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Abstract

An anomaly detection approach is considered for the mine huting in sonar
imagery problem. We exploit previous work that used dual-tree wavelets and
fractal dimension to adaptively suppress sand ripples and anatched lter as
an initial detector. Here, lacunarity inspired features are extracted from the
remaining false positives, again using dual-tree wavelets A one-class support
vector machine is then used to learn a decision boundary, basl only on these
false positives. The approach exploits the large quantitis of ‘normal’ natural
background data available but avoids the di cult requireme nt of collecting ex-

amples of targets in order to train a classi er.

1 Introduction

For more than a decade supervised approaches have receivedmaitention in the mine

hunting literature [2, 3, 19]. A common approach outlined in Figure 1 rpiires that
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the ground truth (location of the targets in the training data) is awailable. Firstly, a
detector is applied to eliminate any areas of the image which can be idadistinguished
from the targets. A good example of such a detector is the matahdter, rst proposed
for mine hunting by Dobeck et al [4]. This initial screening or detectiostage is designed
to accept a large number of false positives (natural background) order to capture
all of the true positives (the mines). The ground truth is then usedo select and label
the positives as either target or background. After extractingdatures, a proportion
of these positives are then used to train a classi er. The remainingpitives are then
used to test the classi er. A common complaint against supervisegproaches is that,
although they might perform well on the data used to train the sy@m, there is no
guarantee that they will be able to generalise well to unseen datagespecially unseen

targets.
[Figure 1 about here.]

Unsupervised approaches have also been attempted. Amongse tinost promising
is the work of Reed et al. [16]. They used unsupervised Markov randoeld based
detection to segment the image into shadow, seabed, and objecghlight regions.
Cooperating statistical snakes were used to extract highlight anshadow regions for
object classi cation.

The approach explored in this paper falls somewhere in-between thegervised and
unsupervised methods and is summarised in Figure 2. Like the supieed approach,
a (matched lter) detector is used to prune the data. However, my false positives are
used to train the classi er| in this case, a one-class support vectomachine. We also
implement previous work [13] that uses fractal dimension to adaptly suppresses any

sand ripples that may be present prior to the matched lter.

[Figure 2 about here.]



Unlike the fully supervised approach, which uses binary or multi-clagsarning, the
training stage does not require any examples of targets. Insteddnly requires exam-
ples of background data, and thus avoids the major di culty of capuring examples of
real threats in any signi cant quantity. It also potentially means that unanticipated,
or even hitherto unknown, types of threats can be detected amll in theory allow the
system to evolve according to the environmental conditions. Theproach regards the
background, or natural seabed, as normal whereas the unkrovargets are treated as
anomalies.

In the feature extraction phase, some novel features will be pented that are
loosely based on the idea of lacunarity. Mandelbrot [10] rst introdced the concept of
lacunarity to measure deviations from translational statistical inariance. Small values
indicate the presence of translational invariance in the surfacexteire of interest. It
is assumed here that the presence of a mine will cause an anomalogsease in local
lacunarity. Unlike the usual box counting approach, we compute a danarity based
measure using the dual-tree complex wavelet transform. This allows to e ciently
compute and compare deviations in the statistics of regions within eascale level and
direction.

Section 2 summarises previous work [13] on the rst two steps, rilgosuppression
and detection, of the approach explored here. Section 3 descslibe lacunarity-based

features. Section 4 discusses the results.



2 Ripple Suppression and Initial Mine Detection

2.1 Statistical self-similarity

Of particular interest for this application are statistically self-similarprocesses. That

isf : R?27! R, such that

E[F()fF(C )= EFE)(; (1)

whereH 2 [0; 1] for some 2 R. Statistical self similarity is one of the key properties
that informally de nes a (stochastic) fractal process [15]. It is 4& ed by processes

with power spectraPf that follows the power law decay:
(PF)(1)/k ! kK ZHD 2)

In this case, the fractal dimension of is , 3 H. Statistical self-similarity is also
satis ed by fractional Brownian surfaces. These are stochastwocesse8 : R?> 7! R,

with initial condition By (0) = 0, such that the local increments:
( Bu)(x), Bulx+ Xx) Bu(x);
are stationary Gaussian random elds with variance
E j( Bu)(X)j* Tk xk* :

Again, the fractal dimension is (3 H), and the power law (2) holds in an average

power spectrum sense [15].

2.2 Wavelet transforms and fractal dimension

The wavelet transform of a surfacé : R? 7! R can be written as

z
W) (kmx)=2 % () n@*x )d ;

R
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where ., is a zero-mean mother wavelet with orientation indexed bgn, and wherek
denotes thekth nest scale level k = 0 being the scale of the original "pixel' coordi-

nates), and wherex is the spatial location. We have (e.g. [13]) that
log, E j(Wf)(k;m; )j* =2k(H +1)+ C ¢ (3)

holds for statistically self similar processes. Th€ _ ; term is independent of scald
and the right-hand-side is a linear function of scalk. Hence, the exponentH can be
computed by measuring the average slope, over each of the direeal subbandsm, of
(3) via linear least squares regression. In practice the variance gpaoximated by the
sample varianceNl P 2 JWTE) (k;m; X»)j?. In [12], the authors proposed the use of the
dual-tree complex wavelet transform (DTCWT) [9, 18] to estimate loal and directional
fractal dimension. The DTCWT s fast (decimated) and, with 6 strogly directional
subbands, it has good directional selectivity. The stripe directionsf the lters are
oriented atf (30m 15) g8 in an anticlockwise direction from the horizontal (see [9, 18]
for more details). Moreover, unlike other fast wavelet transfors) the DTCWT also
has good shift invariance which ensures that the magnitudes of iteraplex coe cients

remain stable and large near any singularities.

2.3 Measuring ripples with fractal dimension

In order to help distinguish between rippled and non-rippled patchesf seabed, we con-
sider a measure of local dual-tree wavelet root-energy, namé&ly, (x) , (Wf)(k;m;x) ,
at scalek, directional subbandm, and locationx. The root-energy is plotted against
the kth nest scale level in Figure 3 for a rippled and non-rippled seabed gmn. It
can be observed that the non-rippled region gives rise to an apphmate power law
spectrum as in (2) whereas the rippled region contains spikes in mdhan one direc-
tional subband that invalidate the power law. That the relatively at seabed follows

a power law relationship corroborates the model of Pailhas et al. [1who used frac-
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tional Brownian surfaces, discussed brie y in the previous sectipto synthesise sonar

imagery data of seabeds. From (3), a surface with a power law sfram satis es:
Exm(x)/ 24 k.

where (nominally 2 [2;3]) is fractal dimension. Hence, for a relatively at seabed

region, we arrive at the following bound condition for a non-rippled sdéed:

1— Ek;m (X)

1
=2 4 8k: 4

Here, the root-energy at scald is divided by the root-energy at scalé& + 1 for each
location and subband direction. This interscale wavelet energy rati@sults in a value
independent of scale level. Since the bounds are independenk athis is a scale invari-
ant condition. Since the ratio only involves two scale levels, it is akin to fiequency
localised measure of fractal dimension. Because of the space,dioa, frequency lo-
calised (approximate) nature of this measure, and because we omgnt to shrink a
wavelet coe cient if we have strong evidence that it contributes toa ripple region, the
upper and lower bounds are relaxed somewhat in practice to somg< .
Conversely, at scal&k, subband m, location x, the wavelet coe cient wy.m(X) ,

(Wf) (k; m; x) is deemed to contribute to rippled seabed region if, for somg < , 2

R*:
Re1n(9) 2 ©
or
Ran) > o ©)

In this way, we can distinguish between rippled and non-rippled regien By considering
the distance between the interscale energy ratio and the bound¢e also have a measure

of how certain we are that a given region contains ripples.
[Figure 3 about here.]
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2.4 Fractal-dimension-based complex wavelet shrinkage

Given an imagef , a general wavelet shrinkage procedure can be summarised by:

(i) Take wavelet transform: w = Wf
(i) Shrink wavelet coe cients: w = Sw
(i) Take inverse wavelet transform:f = W 1w

More speci cally, for the ripple suppression application the shrinkagoperation in the
second step is designed to reduce or threshold any coe cientg., (x) that contribute
the ripples. To this end, the shrinkage operator is applied to the walet coe cients
via:

Wien (X) = Sigm (X)Wiem (X) 5 St (k;m;x) 71 [0; 1]: (7)
The shrinkage functionSm (X) , S, (X)Si., (X) adapts to scale, direction, and loca-

tion according to the minimax functions:

k 1,m (X) 0
1 0
3 Rk;m (X)
3 2

. R
min 1;max O;

Sicm (X) (8)

Sem(X) = min 1max O

(9)

These functions are plotted and explained in Figure 4. Note that thistrategy di ers
from the standard wavelet shrinkage approach which shrinks wdee coe cients that

have small absolute values or are uncorrelated with respect to sgaor scale.

[Figure 4 about here.]

2.5 Matched lter

Since objects protruding above the seabed tend to be more retiwe than the sediment
they return a higher intensity signal back to the sensor. Moreowesuch objects will
also block the signal from reaching the seabed behind them, thusating a shadow

region. This motivated Dobeck et al. to construct a matched Iter hat comprises a
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highlight region, dead-zone, and shadow region [4]. Depending ontssgelevation, the
shadow length will vary signi cantly with respect to range. Consegently the shadow
component of the matched lIter is varied in length as a function of nage. In studies
where sand ripples are not present or considered, the matchedeftdetector of Dobeck
et al. has received some attention, c.f. [1, 8, 19]. To validate the rifgsuppression
method we compare detection results obtained from using a matchdter, similar
to that of Dobeck et al, with and without the ripple suppression prefcessing step.
Although the matched lter is too simplistic to accurately and uniquelyrepresent the
wide variety of potential targets, it is merely intended as an initial dection step to
discard any regions of the data that are very unlikely to contain minéke-objects.
Unlike Dobeck et al. [4], our matched Iter is constructed as a supeggition of
rasied cosines rather than their step functions. Our reasoning isotivated by the fact
that the sand ripples in our data cannot be well approximated by pu@r sinusoidal plane
waves. Observing Figure 3, we see that the ripples are more like squavaves. In
the frequency domain, the ripples will therefore contain higher fggiency harmonics in
addition to the fundamental frequency. The ripple suppression rtieod will usually only
suppress the fundamental frequency. A matched Iter constated from a superposition
of square waves will also have higher frequency harmonics which wil éxcited by the
harmonics left over from the ripple suppression method. On the athhand, by shaping
the matched Iter into raised cosines, the matched Iter will attenuate the left-over
ripple harmonics. From experimentation, we have also observed thhe raised cosines
give better ROC curves than the step functions with or without rippe suppression. The
raised cosine matched Iter used here is illustrated in Figure 5 and isliy described

in [13].

[Figure 5 about here.]



2.6 Suppression/detector results

Figure 6 shows a typical result of applying a matched Iter with and wihout the
ripple suppression step, together with the computed shrinkagerfctions and resulting
ripple suppressed image. Note that most of the ripples have an oriation that is
roughly aligned with the 3rd subband direction of the DTCWT (stripe drection at 75
anticlockwise from the horizontal), and that the associated shrige function Se.3)
takes low values in a region that coincides with the ripples. The shringa functions
in the neighbouring directions also take low values in the same regiotiig correctly
captures the fact that the ripples manifest bifurcated and braid# behaviour rather
than a perfectly parallel pattern. We can see that the ripples are teed suppressed by
the ripple suppression method and that the non-rippled regions rexim largely the same
as the input image. In this example, for both suppressed and ungupssed cases, the
lowest (local maxima) correlation score associated with the true pitives was chosen
as a threshold. All scores above that threshold were labelled as érpositives if they
were in a neighbourhood of the ground truth. Otherwise, they werlabelled as a false
positive. We can see that most, if not all, of the false positives lie in thepples and
that the ripple suppression method gives rise to fewer false positive

Validation of the ripple suppression preprocessing step was carr@at by comparing
the receiver operating characteristic (ROC) curves obtained fno applying a matched
Iter with and without the ripple suppression preprocessing step @ar 61 rippled images
and 140 non-rippled images, most of which comprised 14 megapixelfiedata is real
synthetic aperture sonar data and was acquired by the NATO Undsea Research
Centre (NURC) and provided to us by the DSTL Data Centre.

To construct the ROC curves, a series of thresholds indexed tysay, were applied
to the correlation surface and the number of true positivep® (t), and false positives
p (t), recorded. Then,p*(t) was plotted againstp (t). To combine curves g, ; p; )Y

P P
overn=1;:::;N images, we simply plot r':':l py (t) against ?:1 P, (1).



Figure 7 shows the ROC curves for the suppressed and unsuppess methods for
the rippled, non-rippled, and combined dataset. On the rippled andombined dataset,
we observe that the matched Iter achieves better detection rais when the ripple
suppression method is used. For the non-rippled data, the suppsed and unsuppressed
methods give very similar results, as expected and required.

Table 1 records the number of false positives incurred in order toc@ver a certain
percentage of the true positives. For example, the table showsathall the mines
(targets) in the rippled data can be detected at a cost of 55,719$a positives with no

suppression and 19,427 false positives with suppression: a reductd some 65%.
[Table 1 about here.]
[Figure 6 about here.]

[Figure 7 about here.]

3 Feature extraction

The motivation for using a lacunarity-based feature is the simple obsvation that the
targets are easier to see by eye when viewed in the context of thersunding back-
ground. It is assumed here that the presence of a man-made aljdike a mine, will
disrupt the statistical properties of the background. Under thigpremise, the transla-
tional statistical invariance in the neighbourhood of the mine will be ks than that of
a mine-free region.

Due to its connection to fractal dimension (see e.g. [6]), computaticof lacunarity
often follows a box counting approach. A window of siZe-by-k pixels is moved over a
region of interest, pixel-by-pixel. At each location in the region, masis computed; in

practice this usually means summing absolute values. Denoting the ameand variance
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of these masses in k-by-k region centred at pixelx by (k;x) and 2(k;x), the usual
lacunarity de nition used in practice is

(kix) *

(k; x)

In other words, the ratio of local variance to the square of the lat mean. In some

( kix),

work, this is only computed at a single window size; for example Meydfsl] proposed
the use of lacunarity as a feature in a mine hunting system. More comonly, it is

computed at more than one scale (window siZ€) to give a lacunarity signature or
vector. For example, Du and Yeo [5] compare the segmentation pmmance of several
competing ways to measure lacunarity; all are based on the box cting approach

and are computed at di erent scale levels by using di erent sizes of dal regions.
Partly inspired by the mono- to multi- generalisation of fractal dimesion, Vernon et
al [20] generalise the lacunarity measure by using higher order mantg again, the
computation is based on box counting.

Our approach is to rst apply the dual-tree complex wavelet trangirm to decom-
pose the image over di erent scale levels and directional subbandRoot energy is
then computed, in each directional subband and over a selectionsufale levels, in the
immediate region of the positives and in a larger surrounding region. Wormalised dot
product between the two energies then approximates the amouwit correlation between
the inner and outer region. In this way, the dot product can be seeas a measure of
lacunarity. The main advantage of performing the computation in tk wavelet domain
is that any di erences in the in uence of wavelet coe cients betwea the inner and
outer regions is preserved.

Figure 8 shows an example of a false and true positive located in a rippédd.
The solid yellow box in gures 8(a) and 8(b) delineates the inner regionThese are
automatically centred on the location of each positive; no manual agtments have
been made. The size of the region is chosen to be the same size asnidiiehed lter.

Note that, like the matched Iter, the length is increased with respet to range in a
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piecewise manner to accommodate longer shadow regions furth@ayw from the sensor.
The region between the solid and dotted yellow lines de nes the outeggion. For some
scale levek, subband directionm, the root sum of squares of the the inner regioX,
and outer regionX, is computed:
X -
v (k;my) Wiem (07 75 =051 (10)

x2X-

(Note that * = 0 denotes inner region and = 1 denotes outer region.) These values are
shown in gures 8(c)-(e) for scale levels 4 and 5. Note that, for illtrative purposes,
the root mean squared energies are plotted rather than the rostim squared energy
de ned in 10; this is because the outer region is ve times the size did inner region.
The plots correctly re ect the fact that the inner and outer regims of the false positive
are better correlated than those of the true positive. A similar redt can be seen in
Figure 9 for an example of a false and true positive located on a ndppled patch of
seabed.

The sums in (10) are computed for each directional subband andelexction of scale
levels (3rd to 5th nest in our case) and the numbers are assembl@tto the column
vector vq for the inner region andv, for the outer region. Our rst lacunarity based
feature is the normalised measure of correlation:

VoVi

11
max kvok?: kv k? (1)

This measures the statistical translational invariance of the locakgion (and is there-
fore a measure of inverse lacunarity). Another similar feature isrfmed by carrying
out the above using the left and right half of the inner region and nouter region.
This measures lack of correlations between the highlight and shadeegion of the
candidate positive. Both these features are computed using thipple suppressed and
unsuppressed data. Together with the result of the matched lte we arrive at 5 fea-

tures. In future work, we would hope to add more features to helgiscriminate target
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and background further but it is instructive to investigate the peformance of these 5

features alone using a one-class support vector machine.
[Figure 8 about here.]

[Figure 9 about here.]

4 Classi cation experiment

For classi cation we need to form a functional relationship betweethe training data
and the class labels. The function must also be chosen such that ingealises well to
unseen data. The support vector machine (SVM) addresses thase of dimensionality
problem with the addition of two main terms: the rst penalises the eror between the
solution and the training set; and the second regularises, or smbstin some way, the
solution. More precisely, for two or more classes of objects, théld ts hyperplanes at
a maximum distance from, and parallel to, the convex hulls of each skof trained data.
Because the optimal hyperplanes only depend upon the supportcters, which are data
points lying on the convex hulls, the SVM attains good generalisatiorMoreover, the
problem of nding the hyperplanes is reduced to a tractable quadtie programming
problem with a unique, optimal solution.

On the other hand, unlike the binary or multi-class version, the traimmg stage of
the one-class Support vector machine (OC-SVM), proposed by I8lkopf et al [17]
does not require examples of targets. It only requires examplesnairmal background
input data, and thus avoids the major di culty of capturing examples of real threats in
any signi cant quantity. It also potentially means that unanticipated and/or unknown
types of threats can be detected.

The one-class support vector machine can be seen as a two clasMSkhere the

origin is de ned as the only member of one of the classes; in our catbe target class is
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de ned as the origin in the training phase. The training algorithm lears the boundary
which encloses most of the dataset subject to minimising the volumgtbe space within
the boundary in feature space. Like the binary or multi-class SVM, &ernel feature
mapping can be e ciently adopted to construct non-linear decision bundaries in the
input feature space. For our experiment, we chose the radial iakernel. We thus
have two parameters to optimise: the kernel parameter which cwal the smoothness
of the boundary and a regularisation parameter (often referregb simply as ) which

balances the trade-o between volume enclosed by the boundarmdathe number of
points allowed outside the boundary.

The experimental setup was chosen similar to that of Hill et al [7], whapplied log-
Gabor, matched and shaped Iters, some heuristic morphologicabmstraints, together
with a two-class SVM to the same UDRC NURC data set considered leerHalf of the
180 sonar images were used to train the data and the other half hdddck for testing.

In our experiment, 9 186 false positives (in the set of training images) left over from
the detection phase (with detection threshold chosen to accep00% true positives)
were used to train a one-class support vector machine. This wasethtested on the
true and false positives in the hold-out set. This can be contrastedgith Hill et al.
[7] chose 1000 randomly sampled non-target points from each 207000 image and
then used a two-class SVM trained on both false and true positive¥hey also reported
the results of two human experts. Figure 10 shows the ROC curveaur one-class SVM
test, together with those of the human operators. Around the®% true positive region,
the result approaches the performance of the two-class learniagrsion of Hill et al.
[71*: in our approach, 337 false positives are incurred in order to reen95% of true
positives whereas Hill et al incur 311. However, the left-hand-sidkigher speci city)

of the ROC curve of Hill et al. is noticeably superior; it beats operatdl and intersects

Lcomparisons of results with Hill et al. [7] are drawn under the caveathat the experimental setups

were somewhat di erent
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operator 2. As further comparison, we also carried out a two-cesSVM version of
our method which required true positive training examples in additiond the false
positives. Again, like the one-class SVM experiment, we use the radimsis kernel
and half of the sonar images were used to train the data with the ath half held back
for testing. The resulting ROC curve is shown in Figure 11. In this twalass version,
95% of true positives were recovered at the cost of 201 false pwsg. However, to
recover 92% or less of the true positives, the method of Hill et al. witicur fewer false

positives than our method.
[Figure 10 about here.]

[Figure 11 about here.]

5 Conclusion and further work

We have shown that anomaly detection has potential applications tmine hunting
problems. Ripple suppression, together with a matched lter, diseds the most ob-
vious background regions. The lacunarity-based features help ¢iistinguish between
the remaining background and target examples. A one-class suppeector machine
is trained only on the false positives from the matched lIter, so thaprecise target
characteristics need not be speci ed or known.

It is anticipated that additional carefully designed features, whiclcompliment la-
cunarity, will improve and generalise the system further. For exapte, features that
describe the spatial distribution and directions of edges, ridgesné points inside the
inner and outer regions would be worthy of investigation. Incorpating some of the
features and feature handling methods of Hill et al [7] would also bé iaterest. With
suitable complex wavelet domain statistical models it should also be pdde to adap-

tively suppress other background textures too such as vegetat and rocky outcrops.
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Similar ideas to those discussed here could also be applied to seabessctation.

In this case, a multi-class classi er would be used.
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Figure 1: Common detector/classi cation scheme. Detector ndgtrue and false)
positives. Training phase : a binary classi er is trained on features extracted from
both true and false positives. Testing phase : the detector is applied, features are
extracted from positives, which are then classi ed by a learned demn function.
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Figure 2: Proposed detector/classi cation scheme. Pre-pro@#sg suppresses ripples.
Detector nds (true and false) positives. Training phase : a unary classi er is trained
on features extracted from false positives onlyTesting phase : Pre-processing sup-
presses ripples. Detector is applied, features are extractedrfrgositives, which are
then classi ed by a learned decision function (true positives are amalies).
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(c) Rippled seabed (d) Wavelet energy.

Figure 3: A patch of non-rippled seabed (a), gives rise to a wavelanglitude spectrum

(b) that follows a power law decay with respect to ner scales (it dexys as frequency
increases). Conversely, a rippled seabed patch (c) will invalidategtpower law at one
or more scales and subband directions (d).
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Figure 4. The dual-tree wavelet adaptive shrinkage functions. Theinction S , given
by (8) is designed to threshold or shrink wavelet coe cients that gie rise to a wavelet
energy ratioRy ; that is low enough to satisfy (5). On the other hand, the shrinkage
function S* given by (9) thresholds or shrinks coe cients that give rise to an eergy

ratio Ry that is large enough to satisfy (6).
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Figure 5: The mine template is constructed with a superposition of Sited raised
cosines. Along track is plotted vertically; cross track, or range, {gotted horizontally.
The shadow length is constructed to increase with respect to ramgn a piecewise

manner.
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(a) Sonar image (b) Ripple suppressed image

Ss;1 Ss;2 Ss;3 Ss:4 Ss;5 Ss:6

Se;1 Se;2 Se;3 Se;4 Se;5 Se:6

(c) Unsuppressed correlation surface (d) Suppressed correlation surface

Figure 6: The shrinkage functionsSy.,, at scalek, subband directionm are computed
adaptively from the synthetic aperture sonar image (a) using (8)al (9). The shrinkage
operation results in the ripple suppressed image (b). If no suppsesn is applied prior
to application of the matched Iter, the result is the correlation suface shown in (c).
The yellow (resp. red) rings show the location of the true (resp. I&e) positives. Sub-
gure (d) shows the resulting correlation surface when supprees is applied before
the lter.
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Figure 7: ROC curves compare numbers of true and false positives the suppressed
and unsuppressed methods on rippled, non-rippled, and both datiges combined.
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(a) False positive in the ripple eld (a) True positive in the ripple eld

0.3f ‘ ‘ " [—inner region || 0.3f
- - -outer region
> >
0.2 5
2 2
[} [}
(2] (2]
Eo01 £
% 2 3 4 5 6 % 2 3 4 5 6
subband subband
(c) Inner and outer region RMS energy of the (d) Inner and outer region RMS energy of the
false positive at the 4th nest scale level. true positive at the 4th nest scale level.
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Figure 8: Comparison of the root sum of square energies of a truedafalse positive
that lie inside a ripple eld. (For illustrative purposes, the root mean am is depicted.)
Note that the false positive energies of the inner and outer regioase better correlated

than in the true positive case.
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(a) False positive in a non-rippled region (a) True positive in a non-rippled region
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(c) Inner and outer region RMS energy of the (d) Inner and outer region RMS energy of the
false positive at the 4th nest scale level. true positive at the 4th nest scale level.
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Figure 9: Comparison of the root sum of square energies of a truedafalse positive
that do not lie inside a ripple eld. (For illustrative purposes, the rootmean sum is
depicted.) Note that, at the 4th nest scale level, the false positiveenergies of the
inner and outer regions are better correlated than in the true pdse case.
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Figure 10: ROC curve of one class support vector machine. Also pkxd are the results
of two expert operators (taken from [7]).
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Figure 11: ROC curve of two class support vector machine. Also ptet are the results
of two expert operators (taken from [7]).
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Table 1: Number of false positives incurred in order to recover 90%5%, 98%, 99%,
and 100% of the total number of true positives.

Number of | Number of false positives
Seabed type| true pos. | No suppression| Suppression

270 22 21

285 59 60
Non-rippled | 294 259 253

297 460 473

300 806 793

127 6320 2029

134 10468 3345
Rippled 138 15032 7753

140 38348 18209

141 55719 19427

397 2585 676

419 7854 2256
Both 432 15332 4683

437 22640 8494

441 57457 21143
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