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Abstract—A method for finding known objects in aerial and
satellite imagery was designed, implemented in MATLAB and
tested. This method took a keypoint-based approach to describing
objects.

Several of the steps used in the scheme took advantage of the
Dual-Tree Complex Wavelet Transform (DTCWT). These were
combined with a new approach which takes the highly localised
information encoded in keypoint descriptors and combines it
with “global” geometrical information about the target. Many
keypoints which corroborate the same approximate location as
the predicted target centre can improve match confidence.

The implementation of the above was evaluated both with
synthetic imagery, as a means to identify and characterise factors
which degrade performance, and also real imagery as a means
to demonstrate its “real-world” performance. The real imagery
demonstrated success in identifying a range of objects.

I. INTRODUCTION

A. Background
The task of target matching – that is, identifying known

objects within imagery – has been of interest for some time. In
recent times, the amount of imagery one might want to search
has far outstripped the ability of image analysts to search it
manually. Thus, the ability to automatically search for known
objects is highly desirable.

The use of keypoints – small regions which are to be
described by a sparse representation or descriptor – forms the
basis of one class of approaches to this problem. Such methods
have a key advantage that they can easily handle occlusion.
This is because, for a typical target, many keypoints will
be defined. For example, in the now-famous Scale-Invariant
Feature Transform (SIFT) method described by David Lowe,
[1] a large number of keypoints are identified when registering
a new target, but only a few are typically required to correctly
identify that target within a scene.

The use of keypoints for target matching tasks requires 3
steps:

1) Keypoint detection
2) Keypoint description
3) Keypoint matching

B. The Dual-Tree Complex Wavelet Transform
Wavelet decomposition of images has proven to be highly

successful for certain tasks; image compression in particular.

However, despite initially showing promise for a wide range
of image analysis tasks, the Discrete Wavelet Transform has
been shown to be inadequate for many of these, due to a lack
of shift invariance amongst other problems.

The Dual-Tree Complex Wavelet Transform (DTCWT) [2]
overcomes this limitation with modest additional cost, pro-
ducing complex coefficients whose amplitudes exhibit approx-
imate shift-invariance. These coefficients may be considered
to be the response of the image to a set of oriented band-
pass filters. As such, the DTCWT coefficients provide a rich
description of the image in terms of both spacial frequency
and directionality.

Methods have been developed which use the DTCWT
coefficients to accomplish all three of the keypoint-based
target matching tasks described above. Indeed, much work has
been done in adapting the DTCWT for use within the target
matching domain. Its frequency response was made closer to
rotationally symmetric in [3], while a modified version which
more densely samples scale space (the 4S-DTCWT, so called
because it uses 4 interleaved DTCWTs to achieve the finer
sampling) was used in [4]. Both these improvements form part
of the methodology described herein.

II. THEORY AND DESIGN

A. Keypoint Detection

In order to decide which points in an image to describe,
some form of keypoint detector function is required. This
allows us to obtain a sparse representation of the object of
interest in a way which should be consistent and invariant
to the types of changes expected between images (lighting,
position, orientation etc.). Usually, one would like to detect
small, well-localised features like corners or “blobs”, while
edges should be rejected.

One such detector which has been widely used is due to
Harris [5]. This detector is simple and has been used to great
effect in motion tracking in particular.

However, one deficiency of the Harris detector is that it
cannot reliably assign a scale to the keypoints detected. Scale
information would be useful, as it tells us what size area the
keypoint descriptor should be describing. In the context of
many image analysis schemes, such as that used by SIFT and



the method to be considered here, the scale of a feature tells
us not only how large that feature is, but also where it is most
prominent within a “scale-space” decomposition of the image.

Several keypoint detectors have been proposed which use
the DTCWT coefficients to detect areas of high-frequency
energy in multiple directions, whilst also providing scale
information about the detected keypoints. Some of these are
investigated by Bendale in [6]. Through experimentation, it
was decided that the best detector function suited to the target
matching problem presented here was a geometric mean of
the DTCWT bands. It has the form

Ẽk(x, y) =

6∏
d=1

|H̃k(x, y, d)|
1
6 (1)

Keypoints are defined as the maxima of this function in
(x, y, k)-space where Ẽk(x, y) is the is the energy at point
(x, y) and scale k and H̃k(x, y, d) is the DTCWT coefficient
in band d at this point.

B. Keypoint Description and Matching

Once keypoints in an image can be reliably detected, we
would like some robust description of the keypoint region.
Perhaps the most famous method for keypoint description is
that used by SIFT [1]. This method is based on finding the
distribution of oriented gradients at the keypoint.

The design of a descriptor must also include a method for
computing the correlation or similarity between two keypoints,
by some computation involving the two keypoints’ descriptors.

Polar Matching: A DTCWT-based method for keypoint de-
scription and matching has been developed by Kingsbury [3].
This method is based on band-limited sampling from a given
scale of the DTCWT in a circular pattern. The descriptors
produced by this method are represented by a matrix (the
polar matching ‘P’-matrix) which is formed with columns
which correspond each to a different circularly symmetric
sampling pattern. The Discrete Fourier Transform (DFT) of
these columns is taken.

To match two keypoints, the element-wise product of the
two P-matrices is taken and summed row-wise. The inverse-
DFT of the resulting vector produces a vector which gives
the correlation of the two keypoints at many (typically 48)
evenly-spaced relative rotations. Finding the maximum of this
vector tells us both the strength of the correlation and also the
relative rotation at which it occurs. For the target matching
scheme used here, this is very important.

III. TARGET MATCHING

A. Single-Keypoint Target Matching

As a starting point, we could imagine a target which
contains a single keypoint at location x̂. That keypoint could
be found anywhere on the target, so we define the target as
having a centre at location t. This means, given the location x
of the same keypoint on a matching object, the implied target
centre t′ for that object is given by

t′ = x+Rθd (2)

where d = t− x̂ and Rθ is the rotation matrix corresponding
to the rotation between target and the matching object.

Using the polar matching method described in [3], both a
correlation score and rotation are obtained. Thus, in an image
with K keypoints, we could compare every keypoint in the
image with the keypoint which describes our target. Using the
apparent rotation from each comparison in equation 2, it is
then possible to find K implied target centres. These can then
be ranked by the correlation score of each keypoint with the
target keypoint in order to determine the most likely matches.

While this method will work for simple targets in benign
environments, in practical situations there is likely to be a high
density of spurious matches.

B. Target Template

Of course, real targets will typically contain many key-
points. To have an effective target matcher, it is necessary
to combine the information from these keypoints in such a
way that the global geometric information about the target is
captured, as well as the local information encoded in each
descriptor. To describe a target with multiple keypoints, these
keypoints are brought together in a set.

The keypoints (with their associated descriptors) which form
this set are defined using a spatial constraint. Now, taking the
set of keypoints on the target itself, a single target centre is
defined.1 Thus, every keypoint j is assigned a displacement
dj = t − xj – that is, the displacement of the target centre
from that keypoint, given the correct keypoint orientation.

The set of keypoints with displacement vectors forms the
target template.

C. Multi-Keypoint Target Matching

The method presented here is merely an extension of that
described in section III-A.

If, on a matching object, all the keypoints are detected
in the same relative positions as in the original target, and
with the same rotations, all the implied target centres for
those keypoints will be in exactly the same position. However,
for any real image, there are measurement errors, and the
predicted centres even for an almost identical matching object
will not perfectly align. This means there needs to be some
way to cluster together implied target centres which do not
perfectly coincide.

If the errors in the positions of each of the implied target
centres may be considered identically Gaussian distributed2

then each implied target centre may be treated as a Gaussian
blob, scaled by the correlation score of the keypoints.

By summing all of these Gaussians together, the result is
a smooth surface which may be thought of as expressing

1In practice this is achieved by the user clicking to select the centre of the
target, and then dragging to indicate a radius defining the spatial extent of the
target.

2This is almost certainly not true, which may be seen if we decompose the
error into discretization error and error in the value of θ, the first of which
is likely to be Gaussian and the second of which certainly isn’t. However,
this assumption simplifies the analysis and processing, and gives reasonable
results.



the likelihood that a matching object has its centre at any
given point. Of course, it is not known in advance which
keypoints on a matching object and target correspond. Thus, it
is necessary to compare every keypoint in the target template
with every keypoint in the image. The value of the matching
surface M at a point w for an image containing I keypoints
and target template containing T keypoints is then given by:

M(w) =
1

2πσ2
sp

I∑
i=1

T∑
j=1

cij exp

{
|w − t′ij |2

2σ2
sp

}
(3)

where t′ij = xi +Rθijdj (4)

and cij and θij are, respectively, the correlation and rotation
obtained by the comparison of keypoints i (in the search
image) and j (in the target template). σsp is the standard
deviation of the Gaussian used to represent each implied target
centre.

In calculating M(w), the vast majority of keypoint com-
parisons will not be between keypoints which correspond to
the same locality on matching objects. As a result, most of
the I × T implied target centres will not represent anything
meaningful. However, there are two reasons why M , which
is constructed from these implied target centres does help us
find possible locations for the search object:

1) For a matching object, a large number of implied target
centres are expected to be found clustered around the
corresponding centre of that object. After representing
these as Gaussian functions and summing, they will
reinforce each other.

2) Keypoint descriptors which do not describe similar areas
should have a low correlation score.

Candidate locations (matches) within the image may be
found as the maxima of M . Though there may be a very large
number of maxima, these may be sorted by weight, where
the match weight is the value of M at that location. In this
manner, the matches are sorted by relevance. When looking
for matches to a given target, one may start at the top of the
sorted list and simply stop looking when the matches become
obscure.

D. Match Histogram

In practice, M (see equation 3 on page 3) is not calculated
exactly. Instead, it is sufficient and far less costly to compute
the match histogram. This is a sampled version of M which
is computed by accumulating correlation scores at the implied
target centres in spacial bins.

This histogram is then smoothed using a discrete Gaussian
kernel.3 For simplicity, a 2D grid the same size as the image
is used. This means that, effectively, the positions of implied
target centres are quantised to an integer pixel position. Thus,
given a target template and a search image, the procedure to
produce the match histogram is:

1) Compute correlation score between every keypoint in
the target template and every keypoint in the image

2) For each comparison, find the implied target centre in
pixel coordinates using the relative rotation and displace-
ment vector

3) Add the correlation score for each comparison to the
match histogram at the location of the implied target
centre

4) Smooth the match histogram using a Gaussian kernel
5) Find maxima of the smoothed match histogram

An example of a match histogram is given in figure 1.
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Fig. 1. The match histogram for a small target. The very tall peak corresponds
to the original target, the smaller peaks correspond to possible matches

IV. ROTATIONAL COHERENCE

As the system was tested with real imagery, it became
apparent that spurious matches were arising which bore no
resemblance to the target. Investigation showed that, typically,
the detected rotations of the various keypoints contributing
to the match were random. This is to be expected – whilst a
rotation of the original target (or a rotated “true” match) should
result in an equal rotation of all the keypoints, a spurious match
generated by coincidental implied target centres would not be
expected to have correlated keypoint rotations.

One way that was investigated to use this information to re-
move the spurious matches was using “rotational coherence”.
This is a measure which quantifies how similar a set of angles
are. Since angle is a circular quantity, an ordinary mean and
standard deviation are not suitable to estimate how similar the
rotations of the various keypoints contributing to a given peak

3The Gaussian kernel is truncated to discard all samples which are less
than 1

1000
of the peak value



are. Instead, a variant of the circular mean given in [7] is
employed.

Here, angles are converted to points on the unit circle and
the Euclidean mean of these points calculated:

xn =

[
cos θn
sin θn

]
(5)

α =
1

N

N∑
n=1

xn (6)

The mean of the angles θn is then given as the angle which
α makes with the x-axis. The length of the vector α lies in
the range [0, 1]. It is equal to 1 only if all angles θn are the
same, and is equal to 0 if they are evenly distributed around
the unit circle. As a result, the length of α is a measure of how
“concentrated” the angles are, and is referred to as rotational
coherence herein.

For the purpose of assigning rotational coherence to matches
(that is, peaks in the match histogram), the measure of equation
6 is altered to take account of the contribution of the different
implied target centres to the match weight. Now, for the match
at position p,

α̂ =

I∑
i=1

T∑
j=1

φijxij (7)

where φij =
1

2πσ2
spM(p)

cij exp

{
|p− t′ij |2

2σ2
sp

}
(8)

and xij =

[
cos θij
sin θij

]
(9)

Here, φij represents the contribution of the implied target
centre at t′ij to the weight of the match at location p, i.e.∑
ij

φij = 1 and M(p) is the matching surface from equation

3. α̂ is the weighted circular mean, and |α̂| is the rotational
coherence. The average rotation for a given match may also
be calculated as4 θ̂ = atan2(α̂2, α̂1), and this can be used as
an estimate of how much a match is rotated relative to the
target.

Of course, as in the case of the calculation of the match
histogram, this calculation can be performed much more easily
than is implied by equation 7 (which would, for every peak in
the match histogram require a summation with I × T terms).
In this case, two “layers” are added to the match histogram.
As the correlation score for each implied target centre is
accumulated in the first layer (as described in section III-D),
the quantities cij cos θij and cij sin θij are accumulated in the
other two layers. These layers then have the same Gaussian
smoothing applied to them as to the match histogram. If
we refer to these two layers as Mcos(w) and Msin(w), the
rotational coherence at the location p of a peak in the match

4atan2(y, x) is the two argument version of arctan, which is the angle
in radians between the positive x-axis and the position vector to the point
(x, y).

Fig. 2. The “kite” image used to investigate the effect of rotation, as in
figure 3. The detected keypoints are marked as blue circles.
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Fig. 3. Variation in match weight with rotation between target and matching
object

histogram is then found as

|α̂| =

√
Mcos(p)2 +Msin(p)2

M(p)2
(10)

This adds to the computational complexity of the system only
slightly.

V. RESULTS

A. Synthetic Imagery

Synthetic imagery was used to investigate the effects of
various image transformations on the target matcher’s perfor-
mance. One transformation of interest is that of rotation. It is
desirable that the target matcher should not be affected by the
orientation of matching objects, but it was found that for this
method some degradation of performance did occur.

Figure 3 shows the variation in height of the peak in the
match histogram (the match weight) of a rotated version of
the simple “kite” image shown in figure 2.

For this simple example, the match weight drops by as
much as 60% depending on the relative rotation of the target
as used to define the target template and the rotated version.



The effect that this has on the target matcher’s performance
depends on the “unrotated” weight of the match, as compared
with spurious matches which will be present in the image,
since it is only the ranking of matches which is important.

Close inspection found that this effect was due to instability
in the locations of keypoints. As shown in [3], the keypoint
descriptor used is affected very little by keypoint rotation,
however, its reliable operation does depend on having an
accurate location for the keypoint. It is in this area that the
greatest opportunities for improvement in the procedure exist.

B. Real Imagery

The target matcher was successfully tested with a range
of targets using publicly-available aerial and satellite imagery.
For several targets (mostly road vehicles and boats), it was
found that where a good match could be identified by eye, this
would be identified by the target matcher as the top match.
As mentioned, a large number of peaks occur in the match

Fig. 4. Rowing eights on the river Cam (imagery from Google Maps). The
left-most boat was used to define the target template, the best 5 matches in
the image are shown.

histogram (this can be seen in figure 1), so only the best
5 matches are shown in figure 4. However, it is clear that
the correct locations of all the boats in the image have been
found within these top 5 matches, though one false positive is
present.

VI. CONCLUSION

The method of the “match histogram” has been shown to
be successful, applied as an approach to the target matching
problem.

In addition, it has been demonstrated that fairly simple tech-
niques based on the Dual Tree Complex Wavelet Transform
may be used to efficiently perform the key intermediate steps
of target matching – namely keypoint detection, description
and matching. These measures take advantage of some of the
DTCWT’s important properties: approximate shift invariance
and rotational symmetry in particular, to compute the required
intermediate results with a minimum of redundancy.

The analysis presented in section V-A in particular indicates
that there is scope for considerable improvement, particularly
with respect to rotation, if the keypoint detector can be made
more robust and reliable in estimating keypoint location and
scale. However, this remains a difficult problem.
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