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ABSTRACT We propose the use of the dual-tree complex wavelet trans-
The dual-tree wavelet transform is here applied to the prabl  form (DTCWT) [4, 5] to estimate local and directional fracta
of fractal dimension estimation. The Hurst parameter af-fra dimension. The DTCWT is fast and, with 6 strongly direc-
tional Brownian surfaces is estimated using various waveldional subbands, it has good directional selectivity. kali
bases. Results are given for global, local, anisotropid, another fast wavelet transforms, the DTCWT also has good shift
both local and anisotropic Hurst parameters. It is showh thdnvariance. This ensures that the magnitude of its compex ¢
the directional selectivity of the dual-tree wavelets carek-  €fficients remain stable and large near any singularitiess. |
ploited effectively to compute and distinguish Hurst pagam therefore better at extracting local energy from signat th

ters that vary non-trivially with direction and space. oscillate rapidly. Since dual-tree wavelets are relaivew
they have yet to be applied to the problem of fractal dimemsio
1. INTRODUCTION estimation. The main focus of this paper is to establish re-

sults on the accuracy and robustness of dual-tree wavelets f
FraCtal dimension iS agenera“sation Of the fami”ar Mn fractal dimension estimation. Since ground truth is rmir
dimension. It can be regarded as a measure of how mugfactional Brownian surfaces (fBs) are synthesised. Ofipar
area a curve fills or how much volume a surface fills. Ityjar interest is how the DTCWT compares to other wavelet

succinctly describes the irregular, fragmented, and af#h  methods when the fractal dimension is allowed to vary with
similar shapes that occur in natural structures and is krtown respect to space and/or direction.

be well correlated with human perception of texture smooth- A surface with pointwise Varying fractal dimension is

ness. In 2-D data analysis, estimation of fractal dimensa®  sometimes referred to as multifractal [6]. The distribatio
wide ranging applications that include fluid dynamics, acef  of fractal dimension values can be described, globally, by a
inspection, adaptive Bayesian denoising, and texturssilas multifractal (or singularity) spectrum which in turn is aééd
cation of synthetic aperture radar, sidescan sonar, andatat to the Renyi (or generalised fractal) dimension via thedreg
Imagery. dre transform [7]. Although dual-tree wavelets could also b
Wavelets, which perform a multiresolution decompositionysed for such analysis, we focus here on estimating theafract
of data, are intimately related to the idea of fractals. Byme dimension, or related Hurst exponent, in a specific location
suring energy with respect to scale, fractal dimension @n byn( direction.
extracted very efficiently using wavelets. Wavelet methods  The next section introduces fractional Brownian surfaces.
are faster and more tolerant to noise and affine transformghe wavelet analysis method for global, local, and diretio
tions than box counting methods [1]. Since they are locakactal dimension estimation is described in Section 3. Ex-
wavelets can also be used to estimate local fractal dimensiqyeriments are presented in Section 4. The first experiment
This is a significant advantage over methods based on th&mpares wavelet methods for both global and local fractal
Fourier transform. However, most fast wavelet transformgjimension estimation. The second experiment tests the-meth
have poor directional selectivity. As a result they are nellw ods on locally varying and anisotropic fractal dimensioi. F
suited to anisotropic dimension estimation. Vidakovic let angally, a classification problem is used to test how well each

[2] estimated anisotropic dimension in the horizontalfieal  method can segment data based purely on the directionality
and diagonal directions using discrete wavelets. For firker dof fractal dimension.

rectionality, one alternative is to implement approximate
sions of continuous wavelets such as the Gabor wavelet [3]. 2 FRACTIONAL BROWNIAN SURFACES
However, this comes at a significant computational cost.
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such thatthe incrementd By )(x) £ By (x+Ax)—By(x)  the same white noise for each surface. Then, an fBs with lo-

are stationary Gaussian random fields with variance cally varyingH can be constructed witBy = 3, A, By ().
This surface will have Hurst parametgn) atx € X,.
E [|(ABH)(X)|2] = o | Ax|*7 . (1) An anisotropic fBs is synthesised by applying a set of di-
rectional binary masks to the set of fBs in Fourier space-sum
PuttingAx = £ —x into (1) gives the autocorrelation function Ming, and then taking the inverse Fourier transform. First,
(RBy)(x,€) = E [By(x)By (£)] Qeflne a disjoint set of interval®,,, that cover|0, 7). That
isU,,©m = [0,7), andO,, N O, = 0, form # n. In
_oH (HXH2H+ H£H2H_ Ix — €||2H) ' ) polar Fourier space, construct the magks(p,6) = 1, for
2 0,0 —m € ©,, and0 otherwise. Again, lefn(m)} determine

the set of Hurst parameters required. Then the anistropic su

face can be constructed iz, = (Y, XmBg(m))V, where
(PBp)(w) ||w||’2H72 . 3) A z?mdv denotg forward and inverse Fourier transformation.

This surface will have a Hurst parametgin) for directions

The parametef is referred to as either the Holder param-f € ©m. Both methods above can be combined to construct

eter/regularity, Lipschitz regularity, or Hurst parametae N fBs with a locally varying and anisotropic Hurst paramete

shall favour the latter term. Values &f close to zero give Although inefficient, this suffices to provide precise grdun

very rough looking surfaces. Values close to unity will fesu truthed test data.

in relatively smooth surfaces. For 2-D spaces, the paramete

is directly related to fractal dimensiob via D = 3 — H. 3. WAVELET ANALYSIS OF FBS

Given By, the problem of fractal dimension estimation is

therefore equivalent to the estimation of the Hurst paramet

The generalised, or average, power spectruiid gfis

The wavelet transform of a fractional Brownian surface is:

| W) (k) =2* [ Bu(€im @G- ) dé.
2.1. Synthesis of fBs R?

ional . ¢ be simulated i " wherey,, is a mother wavelet with orientation indexed 4oy
Fractional Brownian surfaces can be simulated in a variety Oxg gescribed in [2], the variance can be simplified to

ways. Perhaps the most simple is to construct a functiorein th )

Fourier domain such that the absolute value is the product of [ ‘ 2} _ OH g—2K(H+1

|wl|~#~" and a normally distributed random variable with E ||0WesmBrr) (k, )| 2 2 ey, @)
zero mean and unit variance, and where the phase is drawaking the log of both sides of (4) gives

from a uniform distribution. However, this Fourier syntlses

method fails to reproduce some key properties of the fBs. Inlog, E ['(Ww;mBH) (k, x)|2] = —2k(H+1)+Cy,, a (5)
particular, it produces a stationary process.

Kaplan and Kuo [8] made a significant improvement toThe right-hand-side is now a linear function of scialédence,

this technique. Their incremental Fourier synthesis rmiathothe exponent! can be computed by measuring the average

exploits the fact the increments of the fBs are stationar .Iopte, over eacflw of thet.dlr?;]:tlonall subbgml,sof (5.) V'? db
The autocorrelations of the first and second order incresnen east squares. In practice n€ variance IS approximated by

. 2
are transformed into the Fourier domain, square-rooted, ajige sample variancg >, |(Wy;m Bu) (k,x,)|". When the

scaled by white complex Gaussian noise before an inver urst parameter is allowed to vary as a function of space,
Fourier transform is applied. The fBs is then computed by* ~ H(x) and the_ggl(zxw)e_g spectrgm from (3) becomes
recursively adding the increments together. The result ig”Br)(w,x) o [|w]| - In this case, we compute
non-stationary and gives closer approximations to therteo 2" estimate of local energy around the poinhamely

ical values of fBs correlation and variance than the origina Epn (%) 2 |(WypmBr) (k,x)|* . (6)

Fourier synthesis method. o
For eachx, the slope of (6) againétis now computed and av-

eraged over the subbands denotedrhyTypically, better re-
sults can be obtained by ignoring the coarsest and fine& scal
Surfaces with locally varying Hurst can be constructed &s folevels. The coarsest levels tend not to be local enough and
lows. First we split up the domaiX of the surface into a the finest tend to be more sensitive to noise. For anisotropic
disjoint covering. Thati¢J, X, = X, andX,, N X,, = ), fractal dimension, we haveP By )(p, 6) x p~2H(0)=2 and

for n # m. Construct the maskd,(x) 2 1, for x € X, for both local and anisotropic, we ha¥e = H(x, 6). In this
and0 otherwise. Let{n(n)} determine the set of different !€SS studied case, the log enerdigsE}, (x) are once again
Hurst parameters required. Next generate a set of surfac§8mputed for each locality and subband. However, the slopes

B, (,»y With the incremental Fourier synthesis method, usingrom all the subbands are not averaged. Instead, each slope
n(n) ' : X : L
describes an estimate &f atx in themth subband direction.

2.2. Synthesis of local and anisotropic fBs
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Fig. 1. Mean Hurst estimates over 100 instances of fractional

Brownian surface with locally varying fractal dimension. 014

4. EXPERIMENTS
4.1. Local Hurst estimation
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vary with respect to spack (z,y) = round(2 + 16zy)/20, 8:82

for x = (z,y) € [0,1]?. The surface was realised by the 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
method outlined in Section 2.2. Fig. 1, which shows the 01 02 03 Oﬁurst 2;(5poner?t-6 07 08 09
mean Hurst estimates, gives a qualitative view using differ (b) H — const

wavelets. The mean error is plotted in Fig. 2 (a) for various
wavelets. Fig. 2 (b) shows results for the case where thetHur]"E
parameter is kept constant throughout the image. The be {
performing order was chosen for the Coiflet, Daubechies, ans
symlet wavelets. For a fair comparison, the Gabor wavelet u
was chosen to have the same orientatigi$ + 30m)°}>,_,

as the DTCWT. If required, at extra computational cost, it i

rst.

scales. Double dyadic scale levels were used for all Gabd?
results in this paper.
marginally worse results. The benefits of shift invariance a

jg. 2. Mean Hurst estimation error over 100 instances of
rownian surfaces: (a) locally varying Hurst and (b) consta

sidealised case. Fig. 4 reports the mean error with respect to
possible to perform the DTCWT with extra orientations andt"® Hurst parameter. The results show that the DTCWT is at
ast comparable to the slower Gabor method. Similar result
The single dyadic version resulted iNvere found wheri{ was held constant over space and allowed
to vary over direction.

directionality can be seen by the low errorin the DTCWT andy 3. Directionality classification
Gabor results. The DTCWT results are at least comparable to ) )
Gabor. However, the DTCWT is fasfeiit only requires two A final experiment was designed to test how the methods per-

orders decimated fast wavelet transforms applied to the rowdormed at distinguishing between a background and target ob

of the data followed by another two for the columns.

4.2. Local and anisotropic Hurst estimation

The case where the Hurst parameter varies with respect

both space and orientation was also considered. Fig. 3 (

shows the spatial sub-regions referred to in the followiag d
scription. LetHy: [0, 27) — (0, 1), with HJ(- — 7) = H{(")
describe how the Hurst parameter in regiofh varies with re-
spect to orientation. Using the construction describeckicr S
tion 2.2, the Hurst parameters in regidig are given the val-
ues0.2,0.4,0.6,0.8,0.6,0.4 over angular intervals of width
30° centred a15°,45°, 75°,105°, 135°, 165°. For regionX},
the exponents are defined B — 0.1. The regionsX? are
30n° rotated versions ok (. Likewise, X} are30n° rotated
versions ofX}. Since the orientation centres coincide with
the subbands of the Gabor and DTCWT, this is a somewh

1in Matlab experiments 01024 x 1024 images, the DTCWT computed local
fractal dimension in 4.5 sec.; a spatial domain impleméntaif Gabor took 42.3 sec.

ject, with the same fractal dimension, but different direcal-

ity. First we generated B80° periodic interval with a width
of 30° and a centre randomly chosen from the &gt:°}3°.
The backgrounds6 x 256 was generated by synthesising an
F s with Hurst H restricted to®. For the target, a rectangle
ith size10 x 14 was randomly rotated and randomly placed
on the background image. An fBs, restricted to the rectan-
gle, was generated using the saffiebut different randomly
selected centre angle frofi5m°}3°. The Hurst value was
estimated at each orientation using the DTCWT, Gabor, and
Daubechies wavelets. The result2igs x 256, 6-element §-
element for Daubechies) vectors were then clustered wéth th
k-means method. This was carried out 100 times for each
value of H. Fig. 5 reports the percentage of pixels misclas-
sified. Fig. 6 highlights a significant weakness of other dis-
crete wavelet methods, namely that they cannot distinguish

Tetween angles af45°. The results show that the DTCWT

is once again comparable to the slower Gabor. Further exper-
iments showed similar relative results for other targegsiz



(a) Anisotropic fractional Brownian (b) Spatial sub-regions used.
surface withH = H(x, 6).
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Fig. 3. Fractional Brownian surface with anisotropic and lo-Fi9- 5 Classification error (%). Target and background have

cally varying fractal dimension.
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5. CONCLUSION

same fractal dimension but different directionality.

(b) Ground Truth  (c) DTCWT

(d) Daubechies 4

(a) Input image

(e) Gabor

Fig. 6. Example of classification results for anisotropic frac-
tional Brownian surface. The target and background have a
Hurst parameter off = 0.1 in directions+45° and —45°

It has been shown that the DTCWT outperforms other fastespectively.

wavelet transforms, and is at least as good as the slower Ga-
bor transform, for Hurst estimation of fractional Brownian
surfaces. The directional selectivity of the DTCWT can be[4]
exploited to compute Hurst parameters that vary non-thyia
with direction and space. Thus, the DTCWT has been iden-
tified as a fast and effective means to compute local and
anisotropic fractal dimension. [5]
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