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Introduction

Natural Scenes, Vision and Wavelets

Some questions we shall try to answer:
What are the characteristics of natural scenes?
Why is human vision related to them?
How is human vision related to them?
What are wavelets?
What are dual-tree complex wavelets?
How do wavelets relate to the human visual system?
Why are dual-tree wavelets good for computer vision systems?
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Natural Scenes

Natural Scene 1 (Olympic Temperate Rain-forest, WA, USA)
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Natural Scenes

Natural Scene 2 (Olympic Temperate Rain-forest, WA, USA)
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Natural Scenes

Natural Scene 3 (Olympic Coast, WA, USA)
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Natural Scenes

What are the characteristics of natural scenes?
Lots of textures
Large objects and small objects (many different scales)
Lots of edges separating regions of different colours or intensities
Not many straight edges
Lots of fine detail that is not very important (except when it is food)
Most things are stationary, but anything that moves could be
dangerous!
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Natural Scenes

Why is human vision related to natural scenes?
For hundreds of thousands of years mammals and then humans
evolved in a natural landscape.
The mammalian vision system was a key survival mechanism,
finding parents, food and mates, and warning of predators.
We believe the early stages of the vision system – the eye, the
retina and the V1 cortex at the back of the head – all evolved so
as to make subsequent processing of images as efficient as
possible.
Key tasks were recognition of food, mates and other objects of
importance for survival, such as predators or places to shelter.
Motion detection was a key feature of predator detection and of
recognition of potential sources of food.
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Human Vision

How is human vision related to natural scenes?
The human eye, with its vari-focal lens and retina, is capable of
taking in detail of scenes with a peak resolution corresponding to
over a million pixels (picture elements) in the whole scene.
The V1 cortex, at the far end of the optic nerve bundle from each
eye (near the rear of the head), analyses the image from each
retina and converts it into many millions of sparsely coded
neural pulses which feed on to higher levels of brain function.
Sparse coding is the key to efficiency at the inputs to these
higher levels, because it only generates neural activity when there
is something of potential importance at a given part of the image.
Each group of neurons in the V1 cortex is connected to a local
group of receptors on the retina in such a way that it selects out
or filters a specific oriented pattern of a certain size or scale.
Fine-scale patterns tend to be very small; coarse-scale patterns
are larger.
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Human Vision

How is human vision related to natural scenes? (cont.)
The cortical filters perform a task that is equivalent to correlating
the image with many different patterns, at various scales,
orientations and locations; and the filter outputs from V1 are the
results of all these correlations.
Bruno Olshausen and David Field of Cornell showed that it is
possible to learn these sparsity-inducing patterns directly
from natural scenes in their 1996 Nature paper ‘Emergence of
simple-cell receptive field properties by learning a sparse code for
natural images’.
They showed that the patterns, learnt from natural scenes by
imposing a sparse coding requirement, were remarkably
similar to the patterns that we find in the human V1 cortex
that have evolved over hundreds of thousands of years of
mammalian evolution.
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Human Vision

Sparsity-inducing Patterns learnt from Natural Scenes

Olshausen and Field’s
sparsity-inducing patterns,
learnt directly from natural
scenes, by finding the 144
patterns of 12× 12 pixels,
which can represent the
scenes with as few non-zero
coefs as possible.
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Human Vision

Knowledge about the V1 cortex from Neurophysiology

David Hubel and Torsten Wiesel won the Nobel prize in 1981 for their
work, published around 1962, on characterising the V1 cortex of a cat.
They anaesthetised a cat, inserted a fine electrode into the V1 cortex in
various places, and oberved responses on the electrode to spots of light
shone onto a screen in front of the cat. Hubel and Wiesel’s results in fig
2 of their 1962 paper (page 6) show positive (excitatory) and negative
(inhibitory) responses, arranged in small ‘stripy’ patterns at a full
range of orientations and a range of scales.
Horace Barlow has studied the mammalian and human visual systems
from 1943 to the present day, and has published around 200 journal
papers in this time, many of which are downloadable from the Trinity
website: www.trin.cam.ac.uk\horacebarlow . Horace’s interests have
been very wide-ranging and have covered the retina, the V1 cortex,
higher level vision functions, motion detection and inference of
general brain functionality.
Another interesting Trinity figure is David Marr who wrote a seminal
book ‘Vision’ from the point of view of Computation and Physiology, just
before dying tragically of leukemia in 1980.
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Human Vision

Hubel and Wiesel, 1962 – Receptive Fields in the Cat’s Visual Cortex

106 J. Phyiiol. (1962), 160, pp. 106-154
With 2 plate and 20 text-ftgutre8
Printed in Gret Britain

RECEPTIVE FIELDS, BINOCULAR INTERACTION
AND FUNCTIONAL ARCHITECTURE IN

THE CAT'S VISUAL CORTEX

BY D. H. HUBEL AD T. N. WIESEL
From the Neurophysiolojy Laboratory, Department of Pharmacology

Harvard Aledical School, Boston, Massachusetts, U.S.A.

(Received 31 July 1961)

What chiefly distinguishes cerebral cortex from other parts of the
central nervous system is the great diversity of its cell types and inter-
connexions. It would be astonishing if such a structure did not profoundly
modify the response patterns of fibres coming into it. In the cat's visual
cortex, the receptive field arrangements of single cells suggest that there is
indeed a degree of complexity far exceeding anything yet seen at lower
levels in the visual system.
In a previous paper we described receptive fields of single cortical cells,

observing responses to spots of light shone on one or both retinas (Hubel
& Wiesel, 1959). In the present work this method is used to examine
receptive fields of a more complex type (Part I) and to make additional
observations on binocular interaction (Part II).

This approach is necessary in order to understand the behaviour of
individual cells, but it fails to deal with the problem of the relationship
of one cell to its neighbours. In the past, the technique of recording
evoked slow waves has been used with great success in studies of
functional anatomy. It was employed by Talbot & Marshall (1941) and
by Thompson, Woolsey & Talbot (1950) for mapping out the visual cortex
in the rabbit, cat, and monkey. Daniel & Whitteiidge (1959) have recently
extended this work in the primate. Most of our present knowledge of
retinotopic projections, binocular overlap, and the second visual area is
based on these investigations. Yet the method of evoked potentials is
valuable mainly for detecting behaviour common to large populations of
neighbouring cells; it cannot differentiate functionally between areas of
cortex smaller than about 1 mm2. To overcome this difficulty a method has
in recent years been developed for studying cells separately or in small
groups during long micro-electrode penetrations through nervous tissue.
Responses are correlated with cell location by reconstructing the electrode
tracks from histological material. These techniques have been applied to

) by guest on March 6, 2012jp.physoc.orgDownloaded from J Physiol (

CAT VISUAL CORTEX

by two regions ofthe opposite type. In these fields the two flanking regions
were symmetrical, i.e. they were about equal in area and the responses
obtained from them were of about the same magnitude. In addition there
were fields with long narrow centres (excitatory or inhibitory) and asym-
metrical flanks. An example of an asymmetrical field with an inhibitory
centre is shown in Text-fig. 2E. The most effective stationary stimulus for
all of these celLs was a long narrow rectangle ('slit') of light just large
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Text-fig. 2. Common arrangements of lateral geniculate and cortical receptive
fields. A. 'On'-centre geniculate receptive field. B. 'Off'-centre geniculate recep-
tive field. 0-G. Various arrangements of simple cortical receptive fields. x,
areas giving excitatory responses ('on' responses); A, areas giving inhibitory re-
sponses ('off' responses). Receptive-field axes are shown by continuous lines
through field centres; in the figure these are all oblique, but each arrangement
occurs in all orientations.

enough to cover the central region without invading either flank. For
maximum centre response the orientation of the slit was critical; changing
the orientation by more than 5l10 was usually enough to reduce a re-
sponse greatly or even abolish it. Illuminating both flanks usually evoked
a strong response. If a slit having the same size as the receptive-field
centre was shone in either flanking area it evoked only a weak response,
since it covered only part of one flank. Diffuse light was ineffective, or at
most evoked only a very weak response, indicating that the excitatory and
inhibitory parts of the receptive field were very nearly balanced.

In these fields the equivalent but opposite-type regions occupied retinal

III
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Wavelets

Wavelets - what are they?

Wavelets are the basis functions of a relatively new type of
mathematical transform (since the early 1980s), that occupies a
space somewhere between the spatial domain of image pixels,
and the frequency (Fourier) domain of spatial frequency
components.
Instead of using pure cosine and sine waves, as Fourier does,
wavelet functions are scaled and shifted versions of a common
mother wavelet shape. In that sense they are simpler than
Fourier functions. Usually wavelets are scaled in generations:
each parent having 4 children in 2-D, and each child being half the
size (in length) of its parent. Each child then has 4 grandchildren
etc., for typically 4 to 8 generations.
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Wavelets

Very simple wavelets (2-tap Haar)
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Wavelets

Wavelets - what are they? (cont.)

The inverse discrete wavelet transform (DWT) builds an image
up from the sum of a large number of the wavelet functions, each
multiplied by an appropriate wavelet coefficient to generate the
desired image.
The forward DWT analyses an image with filters in order to
calculate the correct values for all of the wavelet coefficients.
The DWT is derived from a simple set of mathematical axioms,
involving self-similarity across scales and orthogonality.
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Wavelets

Simple non-symmetric wavelets (4-tap Daubechies)
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Wavelets

Smooth symmetric wavelets (13,19-tap Tay-Kingsbury)
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Wavelets

Real Discrete Wavelet Transform (DWT) in 1-D
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Figure: (a) Tree of real filters for the DWT. (b) Reconstruction filter block for 2
bands at a time, used in the inverse transform.
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Wavelets

Discrete Wavelet Transform Features

Features of the (Real) Discrete Wavelet Transform (DWT):

Good compression of signal energy into sparse sets of
coefficients.
Perfect reconstruction with short support filters.
No redundancy.
Very low computation – order-N only.

But what are the problems of the DWT?

Severe shift dependence (due to aliasing in down-samplers).
Poor directional selectivity in 2-D, 3-D etc. (due to separable
real filters).
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Wavelets

Shift Invariance of Complex DT-CWT vs Real DWT

(a) Dual Tree CWT
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Wavelets

What are dual-tree complex wavelets?
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Figure: Dual tree of real filters for the Q-shift CWT, giving real and imaginary
parts of complex coefficients from tree a and tree b respectively.
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Wavelets

Q-shift DT CWT Basis Functions – Levels 1 to 3

Basis functions for
adjacent sampling
points are shown
dotted.
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DT CWT in 2-D

How do we extend the DT-CWT to multi-dimensions?
When the DT-CWT is applied to 2-D signals (images), it has the following
features:

It is performed separably, using 2 trees for the rows of the image and 2
trees for the columns – yielding a Quad-Tree structure (4:1 redundancy).

The 4 quad-tree components of each coefficient are combined by simple
sum and difference operations to yield a pair of complex coefficients.
These are part of two separate subbands in adjacent quadrants of the
2-D spectrum.

This produces 6 directionally selective subbands at each level of the
2-D DT CWT. Fig 3 shows the basis functions of these subbands at level
4, and compares them with the 3 subbands of a 2-D DWT.

The DT-CWT is directionally selective because the complex filters can
separate positive and negative frequency components in 1-D, and
hence separate adjacent quadrants of the 2-D spectrum. Real
separable filters cannot do this!
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DT CWT in 2-D

Why do we get good directional filters in 2-D?

DT CWT real part

15 45 75 −75 −45 −15(deg)

DT CWT imaginary part

Real DWT

90 045(?)

0 0.2 0.4 0.6 0.8 1
−80

−70

−60

−50

−40

−30

−20

−10

0

10
Freq. Domain: n = 10, nzpi = 1

dB

H0(z)

H0(z)H0(z2)

Magnitude (dB)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4
Delay (samples)

Frequency (ω / π)

−15 −10 −5 0 5 10 15
−0.2

0

0.2

0.4

0.6
Time Domain: n = 10, nzpi = 1

HL2(z)
H0(z2)
G0(z2)

−60 −40 −20 0 20 40 60

0

0.05

0.1
Level 4 Sc. funcs.

−60 −40 −20 0 20 40 60

−0.05

0

0.05

0.1
Level 4 Wavelets

Real Imaginary

Magnitude

Time (samples)

g(x)e iω1x . g(y)e iω2y =

g(x)g(y) e i(ω1x+ω2y)

Figure: Basis functions of 2-D Q-shift complex wavelets (top), and of 2-D real wavelet
filters (bottom), all illustrated at level 4 of the transforms. The complex wavelets
provide 6 directionally selective filters, while real wavelets provide 3 filters, only two of
which have a dominant direction. The 1-D bases, from which the 2-D complex bases
are derived, are shown to the right.
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DT CWT in 2-D

Test Image and Colour Palette for Complex
Coefficients
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DT CWT in 2-D

2-D DT-CWT Decomposition into Subbands

Figure: Four-level DT-CWT decomposition of Lenna into 6 subbands per level (only
the central 128× 128 portion of the image is shown for clarity). A colour-wheel palette
is used to display the complex wavelet coefficients.
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DT CWT in 2-D

2-D DT-CWT reconstruction components from each subband

Figure: Components from each subband of the reconstructed output image for a
4-level DT-CWT decomposition of Lenna (central 128× 128 portion only).
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DT CWT in 2-D

2-D Shift Invariance of Complex DT-CWT vs Real DWT

Input (256 x 256)
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Figure: Wavelet and scaling function components at levels 1 to 4 of an image of a
light circular disc on a dark background, using the 2-D DT-CWT (upper row) and 2-D
DWT (lower row). Only half of each wavelet image is shown in order to save space.
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DT CWT in 2-D

How do wavelets relate to the human visual system?

DT CWT real part
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Compare these basis functions with those found by Hubel and Wiesel
in cat brains, and with those found by Olshausen and Field from
natural scenes.
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DT CWT in 2-D

Why are dual-tree wavelets good for computer vision systems?

Since 1998 we have used the DT-CWT successfully for the following
computer vision tasks:

Motion estimation [Magarey 98]
Motion compensation & registration [Kingsbury 02, Hemmendorff 02]
Denoising [Choi 00, Miller 06] and Deconvolution [Jalobeanu 00, De
Rivaz 01, J Ng 07]
Texture analysis [Hatipoglu 99] and synthesis [De Rivaz 00]
Segmentation [De Rivaz 00, Shaffrey 02], classification [Romberg 00]
and image retrieval [Kam & T T Ng 00, Shaffrey 03]
Object matching & recognition [Anderson, Fauqueur & Kingsbury 06]
Image fusion [Nikolov & Bull 07] & object tracking [Pang & Nelson 08]
Sparse image and 3D-data reconstruction [Zhang 08 & 10]
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DT CWT in 2-D

Motion Estimation and Tracking Demonstration

Dual-tree complex wavelet coefficients have the property that they
rotate in phase approximately linearly with displacement / motion in
the direction normal to the stripes of each basis function. We can thus
determine motion between frames of a video sequence very efficiently,
just by measuring phase shifts between equivalent coefficients from
consecutive frames and solving some simple equations.
Having determined motion, we can then track objects, such as people
in crowded areas or vehicles at road junctions, and produce many robust
motion tracks at once.
See separate demonstrations.
We hope to use vehicle tracking as part of a new regional traffic
monitoring and congestion prediction system.
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DT CWT in 2-D

Conclusions

There is a 3-way convergence of concepts:
The requirement for sparse representation of natural scenes leads to a
dictionary of patches which resemble localised stripes of varying size
and orientation.

The human visual system appears to have evolved to use a very similar
set of patches for the early stages of vision in the V1 cortex.

A simple set of mathematical axioms regarding self-similarity across
scale and orthogonality, when applied in 2-D, also result in a set of
patches which closely match the above, and which are very efficient to
compute using the dual-tree complex wavelet transform.

Hence I believe that the use of the DT-CWT or similar methods, forms a
promising avenue for further development of automated vision systems.

Papers on complex wavelets are available at: www.eng.cam.ac.uk/~ngk/
A Matlab DT-CWT toolbox is available on request from: ngk10@cam.ac.uk

Nick Kingsbury (Univ. of Cambridge) Natural Scenes, Vision & Wavelets CSP Forum, Jan 2013 32 / 32


	Introduction
	Natural Scenes
	Human Vision
	Wavelets
	DT CWT in 2-D 

