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Abstract

An anomaly detection approach is considered for the mine hunting in sonar

imagery problem. We exploit previous work that used dual-tree wavelets and

fractal dimension to adaptively suppress sand ripples and amatched �lter as

an initial detector. Here, lacunarity inspired features are extracted from the

remaining false positives, again using dual-tree wavelets. A one-class support

vector machine is then used to learn a decision boundary, based only on these

false positives. The approach exploits the large quantities of `normal' natural

background data available but avoids the di�cult requireme nt of collecting ex-

amples of targets in order to train a classi�er.

1 Introduction

For more than a decade supervised approaches have received much attention in the mine

hunting literature [2, 3, 19]. A common approach outlined in Figure 1 requires that
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the ground truth (location of the targets in the training data) is available. Firstly, a

detector is applied to eliminate any areas of the image which can be easily distinguished

from the targets. A good example of such a detector is the matched �lter, �rst proposed

for mine hunting by Dobeck et al [4]. This initial screening or detectionstage is designed

to accept a large number of false positives (natural background)in order to capture

all of the true positives (the mines). The ground truth is then usedto select and label

the positives as either target or background. After extracting features, a proportion

of these positives are then used to train a classi�er. The remaining positives are then

used to test the classi�er. A common complaint against supervised approaches is that,

although they might perform well on the data used to train the system, there is no

guarantee that they will be able to generalise well to unseen data and especially unseen

targets.

[Figure 1 about here.]

Unsupervised approaches have also been attempted. Amongst the most promising

is the work of Reed et al. [16]. They used unsupervised Markov random �eld based

detection to segment the image into shadow, seabed, and object highlight regions.

Cooperating statistical snakes were used to extract highlight andshadow regions for

object classi�cation.

The approach explored in this paper falls somewhere in-between thesupervised and

unsupervised methods and is summarised in Figure 2. Like the supervised approach,

a (matched �lter) detector is used to prune the data. However, only false positives are

used to train the classi�er| in this case, a one-class support vector machine. We also

implement previous work [13] that uses fractal dimension to adaptively suppresses any

sand ripples that may be present prior to the matched �lter.

[Figure 2 about here.]
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Unlike the fully supervised approach, which uses binary or multi-classlearning, the

training stage does not require any examples of targets. Insteadit only requires exam-

ples of background data, and thus avoids the major di�culty of capturing examples of

real threats in any signi�cant quantity. It also potentially means that unanticipated,

or even hitherto unknown, types of threats can be detected andwill in theory allow the

system to evolve according to the environmental conditions. The approach regards the

background, or natural seabed, as normal whereas the unknown targets are treated as

anomalies.

In the feature extraction phase, some novel features will be presented that are

loosely based on the idea of lacunarity. Mandelbrot [10] �rst introduced the concept of

lacunarity to measure deviations from translational statistical invariance. Small values

indicate the presence of translational invariance in the surface texture of interest. It

is assumed here that the presence of a mine will cause an anomalous increase in local

lacunarity. Unlike the usual box counting approach, we compute a lacunarity based

measure using the dual-tree complex wavelet transform. This allowsus to e�ciently

compute and compare deviations in the statistics of regions within each scale level and

direction.

Section 2 summarises previous work [13] on the �rst two steps, ripple suppression

and detection, of the approach explored here. Section 3 describes the lacunarity-based

features. Section 4 discusses the results.
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2 Ripple Suppression and Initial Mine Detection

2.1 Statistical self-similarity

Of particular interest for this application are statistically self-similarprocesses. That

is f : R2 7! R, such that

E [f (
 x)f (
 � )] = 
 2H E [f (x)f (� )] ; (1)

whereH 2 [0; 1] for some
 2 R. Statistical self similarity is one of the key properties

that informally de�nes a (stochastic) fractal process [15]. It is satis�ed by processes

with power spectraPf that follows the power law decay:

(Pf ) ( ! ) / k ! k� 2(H +1) : (2)

In this case, the fractal dimension off is � , 3 � H . Statistical self-similarity is also

satis�ed by fractional Brownian surfaces. These are stochasticprocessesBH : R2 7! R,

with initial condition BH (0) = 0, such that the local increments:

(� BH ) (x) , BH (x + � x) � BH (x) ;

are stationary Gaussian random �elds with variance

E
�
j(� BH )(x)j2

�
/ k � xk2H :

Again, the fractal dimension is (3� H ), and the power law (2) holds in an average

power spectrum sense [15].

2.2 Wavelet transforms and fractal dimension

The wavelet transform of a surfacef : R2 7! R can be written as

(Wf ) (k; m; x) = 2 � k
Z

R2
f (� ) m (2� k(x � � ))d� ;
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where m is a zero-mean mother wavelet with orientation indexed bym, and wherek

denotes thekth �nest scale level (k = 0 being the scale of the original `pixel' coordi-

nates), and wherex is the spatial location. We have (e.g. [13]) that

log2 E
�
j(Wf ) (k; m; �)j2

�
= 2k(H + 1) + C m ;f (3)

holds for statistically self similar processes. TheC m ;f term is independent of scalek

and the right-hand-side is a linear function of scalek. Hence, the exponentH can be

computed by measuring the average slope, over each of the directional subbandsm, of

(3) via linear least squares regression. In practice the variance is approximated by the

sample variance1
N

P
n j(Wf ) (k; m; xn )j2. In [12], the authors proposed the use of the

dual-tree complex wavelet transform (DTCWT) [9, 18] to estimate local and directional

fractal dimension. The DTCWT is fast (decimated) and, with 6 strongly directional

subbands, it has good directional selectivity. The stripe directionsof the �lters are

oriented at f (30m � 15)� g6
1 in an anticlockwise direction from the horizontal (see [9, 18]

for more details). Moreover, unlike other fast wavelet transforms, the DTCWT also

has good shift invariance which ensures that the magnitudes of its complex coe�cients

remain stable and large near any singularities.

2.3 Measuring ripples with fractal dimension

In order to help distinguish between rippled and non-rippled patchesof seabed, we con-

sider a measure of local dual-tree wavelet root-energy, namelyEk;m (x) ,
�
�(Wf ) (k; m; x)

�
�,

at scalek, directional subbandm, and location x. The root-energy is plotted against

the kth �nest scale level in Figure 3 for a rippled and non-rippled seabed region. It

can be observed that the non-rippled region gives rise to an approximate power law

spectrum as in (2) whereas the rippled region contains spikes in morethan one direc-

tional subband that invalidate the power law. That the relatively 
at seabed follows

a power law relationship corroborates the model of Pailhas et al. [14]who used frac-
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tional Brownian surfaces, discussed brie
y in the previous section, to synthesise sonar

imagery data of seabeds. From (3), a surface with a power law spectrum satis�es:

Ek;m (x) / 2(4� � )k ;

where � (nominally 2 [2; 3]) is fractal dimension. Hence, for a relatively 
at seabed

region, we arrive at the following bound condition for a non-rippled seabed:

1
4

�
Ek;m (x)

Ek+1 ;m (x)
= 2 � � 4 �

1
2

; 8k : (4)

Here, the root-energy at scalek is divided by the root-energy at scalek + 1 for each

location and subband direction. This interscale wavelet energy ratioresults in a value

independent of scale level. Since the bounds are independent ofk, this is a scale invari-

ant condition. Since the ratio only involves two scale levels, it is akin to afrequency

localised measure of fractal dimension. Because of the space, direction, frequency lo-

calised (approximate) nature of this measure, and because we onlywant to shrink a

wavelet coe�cient if we have strong evidence that it contributes toa ripple region, the

upper and lower bounds are relaxed somewhat in practice to some� 1 < � 2.

Conversely, at scalek, subband m, location x, the wavelet coe�cient wk;m (x) ,

(Wf ) (k; m; x) is deemed to contribute to rippled seabed region if, for some� 1 < � 2 2

R+ :

Rk� 1;m (x) ,
Ek� 1;m (x)
Ek;m (x)

< � 1 (5)

or

Rk;m (x) ,
Ek;m (x)

Ek+1 ;m (x)
> � 2 : (6)

In this way, we can distinguish between rippled and non-rippled regions. By considering

the distance between the interscale energy ratio and the bounds,we also have a measure

of how certain we are that a given region contains ripples.

[Figure 3 about here.]
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2.4 Fractal-dimension-based complex wavelet shrinkage

Given an imagef , a general wavelet shrinkage procedure can be summarised by:

(i) Take wavelet transform: w = Wf

(ii) Shrink wavelet coe�cients: w� = Sw

(iii) Take inverse wavelet transform: f � = W � 1w�

More speci�cally, for the ripple suppression application the shrinkage operation in the

second step is designed to reduce or threshold any coe�cientswk;m (x) that contribute

the ripples. To this end, the shrinkage operator is applied to the wavelet coe�cients

via:

w�
k;m (x) = Sk;m (x)wk;m (x) ; S: (k; m; x) 7! [0; 1]: (7)

The shrinkage functionSk;m (x) , S�
k;m (x)S+

k;m (x) adapts to scale, direction, and loca-

tion according to the minimax functions:

S�
k;m (x) = min

�
1; max

�
0;

Rk� 1;m (x) � � 0

� 1 � � 0

��
(8)

S+
k;m (x) = min

�
1; max

�
0;

� 3 � Rk;m (x)
� 3 � � 2

��
(9)

These functions are plotted and explained in Figure 4. Note that thisstrategy di�ers

from the standard wavelet shrinkage approach which shrinks wavelet coe�cients that

have small absolute values or are uncorrelated with respect to space or scale.

[Figure 4 about here.]

2.5 Matched �lter

Since objects protruding above the seabed tend to be more re
ective than the sediment

they return a higher intensity signal back to the sensor. Moreover, such objects will

also block the signal from reaching the seabed behind them, thus creating a shadow

region. This motivated Dobeck et al. to construct a matched �lter that comprises a
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highlight region, dead-zone, and shadow region [4]. Depending on seabed elevation, the

shadow length will vary signi�cantly with respect to range. Consequently the shadow

component of the matched �lter is varied in length as a function of range. In studies

where sand ripples are not present or considered, the matched �lter detector of Dobeck

et al. has received some attention, c.f. [1, 8, 19]. To validate the ripple suppression

method we compare detection results obtained from using a matched �lter, similar

to that of Dobeck et al, with and without the ripple suppression preprocessing step.

Although the matched �lter is too simplistic to accurately and uniquelyrepresent the

wide variety of potential targets, it is merely intended as an initial detection step to

discard any regions of the data that are very unlikely to contain mine-like-objects.

Unlike Dobeck et al. [4], our matched �lter is constructed as a superposition of

rasied cosines rather than their step functions. Our reasoning is motivated by the fact

that the sand ripples in our data cannot be well approximated by pure sinusoidal plane

waves. Observing Figure 3, we see that the ripples are more like square waves. In

the frequency domain, the ripples will therefore contain higher frequency harmonics in

addition to the fundamental frequency. The ripple suppression method will usually only

suppress the fundamental frequency. A matched �lter constructed from a superposition

of square waves will also have higher frequency harmonics which will be excited by the

harmonics left over from the ripple suppression method. On the other hand, by shaping

the matched �lter into raised cosines, the matched �lter will attenuate the left-over

ripple harmonics. From experimentation, we have also observed that the raised cosines

give better ROC curves than the step functions with or without ripple suppression. The

raised cosine matched �lter used here is illustrated in Figure 5 and is fully described

in [13].

[Figure 5 about here.]
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2.6 Suppression/detector results

Figure 6 shows a typical result of applying a matched �lter with and without the

ripple suppression step, together with the computed shrinkage functions and resulting

ripple suppressed image. Note that most of the ripples have an orientation that is

roughly aligned with the 3rd subband direction of the DTCWT (stripe direction at 75�

anticlockwise from the horizontal), and that the associated shrinkage function (S6;3)

takes low values in a region that coincides with the ripples. The shrinkage functions

in the neighbouring directions also take low values in the same region; this correctly

captures the fact that the ripples manifest bifurcated and braided behaviour rather

than a perfectly parallel pattern. We can see that the ripples are indeed suppressed by

the ripple suppression method and that the non-rippled regions remain largely the same

as the input image. In this example, for both suppressed and unsuppressed cases, the

lowest (local maxima) correlation score associated with the true positives was chosen

as a threshold. All scores above that threshold were labelled as true positives if they

were in a neighbourhood of the ground truth. Otherwise, they were labelled as a false

positive. We can see that most, if not all, of the false positives lie in theripples and

that the ripple suppression method gives rise to fewer false positives.

Validation of the ripple suppression preprocessing step was carriedout by comparing

the receiver operating characteristic (ROC) curves obtained from applying a matched

�lter with and without the ripple suppression preprocessing step over 61 rippled images

and 140 non-rippled images, most of which comprised 14 megapixels. The data is real

synthetic aperture sonar data and was acquired by the NATO Undersea Research

Centre (NURC) and provided to us by the DSTL Data Centre.

To construct the ROC curves, a series of thresholds indexed byt, say, were applied

to the correlation surface and the number of true positivesp+ (t), and false positives

p� (t), recorded. Then,p+ (t) was plotted againstp� (t). To combine curves (p�
n ; p+

n )N
1

over n = 1; : : : ; N images, we simply plot
P N

n=1 p+
n (t) against

P N
n=1 p�

n (t).
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Figure 7 shows the ROC curves for the suppressed and unsuppressed methods for

the rippled, non-rippled, and combined dataset. On the rippled and combined dataset,

we observe that the matched �lter achieves better detection results when the ripple

suppression method is used. For the non-rippled data, the suppressed and unsuppressed

methods give very similar results, as expected and required.

Table 1 records the number of false positives incurred in order to recover a certain

percentage of the true positives. For example, the table shows that all the mines

(targets) in the rippled data can be detected at a cost of 55,719 false positives with no

suppression and 19,427 false positives with suppression: a reduction of some 65%.

[Table 1 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

3 Feature extraction

The motivation for using a lacunarity-based feature is the simple observation that the

targets are easier to see by eye when viewed in the context of the surrounding back-

ground. It is assumed here that the presence of a man-made object, like a mine, will

disrupt the statistical properties of the background. Under thispremise, the transla-

tional statistical invariance in the neighbourhood of the mine will be less than that of

a mine-free region.

Due to its connection to fractal dimension (see e.g. [6]), computation of lacunarity

often follows a box counting approach. A window of sizek-by-k pixels is moved over a

region of interest, pixel-by-pixel. At each location in the region, mass is computed; in

practice this usually means summing absolute values. Denoting the mean and variance
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of these masses in ak-by-k region centred at pixelx by � (k; x) and � 2(k; x), the usual

lacunarity de�nition used in practice is

�( k; x) ,
�

� (k; x)
� (k; x)

� 2

:

In other words, the ratio of local variance to the square of the local mean. In some

work, this is only computed at a single window size; for example Meyers[11] proposed

the use of lacunarity as a feature in a mine hunting system. More commonly, it is

computed at more than one scale (window sizek) to give a lacunarity signature or

vector. For example, Du and Yeo [5] compare the segmentation performance of several

competing ways to measure lacunarity; all are based on the box counting approach

and are computed at di�erent scale levels by using di�erent sizes of local regions.

Partly inspired by the mono- to multi- generalisation of fractal dimension, Vernon et

al [20] generalise the lacunarity measure by using higher order moments; again, the

computation is based on box counting.

Our approach is to �rst apply the dual-tree complex wavelet transform to decom-

pose the image over di�erent scale levels and directional subbands.Root energy is

then computed, in each directional subband and over a selection ofscale levels, in the

immediate region of the positives and in a larger surrounding region. Anormalised dot

product between the two energies then approximates the amountof correlation between

the inner and outer region. In this way, the dot product can be seen as a measure of

lacunarity. The main advantage of performing the computation in the wavelet domain

is that any di�erences in the in
uence of wavelet coe�cients between the inner and

outer regions is preserved.

Figure 8 shows an example of a false and true positive located in a ripple�eld.

The solid yellow box in �gures 8(a) and 8(b) delineates the inner region. These are

automatically centred on the location of each positive; no manual adjustments have

been made. The size of the region is chosen to be the same size as thematched �lter.

Note that, like the matched �lter, the length is increased with respect to range in a
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piecewise manner to accommodate longer shadow regions further away from the sensor.

The region between the solid and dotted yellow lines de�nes the outerregion. For some

scale levelk, subband directionm, the root sum of squares of the the inner regionX 0,

and outer regionX 1, is computed:

v` (k; m) ,
� X

x 2 X `

jwk;m (x)j2
�

1=2
; ` = 0; 1: (10)

(Note that ` = 0 denotes inner region and̀ = 1 denotes outer region.) These values are

shown in �gures 8(c)-(e) for scale levels 4 and 5. Note that, for illustrative purposes,

the root mean squared energies are plotted rather than the rootsum squared energy

de�ned in 10; this is because the outer region is �ve times the size of the inner region.

The plots correctly re
ect the fact that the inner and outer regions of the false positive

are better correlated than those of the true positive. A similar result can be seen in

Figure 9 for an example of a false and true positive located on a non-rippled patch of

seabed.

The sums in (10) are computed for each directional subband and a selection of scale

levels (3rd to 5th �nest in our case) and the numbers are assembledinto the column

vector v0 for the inner region andv1 for the outer region. Our �rst lacunarity based

feature is the normalised measure of correlation:


 ,
vT

0 v1

max
�

kv0k2 ; kv1k2 �
:

(11)

This measures the statistical translational invariance of the localregion (and is there-

fore a measure of inverse lacunarity). Another similar feature is formed by carrying

out the above using the left and right half of the inner region and no outer region.

This measures lack of correlations between the highlight and shadowregion of the

candidate positive. Both these features are computed using the ripple suppressed and

unsuppressed data. Together with the result of the matched �lter, we arrive at 5 fea-

tures. In future work, we would hope to add more features to helpdiscriminate target
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and background further but it is instructive to investigate the performance of these 5

features alone using a one-class support vector machine.

[Figure 8 about here.]

[Figure 9 about here.]

4 Classi�cation experiment

For classi�cation we need to form a functional relationship betweenthe training data

and the class labels. The function must also be chosen such that it generalises well to

unseen data. The support vector machine (SVM) addresses the curse of dimensionality

problem with the addition of two main terms: the �rst penalises the error between the

solution and the training set; and the second regularises, or smooths in some way, the

solution. More precisely, for two or more classes of objects, the SVM �ts hyperplanes at

a maximum distance from, and parallel to, the convex hulls of each class of trained data.

Because the optimal hyperplanes only depend upon the support vectors, which are data

points lying on the convex hulls, the SVM attains good generalisation.Moreover, the

problem of �nding the hyperplanes is reduced to a tractable quadratic programming

problem with a unique, optimal solution.

On the other hand, unlike the binary or multi-class version, the training stage of

the one-class Support vector machine (OC-SVM), proposed by Sch•olkopf et al [17]

does not require examples of targets. It only requires examples ofnormal background

input data, and thus avoids the major di�culty of capturing examples of real threats in

any signi�cant quantity. It also potentially means that unanticipated and/or unknown

types of threats can be detected.

The one-class support vector machine can be seen as a two class SVM where the

origin is de�ned as the only member of one of the classes; in our case,the target class is
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de�ned as the origin in the training phase. The training algorithm learns the boundary

which encloses most of the dataset subject to minimising the volume of the space within

the boundary in feature space. Like the binary or multi-class SVM, akernel feature

mapping can be e�ciently adopted to construct non-linear decision boundaries in the

input feature space. For our experiment, we chose the radial basis kernel. We thus

have two parameters to optimise: the kernel parameter which control the smoothness

of the boundary and a regularisation parameter (often referredto simply as � ) which

balances the trade-o� between volume enclosed by the boundary and the number of

points allowed outside the boundary.

The experimental setup was chosen similar to that of Hill et al [7], whoapplied log-

Gabor, matched and shaped �lters, some heuristic morphological constraints, together

with a two-class SVM to the same UDRC NURC data set considered here. Half of the

180 sonar images were used to train the data and the other half heldback for testing.

In our experiment, 9; 186 false positives (in the set of training images) left over from

the detection phase (with detection threshold chosen to accept 100% true positives)

were used to train a one-class support vector machine. This was then tested on the

true and false positives in the hold-out set. This can be contrastedwith Hill et al.

[7] chose 1000 randomly sampled non-target points from each 2000-by-7000 image and

then used a two-class SVM trained on both false and true positives.They also reported

the results of two human experts. Figure 10 shows the ROC curve of our one-class SVM

test, together with those of the human operators. Around the 95% true positive region,

the result approaches the performance of the two-class learningversion of Hill et al.

[7]1: in our approach, 337 false positives are incurred in order to recover 95% of true

positives whereas Hill et al incur 311. However, the left-hand-side(higher speci�city)

of the ROC curve of Hill et al. is noticeably superior; it beats operator 1 and intersects

1comparisons of results with Hill et al. [7] are drawn under the caveatthat the experimental setups

were somewhat di�erent

14



operator 2. As further comparison, we also carried out a two-class SVM version of

our method which required true positive training examples in addition to the false

positives. Again, like the one-class SVM experiment, we use the radial basis kernel

and half of the sonar images were used to train the data with the other half held back

for testing. The resulting ROC curve is shown in Figure 11. In this two-class version,

95% of true positives were recovered at the cost of 201 false positives. However, to

recover 92% or less of the true positives, the method of Hill et al. willincur fewer false

positives than our method.

[Figure 10 about here.]

[Figure 11 about here.]

5 Conclusion and further work

We have shown that anomaly detection has potential applications tomine hunting

problems. Ripple suppression, together with a matched �lter, discards the most ob-

vious background regions. The lacunarity-based features help todistinguish between

the remaining background and target examples. A one-class support vector machine

is trained only on the false positives from the matched �lter, so thatprecise target

characteristics need not be speci�ed or known.

It is anticipated that additional carefully designed features, whichcompliment la-

cunarity, will improve and generalise the system further. For example, features that

describe the spatial distribution and directions of edges, ridges, and points inside the

inner and outer regions would be worthy of investigation. Incorporating some of the

features and feature handling methods of Hill et al [7] would also be of interest. With

suitable complex wavelet domain statistical models it should also be possible to adap-

tively suppress other background textures too such as vegetation and rocky outcrops.
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Similar ideas to those discussed here could also be applied to seabed classi�cation.

In this case, a multi-class classi�er would be used.
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Figure 1: Common detector/classi�cation scheme. Detector �nds(true and false)
positives. Training phase : a binary classi�er is trained on features extracted from
both true and false positives. Testing phase : the detector is applied, features are
extracted from positives, which are then classi�ed by a learned decision function.
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Figure 2: Proposed detector/classi�cation scheme. Pre-processing suppresses ripples.
Detector �nds (true and false) positives.Training phase : a unary classi�er is trained
on features extracted from false positives only.Testing phase : Pre-processing sup-
presses ripples. Detector is applied, features are extracted from positives, which are
then classi�ed by a learned decision function (true positives are anomalies).

22



 

 

50 100 150 200 250

50

100

150

200

250
130

135

140

145

150

155

160

165

170

175

180

(a) Non-rippled seabed
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(b) Wavelet energy.
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(c) Rippled seabed
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(d) Wavelet energy.

Figure 3: A patch of non-rippled seabed (a), gives rise to a wavelet amplitude spectrum
(b) that follows a power law decay with respect to �ner scales (it decays as frequency
increases). Conversely, a rippled seabed patch (c) will invalidate the power law at one
or more scales and subband directions (d).
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Rk ¡ 1 = Ek ¡ 1=Ek

S¡

¸ 0 ¸ 1
0

1

Rk = Ek =Ek +1
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¸ 2 ¸ 3
0

1

Figure 4: The dual-tree wavelet adaptive shrinkage functions. Thefunction S� , given
by (8) is designed to threshold or shrink wavelet coe�cients that give rise to a wavelet
energy ratio Rk� 1 that is low enough to satisfy (5). On the other hand, the shrinkage
function S+ given by (9) thresholds or shrinks coe�cients that give rise to an energy
ratio Rk that is large enough to satisfy (6).
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Figure 5: The mine template is constructed with a superposition of 3 shifted raised
cosines. Along track is plotted vertically; cross track, or range, isplotted horizontally.
The shadow length is constructed to increase with respect to range in a piecewise
manner.
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(a) Sonar image (b) Ripple suppressed image
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(c) Unsuppressed correlation surface

 

 

(d) Suppressed correlation surface

Figure 6: The shrinkage functionsSk;m at scalek, subband directionm are computed
adaptively from the synthetic aperture sonar image (a) using (8) and (9). The shrinkage
operation results in the ripple suppressed image (b). If no suppression is applied prior
to application of the matched �lter, the result is the correlation surface shown in (c).
The yellow (resp. red) rings show the location of the true (resp. false) positives. Sub-
�gure (d) shows the resulting correlation surface when suppression is applied before
the �lter.
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Figure 7: ROC curves compare numbers of true and false positives for the suppressed
and unsuppressed methods on rippled, non-rippled, and both datatypes combined.
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(a) False positive in the ripple �eld (a) True positive in the ripple �eld
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(c) Inner and outer region RMS energy of the
false positive at the 4th �nest scale level.
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(d) Inner and outer region RMS energy of the
true positive at the 4th �nest scale level.
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(e) Inner and outer region RMS energy of the
false positive at the 5th �nest scale level.
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(f) Inner and outer region RMS energy of the
true positive at the 5th �nest scale level.

Figure 8: Comparison of the root sum of square energies of a true and false positive
that lie inside a ripple �eld. (For illustrative purposes, the root mean sum is depicted.)
Note that the false positive energies of the inner and outer regionsare better correlated
than in the true positive case.
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(a) False positive in a non-rippled region (a) True positive in a non-rippled region
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(c) Inner and outer region RMS energy of the
false positive at the 4th �nest scale level.
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(d) Inner and outer region RMS energy of the
true positive at the 4th �nest scale level.
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(e) Inner and outer region RMS energy of the
false positive at the 5th �nest scale level.
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(f) Inner and outer region RMS energy of the
true positive at the 5th �nest scale level.

Figure 9: Comparison of the root sum of square energies of a true and false positive
that do not lie inside a ripple �eld. (For illustrative purposes, the root mean sum is
depicted.) Note that, at the 4th �nest scale level, the false positiveenergies of the
inner and outer regions are better correlated than in the true positive case.
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1-class SVM ROC curve; sigma=0.5, nu=2.0
operator 1
operator 2

Figure 10: ROC curve of one class support vector machine. Also plotted are the results
of two expert operators (taken from [7]).
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2-class SVM ROC curve; sigma=20, C=1000
operator 1
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Figure 11: ROC curve of two class support vector machine. Also plotted are the results
of two expert operators (taken from [7]).
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Table 1: Number of false positives incurred in order to recover 90%,95%, 98%, 99%,
and 100% of the total number of true positives.

Number of Number of false positives
Seabed type true pos. No suppression Suppression

Non-rippled

270 22 21
285 59 60
294 259 253
297 460 473
300 806 793

Rippled

127 6320 2029
134 10468 3345
138 15032 7753
140 38348 18209
141 55719 19427

Both

397 2585 676
419 7854 2256
432 15332 4683
437 22640 8494
441 57457 21143
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