sound-speed estimation in the context of image deconvolution. This enables the use of

unmodified ultrasound machines and a normal scanning pattern unlike most other sound-speed

estimation methods. Our approach was validated for largely homogeneous media with single

sound speeds. In this article, as an extension to the aforementioned algorithm, we demonstrate

that sound speeds of dual-layered media can also be estimated through image deconvolution.

An ultrasound simulator has been developed for layered media assuming that, for moderate

speed differences, the reflection at the interface may be neglected. We have applied our dual-

layer algorithm to simulations and in vitro phantoms. The speed of the top layer is estimated

by our aforesaid method for a single speed. Then, when the layer boundary position is known,

a series of deconvolutions are carried out with dual-layered PSFs having different lower-layer

speeds. The best restoration is selected using a correlation metric. The error level for in vitro

phantoms is found to be not as good as that of our single-speed algorithm, but is comparable

to other local speed estimation methods.

Keywords: Medical ultrasound image; Dual-layered media; Non-blind deconvolution; Point-

spread function; Speed of sound; Sound estimation.

1 Introduction

Pulse-echo medical ultrasound imaging assumes the speed of sound is 1540 m/s in soft tissue for
the beamforming delay profile and the display of acquired images. The current convention of using
the assumed speed potentially leads to distortions in B-mode images when the actual speed of
sound is different. The effects of errors in the sound speed, such as degraded spatial resolution,
have been widely reported, and some of the consequences have been quantified [1]. Therefore, the
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estimation of the correct acoustic speed is beneficial in improving the overall image quality and
hence in increasing its diagnostic value. At the same time, the estimated speed of sound itself has
its own significance in the context of tissue characterisation.

Initially, the speed of medical ultrasound was estimated using transmission methods, which
measured the time taken while a pulse propagated between a transmitter and a receiver. But
clinical applications were limited to the breast [2]. Robinson et al. [3] carried out an extensive
review of pulse-echo sound-speed estimation techniques. Nine methods in three categories were
examined in detail. Most of the reviewed methods produce the average speed of sound in the
scanned tissues. Only a few were capable of local speed estimation. Kondo et al. [4] reported the
estimation of in vivo local speed of sound. But, they also stated that an exact measurement of
local sound speed was difficult. Ophir and Yazdi [5] applied transaxial compression technique to a
dual-layered in vitro phantom made of polyester sponge, water and glycol solution. The technique
can be carried out by a single transducer, but this is often accompanied by a second transducer to
compensate for potential movement of the region of interest caused by compression of the phantom
surface.

Recently, a detailed local sound-speed estimation of biological tissue was demonstrated us-
ing ultrasound based on a scanning acoustic microscope (SAM) [6] and a computed tomography
(CT) [7, 8, 9, 10, 11]. However, these methods using either SAM or CT technologies are effectively
different modalities from that with which we are concerned. The signal carrier frequency of SAM
system reaches as high as 500 MHz, and as in other microscope techniques non-invasive measure-
ment is not possible. The CT systems have been demonstrated in a recent pre-clinical trial [11] to
be capable of the detailed estimation of sound speed as well as attenuation. However, its trans-
missional use of ultrasound is limited to breast imaging. It is also different from the pulse-echo
approach addressed in this paper and requires higher system complexity like other CT systems.

The correction of wrong sound-speed effects, especially due to tissue inhomogeneity, has been
addressed in the context of phase aberration [12]. Numerous methods have been proposed [13, 14,
15, 16]. They may differ from one another in how the aberration profiles are estimated across the
transducer elements, but many of them share the idea of changing the time delays in individual
elements according to the estimated aberration profile. During the profile estimation process, many
techniques require multiple acquisitions of the radio-frequency (RF) signal. Most of all, previous
works on phase aberration have concentrated on the reduction of perceived image degradation.

Our research group has recently published a novel speed-of-sound estimation technique by
using image deconvolution [17]. The algorithm is based on the assumption that soft tissue is
mainly homogeneous and its underlying speed of sound is constant. Our published technique
has several advantages over other methods of medical ultrasound speed estimation reported by
others [3]. The data can be collected by a single scan using a single transducer array unlike other
methods [2, 3, 18]. No transducer movement is required, whereas precise movement is commonplace
in other techniques [3, 5]. No special rigs are necessary in holding the transducer to satisfy a
geometric constraint inherent as in some other methods [3, 19]. In other words, conventional use
of a linear transducer array is sufficient in the data acquisition aspect of our algorithm.

The fundamental concept enabling the speed estimation in our method is image deconvolu-
tion [20, 21, 22]. The power of using non-blind deconvolution is that we do not need multiple ul-
trasound scans, as some other methods do in order to adjust their beamforming time delays [3, 18].
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Necessary variations can be easily accomplished off-line by adjusting the PSF in our deconvolution
framework, where the PSFs are calculated by using the Field-II program [23].

However, our original approach was not capable of handling inhomogeneous tissues. As an
idealised scenario of non-uniform soft tissue, we now consider a layered medium formed of two
layers with different sound speeds. We demonstrate that image deconvolution can be used to
estimate sound speed in such an environment.

The rest of the paper is arranged into the following sections: Section 2 describes the modelling of
ultrasound behaviour in dual-layered media. Section 3 explains the development of an ultrasound
simulator applicable to layered media. Section 4 presents the result of the simulations together
with the method of estimating the speed. Section 5 addresses the speed estimation of in vitro
phantoms. Finally, conclusions are drawn and followed by a brief introduction of our non-blind
deconvolution algorithm in Appendix A.

2 Medical ultrasound in dual-layered soft tissue

An acoustic wave, of which an ultrasound wave may be considered a subset, is reflected and
transmitted when it encounters the boundary between different media. In general, the phenomenon
of transmission is complicated. However, the situation can be eased when the acoustic wave front
and the medium boundary are planar and the involved media are all considered as a fluid rather
than a solid (p.124 in [24]).

Here, we define a fluid as a medium where propagation of a longitudinal wave is dominant but
a transverse wave is discouraged, whereas a solid as a medium in which both forms of waves are
free to propagate. In fluids the path of refracted waves is easily determined by the refraction index,
but solids are often anisotropic and hence the direction of a transmitted wave is influenced by local
structure.

In soft tissue, transverse waves have a low propagation speed of around 100 m/s. They are
severely attenuated at frequencies over 1 MHz and can therefore be neglected (p.1.4 in [25]). Also
in their composition, soft tissues are mainly made of water with a few solid components added.
Therefore, in diagnostic medical ultrasound imaging, soft tissues can be treated as a fluid.

2.1 Reflection in dual-layered soft tissues

It is widely known that most ultrasound energy at normal incidence is transmitted with negligible
loss of reflection at the boundary of different types of soft tissues (see Table 1-8 in [25]). But
for ultrasound probes consisting of arrays of piezoelectric elements, oblique incidence does occur
regardless of transducer positioning. For oblique incidence, the power reflection coefficient R at
the fluid-fluid boundary is given by (see p.132 [24]):

R =
∣∣∣∣ (ρ2/ρ1) c2/c1 − cos θ2/ cos θ1

(ρ2/ρ1) c2/c1 + cos θ2/ cos θ1

∣∣∣∣
2

. (1)

Here, the symbols ρ, c and θ indicate density, sound speed and angle, respectively. The subscripts
1 and 2 denote the layers 1 and 2. Equation 1 is valid when the angle θ2 is real, otherwise the
coefficient R is unity. The refracted angle θ2 becomes complex when the incident angle θ1 is bigger
than a critical angle determined by the ratio of both speeds of sound.
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(c) (d)

Figure 1: Power reflection coefficient R at a boundary depth of 16 mm. Subplot (a) shows R as a
function of the speed difference between layers and of scatterer depth, for a crystal element located
at -3.0535 mm with a layer-2 density of 1000 kg/m3. Subplot (b) shows R as a function of the
speed difference between layers and of crystal element position, for a scatterer depth of 25 mm
with a layer-2 density of 1000 kg/m3. Subplot (c) shows R as a function of scatterer depth and of
crystal element position, for a speed difference of -150 m/s with a layer-2 density of 1000 kg/m3.
Subplot (d) shows R as a function of the speed difference between layers and of layer-2 density, for
a crystal element located at -3.0535 mm and a scatterer depth of 25 mm. Note the coefficient is
displayed as a percentage.

Examples of the power reflection coefficient R relevant to one of our ultrasound probes are
shown in Figure 1. The ultrasound probe has 32 active piezoelectric elements whose geometric
centres are laterally spread from -3.0535 to +3.0535 mm with an interval of 0.197 mm. Speed
differences, c2 − c1, were investigated in the range from -150 to +150 m/s when c1 = 1540 m/s.
The sound speed of most biological materials except bone falls well within the range: the lower
end of fat being 1440 m/s; the higher end of muscle at 1626 m/s (see Table 1-1 in [25]). Note
that quoted values may be slightly different depending on the source of information. The density
of layer 1 was chosen as 1000 kg/m3, which is equivalent to that of water. The density of layer 2
was varied from 900 to 1100 kg/m3, which covers most forms of soft tissues: from 950 kg/m3 for
fat to 1070 kg/m3 for muscle (see Table 1-1 in [25]). The depth of a scatterer in the bottom layer
is varied from 16.1 to 40.0 mm when the boundary is located at a depth of 16 mm.

These graphs show that the coefficient is mostly affected by differences in speed and density,
and also imply that the extra effect of oblique incidence is not significant. In general the amount
of the reflection is very low. Only the extreme combinations of sound speed and density see the
reflection reach 1 % of the incident energy. We are therefore reassured that most of ultrasound
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Figure 2: Schematic diagram showing the geometric relationship between incident and refracted
ultrasound waves in a fluid. The position of the transmit or receive crystal element is denoted
by (x0, z0), that of the scatterer by (xs, zs), and that of the interaction point at the boundary by
(xb, zb). All three of these points are assumed to be in a plane and to have the same y-coordinate.
The medium boundary is assumed to be parallel to the transducer aperture of a linear array

energy are transmitted and hence the reflection can be ignored.
This assumption of the reflection being ignored not only simplifies the ultrasound image for-

mation for the bottom layer but also validates the use of deconvolution in the top layer. Our
deconvolution algorithm like many other linear deconvolution models assumes the first-order Born
approximation, which results in the sonification of scatterers by waves directly from transducer
elements. Therefore, strong reflections at the boundary could generate secondary sources which
would reduce the accuracy of our deconvolution in the top-layer part of the media.

Because of its importance in our estimation method, for readers who may not be familiar with
ultrasound image deconvolution, our non-blind deconvolution algorithm is briefly introduced in
Appendix A. Complete details can be found in previous publications [20, 21].

2.2 Refraction in dual-layered media

In creating PSFs with dual-layer characteristics, the determination of an interaction point along the
boundary is of paramount importance. Its location will decide the difference between the refracted
path of the ultrasound and the straight path as if there were only a single homogeneous layer
between the scatterer and the piezoelectric element. This difference in distance and subsequently
in arrival time will generate an overall perception of B-mode image distortion when soft tissue is
composed of layers with different speeds of sound.

When both media at the boundary are isotropic such as fluid, the well-known Snell’s law may
be applied to establish the relationship between the speeds in the adjacent media and the angles
of incidence and refraction of plane waves (p.131 in [24]):

sin θ1

c1
=

sin θ2

c2
. (2)

The geometric relationship is shown in Figure 2. Each layer is assumed to be macroscopically
homogeneous and isotropic, and hence to have uniform macroscopic properties. But the media may
be considered microscopically inhomogeneous enough to have back scattering from the ultrasound.
The position of the transmit or receive crystal element is denoted by (x0, z0), that of the scatterer
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by (xs, zs), and that of the interaction point at the boundary by (xb, zb). All three pairs of points
are assumed to be in a plane and to have the same y-coordinate. This constraint can be easily met
by a coordinate transformation. The medium boundary is assumed to be semi-infinite and parallel
to the transducer aperture of a linear array. Since our deconvolution algorithm like others assumes
shift invariance in the lateral dimension of the probe, the medium boundary and the probe surface
are required to be parallel each other. Layer 1 is designated to have a uniform sound speed of c1

and layer 2 to have c2. The incidence and refraction angles on the boundary are denoted by θ1

and θ2, respectively. When the trigonometric rule is applied to Snell’s law, the squared version of
Eq. 2 becomes:

1
c2
1

(xb − x0)2

(zb − z0)2 + (xb − x0)2
=

1
c2
2

(xs − x1)2

(zs − z1)2 + (xs − x1)2
. (3)

In our problem formulation, every variables in Eq. 3 apart from the lateral location on the boundary
(xb) are assumed to be known including the depth of the boundary (zb). A few steps of simple
arithmetic from Eq. 3 lead to the following quartic equation:

p4 x4
b + p3 x3

b + p2 x2
b + p1 xb + p0 = 0 . (4)

where coefficients are arranged as follows, and the simplest scenario is assumed in which the
crystal element is placed at the origin of the coordinate system (x0 = 0, z0 = 0), which is also
easily achieved by the translation of a coordinate system:

p4 = 1 − δ2 ;

δ = c1 / c2 ;

p3 = 2 xs p4 ;

p2 = (zs − z1)2 + x2
s − δ2(z2

1 + x2
s) ;

p1 = −2 xs z2
1 δ2 ;

p0 = − δ2 z2
1 x2

s .

The quartic equation can be easily solved for example via Matlab command roots.m, and lead to
a single unique solution of xb through the constraint of it being real and positioned between the
transducer element and the scatterer in question. The concept for the dual-layer situation can
be easily extended to media with more than two layers, but the solution will involve a system of
quartic equations.

3 Dual-layer ultrasound simulator

Dual-layered media may be simulated in principle by modifying the outputs of the Field-II pro-
gram [23]. For the top layer, the conventional use of the program is sufficient. For the bottom layer,
its raw outputs, which do not involve any apodisation and focusing, are first obtained for every
combination of transmit and receive elements in the aperture. Then, differences of transmission
paths due to refraction calculated in Section 2.2 are applied to adjust beamforming delay profiles
across the transducer aperture. The process may be regarded as a form of aperture synthesis.
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Figure 3: Schematic diagram showing spatial impulse response of transducer elements. Subplot (a)
is what happens using Field-II outputs. Subplot (b) is what may happen in a dual-layer medium.

Although we are able to conduct such delay modification to generate the effect of a dual-
layered medium, what we may not adjust is the way each “finite” transducer element responds
to outgoing and incoming ultrasound signals (or the diffraction pattern occurring at the element).
Figure 3 illustrates the situation, which is an idealised case of two-dimensional interaction for
brevity. Subplot (a) corresponds to an ordinary run of Field-II. “Sub-crystal” means that each
individual crystal is divided into a collection of smaller areas. This sub-division is required mainly
for two reasons. The first is that the elements should be divided at least in the elevational dimension
in order to simulate an elevational focus. The second and more important reason is to make the
far-field approximation and Fraunhofer diffraction valid. The sub-crystal elements must be small
enough to treat the sound as plane waves [26]. In the diagram, the dash-dot line (denoted by tc)
connecting the scatterer and the centre of sub-crystal may represent a situation when the element
is treated as a point source rather than a finite source. However, in reality, the element is finite
and its response to ultrasound is characterised by the times t1 and t2. The effects of these tc, t1

and t2 are collectively known as the “spatial impulse response (SIR)” [26]. The difference |t2 − t1|
determines the shape of the SIR and hence the shape of the waveform at the elements.

What we can do to simulate a dual-layered medium using Field-II, is to adjust the arrival time
tc in subplot (a) to match that from subplot (b), which is closer to the true scenario of a dual-
layered medium when the reflection is ignored. However, we cannot change the difference |t2 − t1|
in (a) to match that in (b), since the lower-level sub-crystal calculation is not made available to
Field-II users. The amount of potential error due to an inability to take into account the proper
time difference may or may not be significant, but cannot be known unless we have our own means
to simulate case (b).

3.1 Locally-developed dual-layer simulator

We have built an ultrasound simulator which is based on the concept of the SIR and is found to
be compatible to Field-II when the speed of sound is uniform. The in-house ultrasound simulator
has been further extended to take into account the beam behaviour in dual-layered media shown
in Figure 3(b). In doing so, the refracted times t1 and t2 are individually calculated.

Figure 4 shows a comparison of simulated PSFs of dual-layered medium by delay adjustment of
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Figure 4: Comparison of simulated PSFs of dual-layered medium by delay modification of Field-II
output and by our own simulator written for dual-layered medium. The curve with circular marks
has the top-layer speed of 1540 m/s with different bottom-layer speeds. The curve with pentacles
has different top-layer speeds but has the fixed bottom-layer speed of 1540 m/s. The speeds shown
on the x-axis are all relative to 1540 m/s. The PSF error in decibel on the y-axis is difference
between the two approaches.

Field-II output and by our own simulator written for dual-layered medium. The curve with circular
marks has the top-layer speed of 1540 m/s with different bottom-layer speeds which are indicated
in the x-axis. The curve with pentacles has different top-layer speeds but has a fixed bottom-layer
speed of 1540 m/s. The speeds shown on the x-axis are all relative to 1540 m/s. The PSF error
in decibels on the y-axis is the difference between the two methods. The trend is believed to be
reasonable and systematic in the sense that the difference between the two approaches gets bigger
as the sound-speed difference gets wider. The error levels recorded in this exercise ranges from
-25 to -10 dB, but note that some of the tested speeds may be unrealistic. Such extreme speeds
were evaluated to produce the overall trend of the difference between two approaches. For speed
differences which are more realistic, the error level is less than -23 dB, which may be considered
small.

4 Method and Simulations

We applied our sound-speed estimation technique to dual-layered two-dimensional simulated phan-
toms. The way the simulation was conducted is explained in this section. We start with examples
illustrating how ultrasound images may behave when there is a layered change in the speed of
sound.

4.1 Simulated reflectivity function

A two-dimensional imaginary phantom was created with five cysts whose geometry is shown in
Figure 5. This five-cyst configuration corresponds to an echogenicity map characterised by macro-
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(a)      (b)      (c)      

Figure 5: Behaviour of a dual-speed layered medium with the layer boundary at the centre of the
middle cyst. (a) the simulated reflectivity function, (b) the simulated ultrasound image in which
the speed of the top layer is 1540 m/s and that of the bottom layer is 250 m/s faster, and (c)
the deconvolved image. B-mode images were drawn assuming the sound speed of 1540 m/s. The
dynamic range of the logarithmically compressed images is 60 dB.

scopically smooth features. The reflectivity of each scatterer is then randomised by incorporating
a Gaussian distribution which represents microscopic fluctuations. A reference image for the scat-
terer field is displayed in Figure 5(a).

4.2 Simulated ultrasound image formation

We blur the scatterer field by calculating a forward convolution of the image in Figure 5(a) with the
PSF evaluated to have a dual-layered characteristic. The convolution algorithm itself is essentially
the same as that used in the single-layered medium.

The dual-layered PSF is designed to have the layer boundary at the centre of the middle
cyst. The speed of the top layer in the image (b) is 1540 m/s. The speed of the bottom layer
is 1790 m/s. An excessive difference in speed was chosen to produce a clear demonstration of
the dual-layer behaviour. Because the images are drawn assuming the speed to be 1540 m/s, the
bottom layer in Figure 5(b) looks compressed because it takes less time for signals to arrive due
to the faster speed. Later in Figure 6, it is also demonstrated that the bottom layer with slower
speeds looks expanded because it takes more time for signals to arrive. It is also noted that there
is no reflection appearing on the medium boundary in the ultrasound image, because this is not
included in our model.

After blurring, zero-mean white Gaussian noise is added to the simulated ultrasound image. The
signal-to-noise ratio after the addition of the noise is 40 dB. The image is demodulated to baseband,
envelope detected and logarithmically compressed into 60 dB dynamic range. In Figure 5(b), we
can easily identify the artefacts typically associated with ultrasound imaging. The axial depth of
the lateral focus corresponds to the designed centre of the middle cyst. More serious blurring is
easily spotted for scatterers away from the axial depth of the lateral focus. One can also notice
the presence of coarse speckle in Figure 5(b).
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4.3 Deconvolution via the correct sound speed

The blurred and noisy image in Figure 5(b) is restored using the algorithm in [20, 21], whose
core structure is briefly outlined in Appendix A. It is noted that the deconvolution algorithm is
identical to that used in the single-layered medium. The only difference lies in the PSF used in
the deconvolution.

An example result of the deconvolution is shown in Figure 5(c). The restored image proves that
the true geometry of the reflectivity function can be recovered after the deconvolution via the same
PSF which was used to make the corresponding ultrasound image. A high degree of restoration is
observed. The cysts appear again as circles with sharp boundaries. Furthermore, the speckle size
is significantly reduced.

One may ask why the deconvolved result does not look perceptually the same as the designed
reflectivity function despite the use of the same PSF for both forward and backward operations in
the simulation. This is because of the presence of the additive Gaussian noise, and because of the
blurring which involves loss of high frequency information and consequently causes the deblurring
problem to be ill-posed.

4.4 Deconvolution via wrong sound speeds

In Figure 5(c), we have shown the deconvolution result conducted with the correct sound speed
for the bottom layer. In addition, we have discovered that deconvolution with an incorrect speed
results in different characteristics to those in the single-layer case. These new features are found
to be important in determining the speed in the dual-layer scenario.

Figure 6 shows the deconvolution based on PSFs with various bottom-layer speeds. The sim-
ulated ultrasound image in subplot (a) was prepared to have the top-layer speed of 1540 m/s and
that of the bottom layer 150 m/s slower. This is why the blurred cysts in the bottom layer are
slightly elongated in the axial dimension compared to those in the top layer. The rest of the sub-
plots from (b) to (f) illustrate deconvolution results using PSFs with various bottom-layer speeds.
The speed of the top layer for these deconvolutions was maintained at 1540 m/s. The top-half
images are properly restored in all the deconvolutions, as the exact speed information is used for
the top layer. The bottom-half images are observed in various degrees of restoration.

It is clear that only the deconvolution with the correct speed in subplot (c) can restore the
geometry of the bottom layer properly. The deconvolutions (subplots e and f) using bottom-layer
speeds faster than that in the top-layer return the image with the bottom layer in varying degrees
of axial expansion. This is because the deconvolution process is based on the assumption that the
bottom-layer of the blurred ultrasound image in subplot (a) has already gone through the compres-
sion indicated by the faster bottom-layer speed of its PSF. Subsequently the deconvolution tries
to correct the effect by elongation, which ends up causing further expansion than the ultrasound
image in (a). In contrast, however, the deconvolutions (subplots b and c) that use slower speeds
return images with a bottom layer further shrunk. This phenomenon can be explained similarly
by reversed logic.

It is also noted that the black strip towards the bottom of image (b) is the result of an extreme
compression through deconvolution. The corresponding information does not exist in the original
ultrasound image (a) or in other words is outside the image size used in the deconvolution. The
consequence of this additional axial compression or expansion after deconvolution is that the num-
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(a) Ultrasound image (b) Δ = -300 m/s (c) Δ = -150 m/s

(d) Δ = 0 m/s (e) Δ = +150 m/s (f) Δ = +300 m/s

Figure 6: Deconvolution images via various bottom-layer speeds with the layer boundary at the
centre of the middle cyst. (a) Simulated ultrasound image, in which the speed of the top layer
is 1540 m/s, and that of the bottom layer 150 m/s slower. (b)�(f) Deconvolution via PSFs with
various bottom-layer speeds. The label at each subplot denotes the speed of the bottom layer,
which is relative to 1540 m/s, while that of the top layer was kept 1540 m/s. These B-mode
images were drawn assuming the sound speed of 1540 m/s.

ber of horizontal lines are different, e.g., for given cysts in the bottom layers. This change may lead
to a difficulty in picking up the inherent speed in the bottom layer, because so-called like-for-like
comparison is not possible. The phenomenon is explained in Section 4.6.

At this point, readers may wonder why this extra feature does not occur in the case of single-
layer soft tissue [17], in which the same approach of using various PSFs was essentially adopted.
Example deconvolution images based on different speeds may be found in another publication
of ours [22]. Unlike in dual-layered scenarios, in the single-layer deconvolution process it is not
assumed that the bottom-half of the blurred images has already gone through either axial shrinkage
or elongation compared to the top-half image. This is because speeds in both top- and bottom-half
images are the same. Therefore, the deconvolution process is not designed to correct the potential
change of scale in the axial dimension, but only carries out deblurring. This may be seen in
Figure 6(d). Although the deconvolution image was actually prepared by the dual-layer algorithm,
the case in Figure 6(d) is effectively a single-layered situation, since the top- and bottom-half
speeds are identical. As seen, there is no further change in the aspect ratio of bottom-layer cysts
from that in the original ultrasound image in Figure 6(a).
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4.5 Uncertainty in PSF parameters

In order to estimate the speed of sound accurately and reliably, the other parameters required
to build a PSF must be correct as well. Our research group has recently studied the effects of
uncertainty in the PSF on non-blind deconvolution [22]. The parameters of an ultrasound imaging
PSF have been systematically investigated. In total, six parameters were examined: uncertainty
in the ultrasound machine was analysed by varying the axial depth of the lateral focus and the
radius of elevational focus alongside the height and width of the transducer elements. Sensitiv-
ity to tissue influence was investigated by varying the speed of sound and frequency-dependent
attenuation. We showed that these parameters could be assigned to certain families according
to their characteristics. The speed of sound exhibited similar behaviour as the lateral focus for
two-dimensional images. Therefore, the accuracy of the sound-speed estimation may be affected
by that of the lateral focus. In our speed-estimation framework, what matters for the lateral focus
is not how the focus is realised through soft tissues, but the intended delay profile applied to the
imaging system which is not disturbed by the tissue. Because we know the delay profiles that
were used, it is unlikely that our estimation of the sound speed is susceptible to uncertainty in the
lateral focus.

4.6 Correlation metric

The overall strategy of our speed estimation method is to run multiple deconvolutions using PSFs
with different speeds and to pick the speed which produces the best restoration. Therefore, a
metric capable of determining the best outcome is as crucial as the non-blind deconvolution al-
gorithm itself. In our previous publication [17], we have successfully used the following metric
to determine the sound speed of single-layered media. Here, x̂ denotes the deconvolution image.
The autocorrelation (Rx̂i [l]) is calculated along the lateral line (x̂i) at each i-th axial depth and
then a summation (

∑
l |Rx̂i [l]|) is made of the magnitude of all the l coefficients of the correlation.

To produce a single-valued representation, another summation (
∑

i

∑
l |Rx̂i [l]|) was taken of this

value for all axial depths.

Figure 7 shows a graph of the aforementioned correlation metric for various speeds of sound in
a simulated phantom. Several B-mode images of this data set have already been shown in Figure 6.
The values of the correlation are normalised for display because the metric itself does not directly
indicate a meaningful physical quantity but the relative differences are the most important. The
top-half grey vertical line denotes the speed of the top layer, while the bottom-half black vertical
line denotes the speed of the bottom layer. The dotted line with a full vertical length indicates
the minimum of the correlation metric curve. Therefore, close alignment between the bottom-half
black line and the full-length dotted line is expected when the correlation metric is capable of
determining the correct speed for the bottom layer. This convention will be used in similar figures
throughout the document. The speed values in Figure 7 are all relative to 1540 m/s. In this
example, the graph indicates that the correlation metric has failed to identify the correct speed of
sound for the bottom layer.
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Figure 7: Plot of correlation metrics vs. various speeds of sound in a simulated dual-layered
phantom. The correlation metric is normalised by its minimum for display purposes. The reference
speed (Δ = 0) is 1540 m/s. The top-half grey vertical line denotes the speed of the top layer, while
the bottom-half black vertical line denotes the speed of the bottom layer. The dotted line with a
full vertical length indicates the minimum of the correlation metric curve. For vertical lines, the
y-axis values are irrelevant. This convention will be applied to similar other graphs.

4.7 Interpolation of deconvolution images

In previous sections, we have described changes in the axial dimensions of deconvolution results
and the failure of the correlation metric. Because the correlation metric was successfully used for
single-layered soft tissue [17] which does not incur the axial scale change, the cause of the failure
is not likely to lie in the correlation metric itself, but perhaps in the extra change in the axial
scale of deconvolution images. Such axial changes make the comparison of certain features, e.g.,
cysts inconsistent among deconvolutions, as they will have different numbers of horizontal lines
inside them. Therefore, we have explored image interpolation strategies which make each feature
intersect the same number of lines regardless of the bottom-layer speed used in the PSFs.

One-dimensional interpolation is conducted along each A-line in the bottom layer. The inter-
polation ratio at each speed is determined by the inverse of its speed: a lower speed will have more
interpolated horizontal lines than a higher speed, and hence the procedure subsequently makes
the deconvolution images of lower speeds expand and those of higher speeds contract. Readers
may be able to imagine from Figure 6 that such interpolated images will have the same aspect
ratio for different speeds. Figure 8 illustrates a typical example of the correlation metric applied
to interpolated deconvolution images. The original data is the same as that in Figure 7. The
correlation metric is now capable of detecting the correct speed of the bottom layer.

4.8 Cost of dual-layer PSFs

Each dual-layer PSF appearing in this article takes several hours to compute in Matlab regardless
of whether it is done through adjusting outputs from Field-II or through the locally-developed
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Figure 8: Plot of correlation metrics vs. various speeds of sound in a simulated dual-layered
phantom. The deconvolution images were axially interpolated to make cysts occupy the same
number of horizontal lines regardless of bottom-layer sound speeds in their PSFs.

ultrasound simulator. Field-II itself, whose core routines are compiled, usually runs quickly to
produce a normal B-mode image. However the extra procedure of inter-element delay modification
requires Field-II outputs in a raw format. For a high sampling rate, e.g., 66.67 MHz and transmit
and receive element combination of 128 by 128, the Field-II module produces a large quantity
of raw data that needs to be accessed several thousand times independently, and this is a costly
operation.

This expensive nature of dual-layer operation makes it difficult to implement an optimisation
strategy in searching for a minimum correlation, which was successfully adopted for a single-speed
estimation [17]. Perhaps, the PSFs to produce the likes of Figure 8 can be run concurrently by using
multiple computing resources, but the PSFs for an optimisation process can only be calculated
in series. Because we are focusing in this article to demonstrate the speed-estimation capability
of our deconvolution algorithm in dual-layered medium, we have not pursued such optimisation
process, but analysed and displayed the correlation metric curves via numerous PSFs as illustrated
in Figure 8.

5 In vitro measurements

After verifying our sound-speed estimation technique in the simulated dual-layered media, we
proceeded to apply the estimation algorithm to in vitro dual-layered data sets.

The following ultrasound system was used to acquire the RF data for in vitro measurements.
The system consisted of a General Electric¶ probe RSP6-12 and a Diasus ultrasound machine
from Dynamic Imaging Ltd. which has 128 A-line capability and operates an active aperture

¶GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St Giles, BUCKS UK
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of 32 piezoelectric elements‖, synchronised with a Gage∗∗ Compuscope CS14200 digitiser. The
digitisation process was linked to the locally-developed Stradwin software††, which is a user-friendly
cross-platform tool for medical ultrasound acquisition and visualisation.

5.1 Preparation of in-house phantoms

We locally produced ultrasound tissue-equivalent phantoms by mixing agar powder, scatterers,
propanol and water [27]. For dual-layered phantoms with each layer having different speeds of
sound, we created phantoms in two steps. First, a liquid form of phantom after heating and
cooling of the aforementioned mixture is poured into an empty container, and was allowed to be
congealed. Several hours later, when the phantom has completely solidified, another liquid form
of phantom with different composition was poured into on top of the already solidified phantom.
Subsequently the top layer was left to be solidified with the bottom layer. In this way, we prepared
a pair of phantoms. One was made to have its top layer with thickness of 15.3 mm, and the other
with 20.5 mm. The thickness of each top layer was evaluated later based on the estimated speeds
of the top layer. The pair of phantoms were prepared such that the material in the top layer of
one phantom is the same (and made together) as that in the bottom layer of the other phantom.
For these in-house phantoms, the speed of sound in each layer is not known a priori. We measured
their speeds by means of our deconvolution-based estimation method reported for a single-speed
situation [17]: the speed measurement of the phantom material composing the top layer is a
straightforward and direct implementation of the algorithm. Then, we treat the speed estimated
for the top layer in one phantom as a golden standard for the speed to be estimated in the bottom
layer of the other phantom through our dual-layer estimation algorithm.

5.2 Results of dual-layer algorithm applied to phantoms

Figures 9 and 10 illustrates examples of the correlation metric applied to these in vitro phantoms.
For these data sets, the correlation metric is shown to detect the speeds of the bottom layer. The
curve in Figure 9 demonstrates the uneven nature of the metric and indicates a potential risk if
a local-minimum based search method is applied. This local fluctuation may be related to the
interpolation process. Currently, there is no clear indication of which data set behaves better or
worse after an axial interpolation is conducted. But, in general, they seem to detect the minimum
with certain error bounds. More ultrasound acquisitions were carried out. For each phantom from
the pair, a total of 8 measurements were conducted: 4 different lateral focus settings for 2 different
locations in each phantom. The overall errors in the estimation of the bottom-layer speed were
found to be:

-8.81 ± 15.62 m/s or -0.57 ± 1.01 % for the phantom in Figure 9;
+13.09 ± 16.72 m/s or +0.87 ± 1.12 % for the phantom in Figure 10.

Here the errors are presented in the notation of “mean ± standard deviation”. The results are
within or around 1 % range of errors.

The results suggest that the errors of the dual-layer estimation method are not as good as
those accomplished for our single-speed estimation. We reported -0.44 ± 0.31 % for a phantom

‖Dynamic Imaging used to be based near Edinburgh in Scotland, but they are no longer in business.
∗∗Gage, 900 N. State Street, Lockport IL 60441, USA
††This is available free at http://mi.eng.cam.ac.uk/˜rwp/stradwin/ .
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Figure 9: Plot of correlation metrics vs. various speeds of sound in an in vitro dual-layered
phantom. The sound speeds are 1498 m/s in the top layer and 1550 m/s in the bottom layer,
which are denoted by the top-half grey and the bottom-half black vertical lines, respectively. The
error in the estimation of the bottom-layer speed is +2.5 m/s and is indicated by the full vertical-
length dotted line.

made from an independent manufacturer and +0.01 ± 0.60 % for locally made phantoms [17].
Note especially that the standard deviation in the single-speed method is much better than that
of the dual-speed method. This may indicate that the dual-speed approach could be inherently
less reliable than that of the single speed. To reach an workable model within the framework of
our deconvolution method [20, 21], several assumptions have been made in earlier sections: for
example, trivial reflection from a layer boundary parallel to the probe aperture, perfect plane
wave incidence and refraction guided by Snell’s law, and phantoms with pure fluid characteristics.
In addition, there may be an error propagated from the estimation of the top-layer speed whose
bounds were mentioned earlier in this paragraph.

Despite the reduced performance of our dual-layer estimation algorithm compared to our single-
speed method, it is discovered that our dual-layer approach is still capable of producing an estimate
better than or comparable to some other methods reported for local speed estimation. Kondo et
al. [4] reported the standard deviation of 41.1 m/s when the mean speed was 1550 m/s. Their
method was developed for estimating the speed of local regions which is potentially more com-
plicated than our dual-layer scenarios, but the quoted error was obtained from a single-speed
homogeneous phantom consisted of agar and graphite particles. As a reminder, the standard devi-
ation of our method for dual-layer phantoms is around 15 m/s. Ophir and Yazdi [5] measured the
sound speed in the bottom layer of a dual-layered laboratory phantom using transaxial compres-
sion technique. They reported a mean estimation error of +0.75 % for the bottom-layer speed of a
single phantom, while the standard deviation of error was not reported. Note that mean estimation
errors for both of our in vitro phantoms are -0.57 and +0.87 %.

Figure 11 shows the ultrasound images for the phantom whose correlation metric is shown
in Figure 10. The image (a) is the original ultrasound image acquired by the aforementioned
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Figure 10: Plot of correlation metrics vs. various speeds of sound in an in vitro dual-layered
phantom. The sound speeds are 1550 m/s in the top layer and 1498 m/s in the bottom layer,
which are denoted by the top-half grey and the bottom-half black vertical lines, respectively. The
error in the estimation of the bottom-layer speed is -1.75 m/s and is indicated by the full vertical-
length dotted line.

(a)      (b)      (c)      

Figure 11: Ultrasound images of an in vitro in-house dual-layered phantom: (a) original ultrasound
image, (b) deconvolution by dual-layered PSF with estimated speeds of 1550 m/s and 1496.25 m/s
for the top- and bottom-layer, respectively, (c) deconvolution by single-layer PSF with a nominal
speed of 1540 m/s. The bright horizontal lines are the boundary between two layers of phantom
materials. The size of the images is 38.1 mm × 25.0 mm, when the speed of sound is assumed as
1540 m/s for comparison purposes. The ultrasound data set is the same as that used in Figure 10.
The dynamic range of the logarithmically compressed images is 60 dB.
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ultrasound system. The image (b) is the deconvolution via dual-layered PSF having estimated
speeds of 1550 m/s and 1496.25 m/s for the top- and bottom-layer, respectively. The image (c)
is the deconvolution by a single-layered PSF with nominal speed of 1540 m/s, which could be a
usual choice of speed when there is no information available. The size of the images is 38.1 mm ×
25.0 mm, when the speed of sound is assumed as 1540 m/s for comparison purposes. In images,
one can see the bright horizontal lines which are indeed the boundary between the two layers of
phantom material.

It is certain that both deconvolution results in images (b) and (c) are enhanced greatly from the
original ultrasound image (a): the physical size of speckles are reduced, and point-like scatterers
especially further down the images are restored to be more distinct from their surroundings. One
can also notice that the boundary line gets thinner as a result of deblurring in deconvolution,
which may indicate the amount of true reflection might not be as much as judged in the original
image (a). An intriguing aspect about the boundary lines is that they seem to be tilted after
deconvolution, but which appears to be an optical illusion upon closer inspection.

Unlike the stark perceptual difference between the original ultrasound image and two decon-
volution results, it is hard to notice discrepancy between two deconvolution images in (b) and (c)
except for the black strip. This is mainly because the speeds used for both PSFs are not very
different. Such perceptual insensitivity was discussed in our previous publications [22, 17].

6 Conclusions

We have demonstrated that the image deconvolution applicable to medical ultrasound systems
can be used to estimate the speed of sound in dual-layered media. It is assumed that pulse-echo
ultrasound is mainly transmitted at the medium boundary. We have also developed an ultrasound
simulator designed for layered media. In doing so, it has been discovered that for moderate speed
differences the far-field diffraction of transducer elements in layered media is not significantly
different from that obtained under the assumption of homogeneous media, although there is a
systematic discrepancy in strict terms.

The speed of the top layer is estimated by the same deconvolution-based approach that we
applied to homogeneous media. Once the top-layer speed is known, various PSFs for the dual-
layered media with different candidate lower-layer speeds are constructed. Subsequently image
deconvolutions are performed. The best restoration result is then determined through a correlation
metric. It has also been found that unlike homogeneous media the deconvolution with dual-layered
media requires axial interpolation for consistent comparison of correlation metrics among different
speeds in the bottom layer.

Our estimation method for dual-layered media has been validated in simulations and in vitro
phantoms. Its estimation errors were found to be -0.57 ± 1.01 % and +0.87 ± 1.12 % (mean ±
standard deviation) for a pair of in vitro in-house phantoms. Its uncertainty level is not as good as
that of our estimation approach for homogeneous media, but is found to be comparable to other
local speed estimation methods.
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A Deconvolution Algorithm

The paper is mainly concerned with the estimation of the sound speed in pulse-echo ultrasound
applications. But, the deconvolution of an ultrasound image is a pivotal part of our estimation
process, and is also an important outcome. Therefore, we briefly recapitulate the key components
of our deconvolution algorithm for the benefit of readers who may not be familiar with it. Complete
details can be found in previous publications [20, 21].

A.1 Ultrasound image formation

The A-lines of an ultrasound imaging system can be mathematically modelled as a Fredholm
integral of the first kind [20]. The wave propagation is assumed linear. Although non-linearity is
present in in vivo scans of clinical applications, our approach is still applicable to ultrasound images
when dominated by linearity. In medical ultrasound imaging, linearity is generally preserved in
pulse propagation and reflection, with higher order harmonic imaging as exceptions [28]. When
we adopt a discrete space-time formulation, the integral can be further simplified using a vector-
matrix notation with a complex random variable x as the scatterer field (or reflectivity function)
and y as the complex analytic baseband counterpart of the measured ultrasound signal:

y = H x + n . (5)

Potential measurement errors are taken into account as complex additive white Gaussian noise (n).
H is a block diagonal matrix along the lateral and elevational dimensions. Each block matrix maps
from the axial depth dimension to the time domain at a given lateral and elevational position. Here,
multi-dimensional data (y,x,n) are rearranged into one-dimensional equivalents by lexicographic
ordering, and thus the sizes of the vectors and the matrix are: N × 1 for x, n, and y, and N × N

for H. Here, N is the total image size.

A.2 Deconvolution under an EM framework

Our goal is to estimate a scatterer field x from a noisy and blurred image y. The algorithm
operates in a Bayesian context. Because the finite resolution cell of a PSF merges the responses
from neighbouring scatterers during the blurring process (H x), the deblurring procedure tends to
be ill-posed, and therefore a direct inverse filtering is likely to fail. One of the standard solutions
to this problem is to incorporate regularisation in a maximum a posteriori framework (MAP, see
p.314 in [29]) with a prior on the scatterer field:

x̂ = arg max
x

[
ln p(y | x, σ2

n) + ln p(x)
]

. (6)

Here, x̂ is an estimate of the scatterer field, obtained from the deconvolution process, and σ2
n

the variance of n. Possible priors could involve assuming Gaussian or Laplacian statistics for the
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scatterer field. The Gaussian prior, in particular, leads to the well-known Wiener filter:

x̂ = arg min
x

[
1

2σ2
n

‖y − H x‖2 +
1
2
xHC−1

x x
]

= (HHH + σ2
nC−1

x )−1HHy . (7)

In a further simplified case of Cx = σ2
xIN , this is known as zero-order Tikhonov regularisation. The

superscript H denotes the Hermitian transpose. The term Cx represents the covariance matrix
E(xxH) of the complex random variable x, σ2

x the variance of x, and IN the identity matrix with
size N . Instead of using this conventional prior for the entire tissue (x), we model the tissue
reflectivity as the product of microscopically randomised fluctuations (w) and a macroscopically
smooth tissue-type image called the echogenicity map (S) which shares the characteristics of natural
images [21]:

x = S w . (8)

Here, w is a N × 1 complex vector, and S is a N × N diagonal matrix with real non-negative
values.

If a zero-mean Gaussian prior is assigned to w, then x is also observed to be a zero-mean
Gaussian when S is known. It leads to the conditional probability density function of x, given S:

p(x | S) ∝ 1
|S|2 exp

(
−1

2
xHS−2x

)
. (9)

This implies two key procedures of our algorithm. First, when S is known, then x can be found
using the Wiener filter (Equation 7) with S2 representing the covariance matrix. Second, when
x is known from the first step and ln |wi| is treated as additive noise, then S can be determined
through a denoising process:

ln Si = ln |xi| − ln |wi| , i = 1, · · · , N . (10)

The subscript i denotes the element of the vectors and the diagonal matrix, and | · | the modulus
of a complex variable. Using an expectation-maximisation (EM, see p.285 in [29]) framework, we
can construct an iterative deconvolution strategy alternating between the Wiener filter for x and
the denoising for S.

For denoising, we adopted a wavelet-based algorithm to separate x into its S and w components.
We therefore represent the reflectivity function (x) using the dual-tree complex wavelet transform
DT-CWT [30, 31] which has been shown to be particularly effective in denoising applications [32].
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