
ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 53, no. 3, march 2006 549

Modeling Ultrasound Imaging as a Linear,
Shift-Variant System

James Ng, Richard Prager, Nick Kingsbury, Member, IEEE, Graham Treece, and Andrew Gee

Abstract—We solve the equation that governs acoustic
wave propagation in an inhomogeneous medium to show
that the radio-frequency (RF) ultrasound signal can be ex-
pressed as the result of filtering the scatterer field with
a point-spread function. We extend the analysis to make
the link between the RF ultrasound signal and the rep-
resentation of ultrasound scatterers as vectors with small
magnitude and random phase in the complex plane. Oth-
ers have previously performed parts of this analysis. The
contribution of the present paper is to provide a single, co-
herent treatment emphasizing the assumptions that have to
be made and the physical consequences of the models de-
rived. This leads to insights into the interaction of monopole
and dipole scattering, useful techniques for simulating and
analyzing speckle statistics in the complex plane and a new
expression for the normalized covariance of the analytic RF
ultrasound signal in terms of the complex envelope of the
point-spread function.

I. Introduction

In this report, we demonstrate how a linear, shift-variant
description of ultrasound imaging can be obtained by

solving, under certain assumptions, the equation that gov-
erns wave propagation in an inhomogeneous medium. The
theory of linear systems is well developed and well estab-
lished in signal processing; a linear description is thus use-
ful for casting ultrasound imaging into a framework that is
well understood and for which mathematical tools already
exist.

We then convert our linear model to complex analytic
representation and derive the standard result whereby
speckle is viewed as the result of constructive and destruc-
tive interference of a large number of vectors with random
phase in the complex plane. From this, the first and second
order statistics of fully developed speckle can be derived.

A number of other authors have published work in this
area. The paper by Gore and Leeman [1] is one of the first
publications to have developed a realistic model for ultra-
sonic backscattering in human tissue by assuming weak
scattering and a windowed monochromatic separable inci-
dent pulse. A more thorough analysis was carried out by
Jensen [2], who derived the wave equation from first prin-
ciples and solved it to obtain an analytic expression for
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the backscattered radio-frequency (RF) trace in the time
domain. Zemp et al. [3] provided an overview of the solu-
tion of the wave equation and extended the linear model
further to the computation of signal statistics.

Our analysis here is similar to the treatments by Gore
and Leeman [1] and by Jensen [2]. Like Jensen, our aim
is to express the backscattered RF trace as the result of
linearly filtering a map of the acoustic inhomogeneities in
the imaged region by a transfer function determined by
the geometry and mechanics of the ultrasonic transceiving
probe. However, we have taken the extra step of proving
that, for the special case of a rectilinear scanning geome-
try and neglecting edge effects, the point-spread function
(PSF) of the imaging system is shift-variant only in the ax-
ial direction. We restrict ourselves to consider linear wave
propagation only. Modern clinical practice sometimes ex-
ploits higher-order harmonics generated by nonlinearities
during transmission. We note a comment in [3] that, al-
though the forward propagation of waves in such a case
is nonlinear, a linear model would still hold for the back
propagation provided that the scattering is weak (which is
usually the case in soft tissue).

Many authors use a complex model for the analysis of
speckle [4]–[7], relying on an analogy with the theory of
laser speckle for justification [8]. We are not aware of an
explicit presentation of the link between the RF ultrasound
signal and its representation in the complex plane. There-
fore, this is covered in some detail in the present paper to
show the assumptions on which it is based and the relation-
ships between the complex quantities and their analogues
in the real world.

II. Background

Conventional ultrasound imaging interrogates a medium
with high-frequency, band-limited acoustic waves and de-
tects echoes scattered by inhomogeneities (also referred to
as scatterers) within the medium. A single probe placed
in contact with the subject is used for both the genera-
tion of these waves and the reception of their echoes. On
the contact surface of a typical probe is found an array of
piezoelectric crystals or elements (referred to as the aper-
ture), each of which behaves as an electromechanical trans-
ducer. A focused beam is produced by coherently exciting
a set of adjacent elements that we refer to as the transmit
subaperture. In a similar way, backscattered echoes are
detected by adjacent elements in the receive subaperture;
these echoes are then coherently summed, and the result is
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filtered to produce a single RF voltage trace [2], [3]1. For
the sake of simplicity, we restrict our discussion in this pa-
per to a rectilinear scanning geometry, in which multiple,
parallel RF traces are acquired by laterally translating the
transmit and receive subapertures.

At each transmission, the emitted wave propagating
through the medium gives rise to an incident pressure field,
and the scattered waves give rise to a scattered pressure
field. It can be shown that, at any moment in time, the
total pressure field is the sum of these two fields (see Sec-
tion III-A). To minimize sidelobes in the transmit-receive
response of the probe, apodization (i.e., amplitude weight-
ing of the elements in the subapertures) is often applied.

III. The Wave Equation

With the physical description of the previous section in
mind, we shall proceed in this section to develop mathe-
matical expressions for the incident pressure field and the
scattered pressure field. Our analysis necessarily begins by
considering the partial differential equation (PDE) that
describes the propagation of acoustic waves in a nonuni-
form medium. We shall use the wave equation that is
found in [1] and [9], in which the acoustic properties of
the medium are specified in terms of its density and adi-
abatic compressibility. We restrict ourselves to the case of
weak scattering in which the energy of the scattered waves
is much less than the energy of the incident waves.

To simplify the mathematics, the wave equation and its
solution will be expressed in terms of angular frequency ω
instead of time t; although less intuitive, this representa-
tion has the advantage of improving notational clarity by
reducing convolutions in the time domain to multiplica-
tions in the frequency domain. The vector x will be used
to represent the coordinates (x, y, z) of three-dimensional
space. (A complete list of symbols is given in Table I.)

A. The Total Pressure Field

In the absence of any scatterers, we consider our
medium to be uniform with density ρo and adiabatic com-
pressibility κ0. The speed c0 at which acoustic waves travel
in this uniform medium is given by [9]:

c0 =
1

√
ρ0κ0

. (1)

The presence of scatterers in the medium may be
modeled by adding spatially-dependent terms ∆ρ(x) and
∆κ(x) to the density and the compressibility, respec-
tively. Without proof, we state that the total pressure field
P ′(x, ω) that develops as a result of acoustic wave propa-
gation obeys the linear PDE [1], [9]:

1M. E. Anderson and G. E. Trahey, “A seminar on
k-space applied to medical ultrasound,” Apr. 2000, avail-
able: http://dukemil.egr.duke.edu/Ultrasound/k-space/bme265.htm
[Dec. 15, 2004].

∇2P ′(x, ω) +
(

ω

c0

)2

P ′(x, ω) = −(SP ′)(x, ω),
(2)

where S is the scattering operator defined as

S ≡ γ(x)
(

ω

c0

)2

− ∇ · µ(x)∇, (3)

and the scattering terms γ(x) and µ(x) are defined as:

γ(x) ≡ ∆κ(x)
κ0

, µ(x) ≡ ∆ρ(x)
ρ0 + ∆ρ(x)

. (4)

In keeping with the definitions introduced by Andersen
and Trahey1, the term γ(x) contributes monopole radia-
tion and µ(x) contributes dipole radiation.

Although (2) is, strictly speaking, homogeneous [there
are no terms independent of P ′(x, ω)], we shall never-
theless treat it as an inhomogeneous PDE and treat the
nonzero, right-hand side (RHS) as a source term. This is
acceptable because, in a sense, the RHS represents the
source of scattered sound [9].

Because (2) is linear, we can write its general solution
as the sum of the solution to the corresponding homoge-
neous equation (i.e., with the RHS set to zero) and any
particular solution [10]. Denoting the solution to the ho-
mogeneous equation as Pi(x, ω) and the particular solution
as Ps(x, ω), we, therefore, can write the total field as:

P ′(x, ω) = Pi(x, ω) + Ps(x, ω). (5)

To assign a physical interpretation to Pi(x, ω), we ob-
serve that, by setting the RHS of (2) to zero, we have effec-
tively set ∆ρ(x) = ∆κ(x) = 0. We see then that Pi(x, ω) is
the pressure field that develops in the absence of any scat-
terers which, by definition, is the incident pressure field.
We also know that the scattered pressure field must obey
(2), and so we can assign our particular solution Ps(x, ω)
to be the scattered pressure field. With these physical in-
terpretations for Pi(x, ω) and Ps(x, ω), we see that (5)
confirms the statement in Section II that the total pres-
sure field is the sum of the incident pressure field and the
scattered pressure field.

B. The Incident Pressure Field

Calculating the incident pressure field requires knowl-
edge of the mechanics and geometry of the probe. We
adopt the generalized, three-dimensional coordinate sys-
tem shown in Fig. 1, where:

• A is a surface bounding the transmit and receive sub-
apertures.

• x0 is the location of the center of A.
• xa is an arbitrary point on A.
• V is a volume within which the scatterers being con-

sidered are contained.
• x′ is an arbitrary point in V.

The surface A may be considered to consist of infinites-
imally small area elements d2xa, each of which behaves
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TABLE I
List of Symbols

⊗
t

Convolution with respect to t

⊗
x

Convolution with respect to x

〈•〉 Expected value of a quantity
A Surface bounding the transmit and receive subapertures
A1 and A2 Amplitude of the signal at points 1 and 2
c0 Speed of sound in a homogeneous medium
Em(ω) or em(t) Electromechanical transfer function/impulse response
E(•) Complete elliptic integral of the second kind
F−1{•} Inverse temporal Fourier transform
F (x0, ω) Force on the receive subaperture
fm(x) or fm(x, y, z) Scatterer field
f̃m(x, y, z) Amplitude from scatterer field, random phase
2F1(•) Gaussian hypergeometric function
h(x, t) or h(x, y, z, t) PSF of the imaging system
hpe(x, t) Pulse-echo impulse response
Hr(x, ω) Receive transfer function
Ht(x, ω) Transmit transfer function
h̃(x, y, z, t) Complex envelope of the point spread function
Ht{•} Hilbert transform in time
�(•) Imaginary part of a number
I1 and I2 Intensity of signal at points 1 and 2
K(•) Complete elliptic integral of the first kind
k0 Spatial frequency or wave number
P ′(x, ω) Total pressure field
Pi(x, ω) or Pi (x, x0, ω) Incident pressure field
Ps(x, ω) or Ps (x,x0, ω) Scattered pressure field
Pr(•) Probability of a particular value
R3 Three-dimensional space
R (x0, ω) or r (x0, t) or r (x, y, t) RF Voltage trace
r̃(x, y, t) Base-band analytic RF signal
�(•) Real part of a number
S Scattering operator
t Time coordinate
V Volume containing scatterers
V (xa, ω) Position-dependent normal velocity over A
Vpe(ω) or vpe(t) Pulse-echo wavelet
wx Std. deviation width in x dir. of Gaussian resolution cell
x Position vector in three-dimensional space
x′ Point in V ; also a dummy variable of integration
x0 Center of A
xa Point on A
γ(x) Compressibility (monopole) scattering term
∆κ(x) Change in compressibility introduced by scatterers
∆ρ(x) Change in density introduced by scatterers
δx A small displacement in the x direction
κ0 Uniform compressibility in a homogeneous medium
λ Magnitude of normalized covariance of r̃(x, y, z, t)
µ(x) Density (dipole) scattering term
ρ0 Uniform density in a homogeneous medium
ρ(p, q) Pearson correlation coefficient between p and q
σ Standard deviation of the probability distribution
W (xa, ω) Weighting term on elements in the receive subaperture
ω Temporal angular frequency
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Fig. 1. Coordinate system for describing scattering in an inhomoge-
neous medium.

as a simple point source mounted on a rigid baffle. The
Huygen-Fresnel principle states that each area element
contributes a spherically expanding wave to the incident
pressure field1. Therefore, the incident pressure field may
be obtained by summing the spherical wave contribution
from each area element.

If we assume that the radius of curvature of A is large
enough that A may be considered to be effectively flat,
we can express the incident pressure field as the Rayleigh
integral [2], [9], [11], [12]:

Pi (x,x0, ω) =
ρ0

2π

∫
A

jωV (xa, ω)
e

−j ω
c0

|x−x0−xa|

|x − x0 − xa| d2xa,
(6)

where V (xa, ω) is the temporal Fourier transform of the
normal velocity on the transmit subaperture’s surface; this
normal velocity is not uniform but varies from point to
point on A. We note that the term jωV (xa, ω) corre-
sponds to the normal acceleration in the time domain be-
cause the factor jω corresponds to time differentiation.
We have implicitly incorporated the effects of focusing and
apodization into V (xa, ω), which may be complex valued.

Although we have stated (6) without proof, we can in-
tuitively see that it is indeed the Huygen-Fresnel princi-
ple expressed mathematically: the integral on the RHS de-
scribes the summation of complex-valued, spherically ex-
panding waves, each weighted by the normal acceleration
at its source and decaying in amplitude with increasing
distance from its source.

For convenience, we define a new quantity Ht(x, ω)
that, for reasons which will become clear, we shall refer
to as the transmit transfer function:

Ht(x, ω) ≡
∫

A
V (xa, ω)

e
−j ω

c0
|x−xa|

2π |x − xa|
d2xa, (7)

(6) then can be expressed more compactly as:

Pi (x,x0, ω) = jωρ0Ht (x − x0, ω) . (8)

The quantity Ht(x, ω), into which are incorporated the
effects of apodization and focusing, accounts entirely for
the spatial distribution of the incident pressure field.

C. The Scattered Pressure Field

To calculate the scattered pressure field, we solve (2) by
using the Green’s function method. We consider the waves
scattered from the volume V to be propagating into an
effectively unbounded medium, in which case the Green’s
function takes the form −1

4π|x−x′| exp
(
−j ω

c0
|x − x′|

)
[13].

The particular solution to (2) is then the product of the
RHS and the Green’s function integrated over the volume
V [1], [9], [13]. Furthermore, if we define ∆ρ(x) and ∆κ(x)
to be zero outside V, then we can perform the integration
over all of the three-dimensional space, and the scattered
pressure field can be expressed as the convolution integral:

Ps (x,x0, ω) =
∫

R3
(SP ′) (x′,x0, ω)

e
−j ω

c0
|x−x′|

4π |x − x′| d3x′.
(9)

Because we are dealing only with the case of
weak scattering, we assume that |Ps (x,x0, ω)| �
|Pi (x,x0, ω)|. Ps (x,x0, ω) in (5) then becomes negligi-
ble and P ′ (x,x0, ω) ≈ Pi (x,x0, ω). Rewriting (9) with
P ′ (x,x0, ω) substituted by Pi (x,x0, ω):

Ps (x,x0, ω) ≈
∫

R3
(SPi) (x′,x0, ω)

e
−j ω

c0
|x−x′|

4π |x − x′| d3x′.
(10)

This approximation is referred to as the (first) Born
approximation [1], [2], [9], [11], [12], and (10) states that
the scattered pressure field is, to a first approximation, the
spherically-expanding wave 1

4π|x| exp
(
−j ω

c0
|x|

)
convolved

onto the scattering term (SPi) (x,x0, ω). If we regard the
scatterers to be idealized points in V, this is equivalent to
saying that these point scatterers each contribute a spher-
ically expanding wave independently of each other. Thus,
in making the Born approximation, we have assumed im-
plicitly that multiply scattered waves (i.e., waves scattered
off a particle that are then scattered off other particles) are
negligible, and that multiple scattering can be ignored [1],
[2], [12].

By substituting the expression for Pi(x,x0, ω) in (8)
into (10), the scattered field can be expressed entirely in
terms of the probe’s characteristics and the scattering op-
erator:

Ps (x,x0, ω)≈ jωρ0

∫
R3

(SHt) (x′ −x0, ω)
e−j ω

c0
|x−x′|

4π |x − x′| d3x′.
(11)

D. The Force on the Receive Subaperture

We recall from the physical description in Section II
that the received RF voltage trace is obtained by summing
the scattered pressure field over the receive subaperture
and filtering this sum by the electromechanical response
of the piezoelectric elements. In this subsection, we com-
pute the summation of the scattered pressure field over
the receive subaperture. Strictly speaking, this quantity,
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which will be denoted by F (x0, ω), is the force exerted on
the receive subaperture [3].

If we represent the apodization and focusing on recep-
tion collectively in a single complex-valued term W (xa, ω),
then:

F (x0, ω) =
∫

A
W (xa, ω)Ps (x0 + xa,x0, ω) d2xa.

(12)

Substituting in the integral expression for Ps (x0 +xa,x0,
ω) from (11) yields (13) (see next page). For convenience,
we define another new quantity Hr (x, ω) that we shall
refer to as the receive transfer function:

Hr (x, ω) ≡
∫

A
W (xa, ω)

e−j ω
c0

|x−xa|

4π |x − xa|
d2xa.

(14)

Hence, we can write (13) as:

F (x0, ω)≈ jωρ0

∫
R3

(SHt) (x′ −x0, ω)Hr (x′ −x0, ω)d3x′.
(15)

At this point, we substitute in the definition of the scat-
tering operator S from (3) to get:

F (x0, ω) ≈

jωρ0

{(
ω

c0

)2 ∫
R3

γ (x′)Ht (x′ − x0, ω)Hr (x′ − x0, ω) d3x′

−
∫

R3
∇· [µ (x′) (∇Ht) (x′ − x0, ω)]Hr (x′ − x0, ω) d3x′

}
.

(16)

To simplify the second integral on the RHS, we first
note that (see Appendix A for a proof):

∫
R3

∇ · [µ (x) (∇Ht) (x, ω)]Hr (x, ω) d3x =

−
∫

R3
µ (x) (∇Ht · ∇Hr) (x, ω) d3x, (17)

and so we arrive at:

F (x0, ω) ≈

jωρ0

{(
ω

c0

)2 ∫
R3

γ (x′)Ht (x′ − x0, ω)Hr (x′ − x0, ω) d3x′

+
∫

R3
µ (x′) (∇Ht · ∇Hr) (x′ − x0, ω)d3x′

}
. (18)

At sufficiently large distances away from the surface
A, we can use the approximation (see Appendix B for a
proof):

(∇Ht · ∇Hr) (x − x0, ω) ≈

−
(

ω

c0

)2

Ht (x − x0, ω)Hr (x − x0, ω) . (19)

This allows us to rewrite F (x0, ω) as:

F (x0, ω) ≈ jω3ρ0

c2
0

×
∫

R3
Ht (x′ − x0, ω)Hr (x′ − x0, ω) [γ (x′) − µ (x′)] d3x′.

(20)

What exactly is meant by sufficiently large distances
away from the surface A is discussed in detail in Appendix
B. In short, (19) is well satisfied at axial depths greater
than the diameter of A [11]; for noncircular A, this is the
diameter of the smallest circle within which A can be in-
scribed.

It may be instructive to also consider equations (18)
and (20) from the point-of-view of linear systems. We re-
fer to Fig. 2(a), which illustrates graphically how the sig-
nal F (x0, ω) is composed of monopole and dipole com-
ponents [recall from Section III-A that γ(x) and µ(x) are
monopole and dipole terms, respectively]. From a systems’
point-of-view, γ(x) and µ(x) are two distinct input sig-
nals, each convolved with a different spatiotemporal filter
before being summed up and temporally filtered to pro-
duce F (x0, ω). It is only at axial distances greater than
the dimensions of A that the responses of the monopole
and dipole spatiotemporal filters become sufficiently simi-
lar in magnitude for µ(x) and γ(x) to be combined into a
single input as shown in Fig. 2(b). In the special case that
either monopole or dipole scattering is dominant, one of
the branches in the block diagram of Fig. 2(a) is effectively
rendered negligible, and the linear system depicted in this
block diagram is reduced to having just one input signal.

In [14], an imaging method able to separate the
monopole and dipole components of Rayleigh scattering
is described, and it is claimed that such techniques can
improve soft tissue contrast and add diagnostic value. Ex-
pression (18) is useful in this context to describe the blur-
rings of the separate density and compressibility images;
accurate characterization of the blurrings would be use-
ful in subsequent analysis and processing, especially for
deconvolution.

E. The RF Voltage Trace

We now model the electromechanical conversion of the
force on the receive subaperture into a voltage trace. If we
define the electromechanical transfer function that mod-
els this conversion to be Em(ω) and the voltage trace to
be R (x0, ω), we have R (x0, ω) = Em(ω)F (x0, ω) [2], [3];
substituting in the expression for F (x0, ω) from (20) we
get:

R (x0, ω) ≈ jω3ρ0

c2
0

Em(ω) ×
∫

R3
Ht (x′ − x0, ω)Hr (x′ − x0, ω) [γ (x′) − µ (x′)] d3x′.

(21)

For convenience, we group the properties of the medium
together and the electromechanical characteristics of the
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F (x0, ω) ≈ jωρ0

∫
A

W (xa, ω)

[∫
R3

(SHt) (x′ − x0, ω) e
−j ω

c0
|x0+xa−x′|

4π |x0 + xa − x′| d3x′

]
d2xa

≈ jωρ0

∫
R3

(SHt) (x′ − x0, ω)

[∫
A

W (xa, ω) e−j ω
c0

|x0+xa−x′|
4π |x0 + xa − x′| d2xa

]
d3x′.

(13)

Fig. 2. Block diagram representations of (a) (18) and (b) (20): (a) is valid close to A and shows that the force F (x, ω) is composed of
separate components related to monopole and dipole scattering; (b) shows how these two components can be combined for scattering at
some distance away from A.

probe together. We adopt definitions similar to those given
in [2] and write the voltage trace as:

R (x0, ω) ≈ Vpe (ω)Ht(−x, ω)Hr (−x, ω)

⊗
x
fm (x)

∣∣∣∣
x=x0

, (22)

Vpe(ω) = jω3Em(ω), (23)

fm(x) =
ρ2
0κ0

2

[
∆κ(x)

κ0
− ∆ρ(x)

ρ0 + ∆ρ(x)

]
.

(24)

We adopt similar terminology as in [2] and refer to the
quantities Vpe(ω) and fm(x), respectively, as the pulse-
echo wavelet and the tissue reflectivity or scatterer field.
Note that, to obtain the expression for fm(x) in (24), we
have substituted in the definitions of c0, γ(x) and µ(x)

from (1) and (4). We note from [3] that, provided ∆κ(x)
and ∆ρ(x) are small, fm(x) may be approximately re-
garded as the spatial variation in the medium’s acoustic
impedance.

We also can express the voltage trace in the time do-
main as:

r (x0, t) ≈ vpe(t) ⊗
t

hpe(−x, t) ⊗
x

fm(x)
∣∣∣∣
x=x0

,
(25)

vpe(t) = F−1 {Vpe(ω)} = −d3em

dt3
(26)

hpe(x, t) = F−1 {Ht(x, ω)Hr(x, ω)} , (27)

em(t) = F−1 {Em(ω)} . (28)

If we regard the quantity fm(x) as the input signal and
r (x0, t) as the output signal, (22) and (25) show that the
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Fig. 3. Coordinate system for demonstrating the shift variance of the PSF in the axial direction.

imaging system is linear with a spatiotemporal transfer
function Vpe(ω)Ht(−x, ω)Hr(−x, ω) or impulse response
vpe(t)⊗

t
hpe(−x, t). Our definition of the transfer function

of the imaging system in this way neatly distinguishes be-
tween the electromechanical characteristics of the probe
(represented by the pulse-echo wavelet Vpe(ω)) and the ge-
ometry of the probe (represented by the pulse-echo trans-
fer function Ht(−x, ω)Hr(−x, ω)).

IV. Shift Variance in the Axial Direction

To view ultrasound imaging from a purely signal pro-
cessing point-of-view, we can combine the electromechan-
ical response vpe(t) and the pulse-echo impulse response
hpe(x, t) into a PSF. If we formally define h(x, t) =
vpe(t)⊗

t
hpe(x, t), then:

r (x0, t) ≈ h(−x, t) ⊗
x

fm(x)
∣∣∣∣
x=x0

, (29)

We can gain a little more insight into the behavior of the
PSF by adopting the coordinate system shown in Fig. 3,
in which the x, y, and z axes are aligned with the lateral,
elevational, and axial directions, respectively.

In a rectilinear scanning geometry, a two-dimensional
RF image is acquired by capturing RF traces at differ-
ent lateral positions. A three-dimensional RF image is ac-
quired by translating the probe in the elevational direc-
tion. Therefore, the vector x0 only changes laterally and
elevationally (i.e., in the x and y directions only); its z co-
ordinate never changes. Hence, without loss of generality,
we can restrict the surface of A to lie on the xy plane. We
then can write x0 = [x y 0] and x = [x y z], and (29) can
be written out in full as:

r(x, y, t) ≈
+∞∫∫∫

−∞

h (x′ − x, y′ − y, z′, t) fm (x′, y′, z′) dx′dy′dz′. (30)

We see from (30) that the PSF is shift variant along
the axial direction but shift invariant along the lateral and
elevational directions. This lateral and elevational shift in-
variance only hold when scanning in a rectilinear fashion.
Furthermore, at the lateral edges of the probe at which
there are an insufficient number of elements to form the
full transmit and receive subapertures, the subapertures
usually are truncated, distorting the PSF. Thus, the PSF
is laterally shift invariant except at the lateral edges.

We present an example of a typical PSF in Fig. 4. We
have included Fig. 4 to illustrate the axial variation in the
PSF, particularly before and after the focal point. Notice
that the PSF is more tightly focused in the lateral direc-
tion as the transmit-receive aperture width in this direc-
tion is much larger, with fewer sidelobes. This is typical of
realistic probes, in which elevational focusing is achieved
through an acoustic lens that cannot be apodized.

V. Complex Representation and Signal

Statistics

Having derived an expression for r(x, y, t) in terms of
the point spread function and the scatterer field, most au-
thors stop at this point and cite one of the classic texts
on speckle [8] when they wish to talk about the echo en-
velope amplitude of diffuse scattering as analogous to the
distance traveled by a random walk in the complex plane.
In this section we go through the algebra that links the real
RF signal with the corresponding analytic representation
in the complex plane. This enables us to make clear the as-
sumptions that are involved, and provides an explicit rela-
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Fig. 4. Axial-lateral (left) and axial-elevational (right) cross sections
of a typical system PSF at different axial depths from an apodized
aperture after demodulation and logarithmic compression. This PSF
was obtained by simulating the response of a 6.5 MHz, single-focus
probe to a point scatterer at different axial depths in Field II [15].
The transmit and receive subapertures are identical, consisting of
32 elements, each measuring 0.3 mm (lateral) by 6 mm (elevational)
with a lateral gap of 0.1 mm between adjacent elements. Hamming
window apodization was applied. Both lateral and elevational focal
lengths were set to 20 mm. The speed of sound was set to 1540 m/s.

tionship between the envelope of the point spread function
h̃(x, y, z, t), and the statistics of fully developed speckle.

A. A Complex Baseband Model for RF Ultrasound

From (30) we have:

r (x, y, t)≈
+∞∫∫∫

−∞

h (x′−x, y′−y, z′, t) fm (x′, y′, z′) dx′dy′dz′.

We now form an analytic signal from the RF signal,
using the Hilbert transform, Ht{•} in the time dimension:

r(x, y, t)−jHt{r(x, y, t)} ≈
+∞∫∫∫

−∞

[
h (x′ − x, y′ − y, z′, t)

− jHt{h (x′ − x, y′ − y, z′, t)}
]
fm (x′, y′, z′) dx′ dy′ dz′.

(31)

If we assume that the center frequency of the RF ul-
trasound signal and the speed of sound in tissue are both
reasonably constant, we can define a representation for the

complex analytic pulse in terms of its complex envelope,
h̃(x, y, z, t), the center frequency ω0, and center wave num-
ber k0:

h(x, y, z, t)−jHt{h(x, y, z, t)}= h̃(x, y, z, t)ej(ω0t−2k0z).
(32)

See Appendix C for a brief explanation of the factor of
2 in the exponent. The speed of ultrasound varies by up to
5% in different tissues. One material property, namely the
sound speed, affects our measurement of another material
property, the phase with which the ultrasound is backscat-
tered. This is unavoidable in a baseband model in which h̃
is considered to be a property of the probe rather than the
material being scanned. Typically, the center frequency of
an RF scan line varies by less than 5% in the z direction,
and this variation can be accommodated by the complex
envelope h̃, which we have assumed to be spatially varying
in this direction.

Therefore, we can rewrite (31) as:

r(x, y, t) − jHt{r(x, y, t)}

≈
+∞∫∫∫

−∞

h̃ (x′ − x, y′ − y, z′, t) ej(ω0t−2k0z′)

× fm (x′, y′, z′) dx′ dy′ dz′

≈ ejω0t

+∞∫∫∫

−∞

h̃ (x′ − x, y′ − y, z′, t)

× fm (x′, y′, z′) e−2jk0z′
dx′ dy′ dz′.

Hence:

[r(x, y, t) − jHt{r(x, y, t)}] e−jω0t ≈
+∞∫∫∫

−∞

h̃ (x′ −x, y′ −y, z′, t) fm (x′, y′, z′) e−2jk0z′
dx′ dy′ dz′.

(33)

The left-hand side of (33) is the analytic RF signal
with the high-frequency component at ω0 removed. Let
r̃(x, y, t) = [r(x, y, t) − jHt{r(x, y, t)}] e−jω0t.

The term fm (x, y, z) e−2jk0z is made up of fm(x, y, z),
which is a real function of position, and e−2jk0z, which
determines the angle of the resulting complex number as
a function of the remainder when the z position of the
scatterer is divided by the wavelength, π/k0, of the dom-
inant frequency. For a 5 MHz probe, this wavelength is
roughly 0.3 mm, so we can assume that, for diffuse scat-
tererers, the scatterer position is random within the wave-
length. This means that the phase of the scatterer is ef-
fectively uniformly distributed in the range 0 to 2π. Let
f̃m(x, y, z) = fm(x, y, z)e−2jk0z , a vector with magnitude
determined by fm(x, y, z) and random phase.

Thus we now have an analogous complex equation to
the real equation (30) in which: the high frequency compo-
nents have been removed by demodulating with the pulse
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center frequency, the pulse is now represented by a com-
plex envelope analogous to the resolution cell of the imag-
ing system, and the scatterers are represented by complex
vectors of random phase:

r̃(x, y, t) ≈
+∞∫∫∫

−∞

h̃ (x′ − x, y′ − y, z′, t) f̃m (x′, y′, z′) dx′ dy′ dz′, (34)

where:
r̃(x, y, t) = [r(x, y, t) − jHt{r(x, y, t)}] e−jω0t, the

analytic RF signal with the ejω0t

component removed,
h̃(x, y, z, t) = the complex envelope of the point spread

function of the imaging system (i.e., the
sensitivity to scatterers at the point
(x, y, z) when forming the sum in r̃ for
time t). Thus, this also can be viewed as
the complex resolution cell or the com-
plex pulse envelope relevant to the depth
corresponding to time t.

f̃m(x, y, z) = the magnitude is from fm(x, y, z) and the
phase from e−2jk0z, so the phase is
effectively random.

Note that we can calculate r̃(x, y, t) from the measured
RF signal, using an estimate of the pulse center frequency.
If we get the center frequency slightly wrong, this will have
the effect of reducing the smoothness of h̃(x, y, z, t). This is
illustrated using a simple example of an ultrasound pulse
waveform, in Figs. 5 and 6. The analytic representation of
the same pulse is shown in Figs. 5(a) and 6(a). In Fig. 5
the pulse is derotated by its mode frequency of 5.79 MHz,
achieving a smooth envelope, which is shown in Fig. 5(c).
In Fig. 6 the pulse is derotated by its mean frequency of
8.17 MHz. The asymmetry of the pulse’s amplitude spec-
trum makes the mean frequency of 8.17 MHz less conve-
nient to use for derotation in this case. Fig. 6(c) shows a
pulse envelope that is not as smooth as Fig. 5(c). Notice
that, in spite of the fact there is a significant difference
between 5.79 MHz and 8.17 MHz, the signal in Fig. 6(c)
is still sufficiently smooth to be used as a plausible pulse
envelope.

B. Statistics of Speckle

The statistics of ultrasound images can indicate the
type of scattering (specular/diffuse), the effective num-
ber of scatterers in each resolution cell, and any regularity
in their spacing [16], [17]. Statistical information between
neighboring RF images also can be used to measure the
out-of-plane probe motion [18], [19]. As a starting point,
it, therefore, is useful to analyze the ideal case of fully
developed speckle, in which there are a large number of
scatterers (at least 30 so the central limit theorem will
hold) within the resolution cell.

In all our discussion of speckle statistics, we assume,
without loss of generality, that we are working at a partic-
ular depth corresponding to the time t in the RF signal r̃.

From (34) we can see that each value in r̃ is formed
from the sum of all the scatterers within the pulse enve-
lope. Provided this envelope extends over more than one
wavelength (π/k0), we can assume that the scatterers have
effectively random phase derived from the f̃m term. If there
are a large number of scatterers within the pulse enve-
lope, by the central limit theorem, the vector sum of these
complex numbers will be distributed as a two-dimensional
Gaussian in the Argand diagram:

Pr(r̃) =
1

2πσ2 exp
[
−�(r̃)2 − �(r̃)2

2σ2

]
,

where:

Pr(r̃) = the probability density function of r̃,
�(r̃) = the real part of r̃,
�(r̃) = the imaginary part of r̃,

2σ2 =
〈
f2

m

〉 +∞∫∫∫

−∞

[
h̃(x, y, z, t)

]2
dx dy dz,

〈•〉 denotes the expected value of a quantity. Note that the
resolution cell h̃ varies with depth. To calculate σ, we take
the energy under the curve relevant to a depth given by
time t in the RF signal. To find the amplitude distribution
|r̃|, we express r̃ in polar coordinates and integrate over
all angles:

r̃ = �(r̃) + j�(r̃) = |r̃ |ejθ

⇒ Pr(r̃) =
1

2πσ2 exp
(

−|r̃|2
2σ2

)

⇒ Pr(|r̃ |) =

2π∫

0

Pr(r̃) dθ =
2π|r̃ |
2πσ2 exp

(
−|r̃|2
2σ2

)

=
|r̃ |
σ2 exp

(
−|r̃ |2
2σ2

)
.

This gives us a Rayleigh distribution, as expected.
Now introduce variables to represent the amplitude and

intensity of the backscattered signal:

A = |r̃ | (the amplitude),

I = A2 (the intensity).

As already mentioned, the amplitude is Rayleigh dis-
tributed. The intensity follows an exponential distribution:

Pr(A) =
A

σ2 exp
(−A2

2σ2

)
,

Pr(I) =
1

2σ2 exp
(

−I

2σ2

)
.

Also 〈A〉 = σ
√

π
2 ,

〈
A2

〉
= 〈I〉 = 2σ2 and

〈
I2

〉
= 8σ4.

C. Second Order Statistics of Speckle

Consider two points in space, labeled 1 and 2. They
are located inside an ultrasound phantom that generates a
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Fig. 5. An analytic RF pulse derotated by its mode frequency of 5.79 MHz. (a) Real RF pulse and corresponding imaginary signal, computed
using a Hilbert transform. (b) Amplitude spectrum of the pulse. (c) Pulse after multiplication by a sinusoid at 5.79 MHz. (d) Amplitude
spectrum of (c). The vertical axes on all the graphs are in arbitrary units.

Fig. 6. An analytic RF pulse derotated by its mean frequency of 8.17 MHz. (a) Real RF pulse and corresponding imaginary signal, computed
using a Hilbert transform. (b) Amplitude spectrum of the pulse. (c) Pulse after multiplication by a sinusoid at 8.17 MHz. (d) Amplitude
spectrum of (c). The vertical axes on all the graphs are in arbitrary units.
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fully-developed speckle backscatter signal. Point 1 is at po-
sition (x1, y1, z1) and point 2 is at position (x1 +δx, y1, z1).
Quantities at points 1 and 2 will be denoted using sub-
scripts, for example A1 is the amplitude at point 1.

Following equation 35 of [20], define λ as the magnitude
of the normalized covariance of r̃:

λ =
|〈r̃1r̃

∗
2〉|

2σ2 .

We assume that the resolution cell (point spread func-
tion) of the ultrasound scanner is an even function in the x
direction: h̃(x, y, z, t). Drawing on results from [19], as de-
tailed in Appendix D, we can directly obtain a convenient
expression for λ in terms of the overlap of the resolution
cells at points 1 and 2:

λ = 1 −

+∞∫∫∫
−∞

[
h̃(x + δx, y, z, t) − h̃(x, y, z, t)

]2
dx dy dz

2
+∞∫∫∫
−∞

[
h̃(x, y, z, t)

]2
dx dy dz

.
(35)

The integrals in (35) are over the spatial dimensions x,
y, and z; thus, it is expressing λ in terms of the resolution
cell (or spatial sensitivity function [3]). This resolution cell
h̃ varies slowly with depth. As h̃ does not generally extend
over a wide range of z values for any particular value of t,
this expression is valid at any depth, provided h̃ is evalu-
ated with the appropriate value of t. Therefore, it is often
possible to use an approximation based on the PSF and
evaluate the integrals in (35) over x, y, and t for a given z.

We show later in this section that the second order
statistics of speckle can be calculated directly from λ. Thus
(35) provides a convenient link between techniques for cal-
culating [21] or estimating [22], [23] the resolution cell, and
work that makes use of the speckle statistics for distance
measurement in free-hand, three-dimensional ultrasound
[19], [24].

If h̃ is a three-dimensional Gaussian with standard de-
viation width in the x direction equal to wx:

h̃(x, y, z, t)∝ 1
wxwywz(2π)

3
2

exp

[
− x2

2w2
x

− y2

2w2
y

−
(
z− ωt

2k

)2

2w2
z

]
,

then (35) evaluates to:

λ2 = exp
(

−δ2
x

2w2
x

)
. (36)

Note that the parameters of h̃(x, y, z, t), i.e., wx, wy , k,
ω, and wz will all vary slowly as a function of t. We have
reported simulations and experiments showing the use of
this equation previously [19].

From [5], [19], [25], the expected value of the products
I1I2 and A1A2 are:

〈I1I2〉 = 4σ4 (
1 + λ2) ,

〈A1A2〉 =
πσ2

2 2F1
(
− 1

2 ,− 1
2 ; 1;λ2)

= σ2 [
2E(λ2) −

(
1 − λ2)K(λ2)

]
,

where 2F1(•) is the Gaussian hypergeometric function [25],
[26], and K(•) and E(•) are the complete elliptic integrals
of the first and second kinds, respectively. Following [26],
we have adopted the convention that the arguments of
K(•) and E(•) are given as the parameter (conventionally
K(m) and E(m)) rather than the modulus (convention-
ally K(k) and E(k) where k2 = m). Other authors [5],
[25], have chosen the alternate definition for these func-
tions. Algorithms for evaluating the elliptic integrals are
available in [26], and packages like Matlab (Mathworks
Inc., Natick, MA) provide functions to compute them.

The Pearson correlation coefficient is defined:

ρ(p, q) =
〈pq〉 − 〈p〉 〈q〉√

〈p2〉 − 〈p〉2
√

〈q2〉 − 〈q〉2
. (37)

Using (35) or (36) to determine λ, we thus can calculate the
Pearson correlation coefficients of amplitude and intensity
values separated by a distance δx in the x direction:

ρ(I1, I2) = λ2, (38)

ρ(A1, A2) =
4E(λ2) − 2

(
1 − λ2

)
K(λ2) − π

4 − π
.

(39)

If we assume that the complex resolution cell varies
only slowly with depth, these formulae are valid for dis-
placements in any direction, not just in the x direction as
described above.

Most of the results in Section V-B and V-C are drawn
from previous papers (e.g., [4], [5]), but we believe (35),
that relates λ to the overlap of the complex resolution
cells, has not been previously published in this form.

VI. Discussion

The major assumption underpinning this model is that
of weak scattering; in our analysis, we showed that this
means requiring the scattering to be weak enough that
multiple scattering can be ignored. Most authors acknowl-
edge that weak scattering occurs when the scatterers’
acoustic properties differ from the medium’s by small
amounts [1], [2], [9], but they overlooked the fact that weak
scattering also occurs when the size of the scatterers is very
small compared to the wavelength of the incident wave, ir-
respective of the acoustic properties of the scatterers. At
such small dimensions, the shape of the scatterers may be
assumed to be spherical [27] and, for a rigid sphere, the
total power scattered is very small when the radius of the
sphere is much less than λ

2π [9].
In human tissue, the assumption of weak scattering does

not hold at strongly, reflecting interfaces such as organ
boundaries. Cho et al. [28], however, have suggested that
it is possible to extend the linear model’s validity beyond
the Born approximation regime by modifying the PSF to
account for some degree of multiple scattering.
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The other significant limitation on our linear model is
the approximation inherent in (20). From a systems’ point-
of-view, the monopole and dipole terms γ(x) and µ(x)
are in fact two separate input signals contributing to the
force on the receive subaperture (and therefore to the RF
trace). The spatiotemporal filters applied by the physics
of the system to each of these input signals are differ-
ent; it is only at distances larger than the diameter of the
transmit and receive subapertures that the responses of
these spatiotemporal filters become sufficiently similar (in
magnitude) to allow γ(x) and µ(x) to be combined into
the single quantity fm(x). Of course, when one of the in-
puts is significantly larger than the other (i.e., when only
one of monopole or dipole scattering is dominant), then
we may approximate this physical behavior as a single-
input, single-output linear system without this large dis-
tance constraint.

VII. Conclusions

We have shown how the expression for the RF signal
in terms of the scatterer field and a spatially varying PSF
can be transformed into a representation in terms of com-
plex analytic signals. The complex model incorporates a
spatially varying complex PSF envelope that takes ac-
count of variations in the shape of the real PSF as well
as changes in the speed of sound and the center frequency
of the backscattered signal.

It is easier to perform simulation and analysis of ultra-
sound scattering using this complex representation than
using RF signals because accurate modeling of spatial vari-
ation on the scale of a wavelength is not necessary, and
the various quantities do not vary at RF frequencies and,
hence, can be sampled more sparsely. Our approach pro-
vides a direct interpretation of the complex quantities in
terms of their RF analogues and thus makes it easier to
understand the physical significance of results. We show
how the complex representation easily can be used to de-
rive the first and second order statistics of fully developed
speckle.

Appendix A

Proof of (17)

For convenience, we restate (17):
∫

R3
∇ · [µ(x) (∇Ht) (x, ω)]Hr(x, ω)d3x =

−
∫

R3
µ(x) (∇Ht · ∇Hr) (x, ω) d3x.

Proof: This proof is taken from [9]. Let A(x) = ∇ ·
[µ(x) (∇Ht) (x, ω)] and b(x) = Hr(x, ω). We begin with
the identity:

b(x)∇ · A(x) = −A(x) · ∇b(x) + ∇ · [b(x)A(x)] ,
(40)

which can be verified by expanding the RHS and simplify-
ing. Let V ′ be the volume within which A(x) is nonzero,
i.e., A(x) = 0 for x /∈ V ′. Integrating both sides over V ′:

∫
V′

b(x)∇ · A(x)d3x = −
∫

V′
A(x) · ∇b(x)d3x

+
∫

V′
∇ · [b(x)A(x)] d3x. (41)

By the divergence theorem [29], the second integral on
the RHS is equal to the surface integral

∮
S′ b(x)A(x) ·

n̂(x) d2x, where S′ is some surface enclosing V ′ and n̂(x)
is a unit vector normal to S′. Because A(x) is zero outside
V ′, the surface integral reduces to zero and (17) follows.

Appendix B

Proof of (19)

For convenience, we restate (19):

(∇Ht · ∇Hr) (x, ω) ≈ −
(

ω

c0

)2

Ht(x, ω)Hr(x, ω).

Proof: We define the wave vector k = ω
c0

r̂, where
r̂ = x−xa

|x−xa| ; in other words, r̂ is a unit vector parallel to
x − xa and k is a vector also parallel to x − xa but with
magnitude ω

c0
. We then can rewrite (7) for the transmit

transfer function as:

Ht(x, ω) =
∫

A
V (xa, ω)

e−jk·(x−xa)

2π|x − xa|
d2xa.

(42)

Taking the gradient (43) (see next page), we apply the
condition 1

|x−xa| � |k| = ω
c0

, i.e., |x − xa| � c0
ω . (43) then

reduces to:

(∇Ht) (x, ω) ≈
∫

A
V (xa, ω)

e−jk·(x−xa)

2π |x − xa|
(−jk) d2xa.

(44)

We also assume that the direction of k does not vary very
much over the transmit subaperture which allows the −jk
term on the RHS to be factored out of the integral:

(∇Ht) (x, ω) ≈ −jk
∫

A
V (xa, ω)

e−jk·(x−xa)

2π |x − xa|
d2xa

≈ −jkHt(x, ω). (45)

By an identical process, we obtain, for the receive-transfer
function:

(∇Hr) (x, ω) ≈ −jkHr(x, ω), (46)

taking the dot product of (45) and (46) yields (19).

In practice, the condition |x − xa| � c0
ω is satisfied

for virtually the entire imaged region because the wave-
lengths from medical ultrasound probes are usually very
short. For example, consider a typical probe transmitting
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Fig. 7. Coordinate system for calculating an approximation to (∇Ht · ∇Hr) (x, ω).

(∇Ht) (x, ω) =
1
2π

∫
A

V (xa, ω)∇
[
e−jk·(x−xa)

|x − xa|

]
d2xa

=
1
2π

∫
A

V (xa, ω)
[
∇e−jk·(x−xa)

|x − xa|
+ e−jk·(x−xa)∇

(
1

|x − xa|

)]
d2xa

=
1
2π

∫
A

V (xa, ω)

[
−jk

e−jk·(x−xa)

|x − xa|
− e−jk·(x−xa)

|x − xa|2
r̂

]
d2xa

=
1
2π

∫
A

V (xa, ω)
e−jk·(x−xa)

|x − xa|

(
−jk − r̂

|x − xa|

)
d2xa,

(43)

at 6.5 MHz into human tissue that has an average speed
of sound of 1540 m/s. For this probe, c0

ω has an average
value of 0.0377 mm, which is practically negligible.

The condition that the direction of k not vary very
much over the transmit and receive subapertures is much
stricter and is only satisfied in regions far away from A. To
quantify exactly what is meant by far away, we consider
the setup of Fig. 7.

For a typical focused probe, we expect the majority of
the transmitted acoustic energy to be concentrated in a
small region enclosing the axial axis, and so we have chosen
to consider only the scenario in which x lies along this axis.
We can restate our requirement that k be uniform over A
by equivalently requiring k to be approximately parallel
to x.

This requirement is most difficult to satisfy when we
consider the point on A farthest from the center of A,
i.e., when xa = (xa)max. Our requirement that k be ap-
proximately parallel to x can be stated in terms of the dot
product as k·x ≈ |k| |x|; in the case in which xa = (xa)max
(as shown in Fig. 7), we require cos θ ≈ 1. If we allow a
10% error in this approximation for cos θ, we effectively
impose the constraint cos θ > 0.9 ⇒ θ < 26◦. From
Fig. 7, |xmin| = |(xa)max| cot θ and so our requirement
that θ < 26◦ translates to requiring |x| > 2 |(xa)max|.

What we have demonstrated in this brief discussion is
that the approximation in (19) is satisfied well at axial
depths that are greater than the diameter of A (for non-
circular A, this diameter is the diameter of the smallest
circle within which A can be inscribed). The same claim
is made without proof in [11].

Appendix C

Motivation for (32)

Consider a pulse P of an unspecified complex quantity
propagating into a medium in the z direction at speed ω/k:

P (ωt − kz).

It is reflected at a depth z1 and travels back in the −z
direction. Changes in phase and amplitude during the re-
flection are represented by q1. The reflected pulse is:

q1P (ωt + (z − z1) k − z1k) .

When this pulse gets back to the probe (i.e., z = 0), we
have:

q1P (ωt − 2kz1) .

Hence, we represent h (x, y, z, t) − jHt{h (x, y, z, t)} as
h̃(x, y, z, t)ej(ω0t−2k0z) in (32).

Appendix D

Proof of (35)

For convenience, we restate (35):

λ = 1 −

+∞∫∫∫
−∞

[
h̃(x + δx, y, z, t) − h̃(x, y, z, t)

]2
dx dy dz

2
+∞∫∫∫
−∞

[
h̃(x, y, z, t)

]2
dx dy dz

.
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Proof: We start by reproducing equation 35 from [20] in
our notation, and introduce a modulus sign as the analytic
signal can otherwise result in a complex value (as noted in
the comment below equation 36 in [20]).

λ =
|〈r̃1r̃

∗
2〉|

2σ2

Using equation 18 from [5] together with the definition
of the Pearson correlation coefficient in (37), we can com-
pute (38) in the main text of this paper:

ρ(I1, I2) = λ2. (47)

Equation A.6 in [19] is:

ρ(I1, I2) = b, (48)

(the reader is referred to [19] for the definition of b) and
equation 14 from [19] is:

b =
(

1 − 〈i〉
〈I〉

)2

. (49)

Combining (47), (48), and (49) gives us:

λ = 1 − 〈i〉
〈I〉 . (50)

The quantities 〈i〉 and 〈I〉, which are defined in [19], can be
expressed in terms of the complex resolution cell h̃ using
equations 21 and 22 from [19]:

〈I〉 = k2

+∞∫∫∫

−∞

[
h̃(x, y, z, t)

]2
dx dy dz,

〈i〉 =
1
2
k2

+∞∫∫∫

−∞

[
h̃(x + δx, y, z, t) − h̃(x, y, z, t)

]2
dx dy dz,

where k2 represents the average backscattering intensity.
We can substitute these expressions into (50) and cancel
k2, to give (35).
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