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ABSTRACT
The dual-tree wavelet transform is here applied to the problem
of fractal dimension estimation. The Hurst parameter of frac-
tional Brownian surfaces is estimated using various wavelet
bases. Results are given for global, local, anisotropic, and
both local and anisotropic Hurst parameters. It is shown that
the directional selectivity of the dual-tree wavelets can be ex-
ploited effectively to compute and distinguish Hurst parame-
ters that vary non-trivially with direction and space.

1. INTRODUCTION

Fractal dimension is a generalisation of the familiar Euclidean
dimension. It can be regarded as a measure of how much
area a curve fills or how much volume a surface fills. It
succinctly describes the irregular, fragmented, and oftenself-
similar shapes that occur in natural structures and is knownto
be well correlated with human perception of texture smooth-
ness. In 2-D data analysis, estimation of fractal dimensionhas
wide ranging applications that include fluid dynamics, surface
inspection, adaptive Bayesian denoising, and texture classifi-
cation of synthetic aperture radar, sidescan sonar, and natural
imagery.

Wavelets, which perform a multiresolution decomposition
of data, are intimately related to the idea of fractals. By mea-
suring energy with respect to scale, fractal dimension can be
extracted very efficiently using wavelets. Wavelet methods
are faster and more tolerant to noise and affine transforma-
tions than box counting methods [1]. Since they are local,
wavelets can also be used to estimate local fractal dimension.
This is a significant advantage over methods based on the
Fourier transform. However, most fast wavelet transforms
have poor directional selectivity. As a result they are not well
suited to anisotropic dimension estimation. Vidakovic et al
[2] estimated anisotropic dimension in the horizontal, vertical
and diagonal directions using discrete wavelets. For finer di-
rectionality, one alternative is to implement approximatever-
sions of continuous wavelets such as the Gabor wavelet [3].
However, this comes at a significant computational cost.
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We propose the use of the dual-tree complex wavelet trans-
form (DTCWT) [4, 5] to estimate local and directional fractal
dimension. The DTCWT is fast and, with 6 strongly direc-
tional subbands, it has good directional selectivity. Unlike
other fast wavelet transforms, the DTCWT also has good shift
invariance. This ensures that the magnitude of its complex co-
efficients remain stable and large near any singularities. It is
therefore better at extracting local energy from signals that
oscillate rapidly. Since dual-tree wavelets are relatively new
they have yet to be applied to the problem of fractal dimension
estimation. The main focus of this paper is to establish re-
sults on the accuracy and robustness of dual-tree wavelets for
fractal dimension estimation. Since ground truth is required,
fractional Brownian surfaces (fBs) are synthesised. Of partic-
ular interest is how the DTCWT compares to other wavelet
methods when the fractal dimension is allowed to vary with
respect to space and/or direction.

A surface with pointwise varying fractal dimension is
sometimes referred to as multifractal [6]. The distribution
of fractal dimension values can be described, globally, by a
multifractal (or singularity) spectrum which in turn is related
to the Rényi (or generalised fractal) dimension via the Legen-
dre transform [7]. Although dual-tree wavelets could also be
used for such analysis, we focus here on estimating the fractal
dimension, or related Hurst exponent, in a specific location
and direction.

The next section introduces fractional Brownian surfaces.
The wavelet analysis method for global, local, and directional
fractal dimension estimation is described in Section 3. Ex-
periments are presented in Section 4. The first experiment
compares wavelet methods for both global and local fractal
dimension estimation. The second experiment tests the meth-
ods on locally varying and anisotropic fractal dimension. Fi-
nally, a classification problem is used to test how well each
method can segment data based purely on the directionality
of fractal dimension.

2. FRACTIONAL BROWNIAN SURFACES

For H ∈ (0, 1), an isotropic fractional Brownian surface
BH : R

2 7→R is a Gaussian zero-mean field withBH(0)=0



such that the increments(∆BH)(x) , BH(x+∆x)−BH(x)
are stationary Gaussian random fields with variance

E

[

|(∆BH)(x)|2
]

= σ2
H ‖∆x‖2H . (1)

Putting∆x = ξ−x into (1) gives the autocorrelation function
(RBH)(x, ξ) = E [BH(x)BH(ξ)]

=
σH
2

(

‖x‖2H
+ ‖ξ‖2H− ‖x − ξ‖2H

)

. (2)

The generalised, or average, power spectrum ofBH is

(PBH)(ω) ∝ ‖ω‖−2H−2
. (3)

The parameterH is referred to as either the Hölder param-
eter/regularity, Lipschitz regularity, or Hurst parameter. We
shall favour the latter term. Values ofH close to zero give
very rough looking surfaces. Values close to unity will result
in relatively smooth surfaces. For 2-D spaces, the parameter
is directly related to fractal dimensionD via D = 3 − H .
Given BH , the problem of fractal dimension estimation is
therefore equivalent to the estimation of the Hurst parameter.

2.1. Synthesis of fBs

Fractional Brownian surfaces can be simulated in a variety of
ways. Perhaps the most simple is to construct a function in the
Fourier domain such that the absolute value is the product of
‖ω‖−H−1 and a normally distributed random variable with
zero mean and unit variance, and where the phase is drawn
from a uniform distribution. However, this Fourier synthesis
method fails to reproduce some key properties of the fBs. In
particular, it produces a stationary process.

Kaplan and Kuo [8] made a significant improvement to
this technique. Their incremental Fourier synthesis method
exploits the fact the increments of the fBs are stationary.
The autocorrelations of the first and second order increments
are transformed into the Fourier domain, square-rooted, and
scaled by white complex Gaussian noise before an inverse
Fourier transform is applied. The fBs is then computed by
recursively adding the increments together. The result is
non-stationary and gives closer approximations to the theoret-
ical values of fBs correlation and variance than the original
Fourier synthesis method.

2.2. Synthesis of local and anisotropic fBs

Surfaces with locally varying Hurst can be constructed as fol-
lows. First we split up the domainX of the surface into a
disjoint covering. That is

⋃

nXn = X , andXn ∩ Xm = ∅,
for n 6= m. Construct the masksAn(x) , 1, for x ∈ Xn

and0 otherwise. Let{η(n)} determine the set of different
Hurst parameters required. Next generate a set of surfaces
Bη(n) with the incremental Fourier synthesis method, using

the same white noise for each surface. Then, an fBs with lo-
cally varyingH can be constructed withBH =

∑

nAnBη(n).
This surface will have Hurst parameterη(n) atx ∈ Xn.

An anisotropic fBs is synthesised by applying a set of di-
rectional binary masks to the set of fBs in Fourier space, sum-
ming, and then taking the inverse Fourier transform. First,
define a disjoint set of intervalsΘm that cover[0, π). That
is

⋃

m Θm = [0, π), andΘm ∩ Θn = ∅, for m 6= n. In
polar Fourier space, construct the masksχm(ρ, θ) , 1, for
θ, θ−π ∈ Θm and0 otherwise. Again, let{η(m)} determine
the set of Hurst parameters required. Then the anistropic sur-
face can be constructed viaBH =

(
∑

m χmB
∧

η(m)

)

∨, where
∧ and∨ denote forward and inverse Fourier transformation.
This surface will have a Hurst parameterη(m) for directions
θ ∈ Θm. Both methods above can be combined to construct
an fBs with a locally varying and anisotropic Hurst parameter.
Although inefficient, this suffices to provide precise ground-
truthed test data.

3. WAVELET ANALYSIS OF FBS

The wavelet transform of a fractional Brownian surface is:

(Wψ;mBH) (k,x) = 2k
∫

R2

BH(ξ)ψm(2k(x − ξ)) dξ ,

whereψm is a mother wavelet with orientation indexed bym.
As described in [2], the variance can be simplified to

E

[

|(Wψ;mBH) (k,x)|2
]

=
σ2
H

2
2−2k(H+1)cψm,H . (4)

Taking the log of both sides of (4) gives

log2 E

[

|(Wψ;mBH) (k,x)|2
]

= −2k(H+1)+Cψm,H (5)

The right-hand-side is now a linear function of scalek. Hence,
the exponentH can be computed by measuring the average
slope, over each of the directional subbandsm, of (5) via
least squares. In practice the variance is approximated by
the sample variance1

N

∑

n |(Wψ;mBH) (k,xn)|2. When the
Hurst parameter is allowed to vary as a function of space,
H = H(x) and the power spectrum from (3) becomes
(PBH)(ω,x) ∝ ‖ω‖−2H(x)−2. In this case, we compute
an estimate of local energy around the pointx, namely

Ek,m(x) , |(Wψ;mBH) (k,x)|2 . (6)

For eachx, the slope of (6) againstk is now computed and av-
eraged over the subbands denoted bym. Typically, better re-
sults can be obtained by ignoring the coarsest and finest scale
levels. The coarsest levels tend not to be local enough and
the finest tend to be more sensitive to noise. For anisotropic
fractal dimension, we have(PBH)(ρ, θ) ∝ ρ−2H(θ)−2, and
for both local and anisotropic, we haveH = H(x, θ). In this
less studied case, the log energieslogEk,m(x) are once again
computed for each locality and subband. However, the slopes
from all the subbands are not averaged. Instead, each slope
describes an estimate ofH atx in themth subband direction.
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Fig. 1. Mean Hurst estimates over 100 instances of fractional
Brownian surface with locally varying fractal dimension.

4. EXPERIMENTS

4.1. Local Hurst estimation

In our first experiment, the Hurst parameter was allowed to
vary with respect to spaceH(x, y) = round(2 + 16xy)/20,
for x = (x, y) ∈ [0, 1]2. The surface was realised by the
method outlined in Section 2.2. Fig. 1, which shows the
mean Hurst estimates, gives a qualitative view using different
wavelets. The mean error is plotted in Fig. 2 (a) for various
wavelets. Fig. 2 (b) shows results for the case where the Hurst
parameter is kept constant throughout the image. The best
performing order was chosen for the Coiflet, Daubechies, and
symlet wavelets. For a fair comparison, the Gabor wavelet
was chosen to have the same orientations{(15+30m)◦}5

m=0

as the DTCWT. If required, at extra computational cost, it is
possible to perform the DTCWT with extra orientations and
scales. Double dyadic scale levels were used for all Gabor
results in this paper. The single dyadic version resulted in
marginally worse results. The benefits of shift invariance and
directionality can be seen by the low error in the DTCWT and
Gabor results. The DTCWT results are at least comparable to
Gabor. However, the DTCWT is faster1; it only requires two
order-n decimated fast wavelet transforms applied to the rows
of the data followed by another two for the columns.

4.2. Local and anisotropic Hurst estimation

The case where the Hurst parameter varies with respect to
both space and orientation was also considered. Fig. 3 (b)
shows the spatial sub-regions referred to in the following de-
scription. LetH0 : [0, 2π) 7→ (0, 1), withH0

0 (· − π) ≡ H0
0 (·)

describe how the Hurst parameter in regionX0
0 varies with re-

spect to orientation. Using the construction described in Sec-
tion 2.2, the Hurst parameters in regionX0

0 are given the val-
ues0.2, 0.4, 0.6, 0.8, 0.6, 0.4 over angular intervals of width
30◦ centred at15◦, 45◦, 75◦, 105◦, 135◦, 165◦. For regionX1

0 ,
the exponents are defined asH0

0 − 0.1. The regionsX0
n are

30n◦ rotated versions ofX0
0 . Likewise,X1

n are30n◦ rotated
versions ofX1

0 . Since the orientation centres coincide with
the subbands of the Gabor and DTCWT, this is a somewhat

1In Matlab experiments on1024 × 1024 images, the DTCWT computed local
fractal dimension in 4.5 sec.; a spatial domain implementation of Gabor took 42.3 sec.
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(a) H = H(x)
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Fig. 2. Mean Hurst estimation error over 100 instances of
Brownian surfaces: (a) locally varying Hurst and (b) constant
Hurst.

idealised case. Fig. 4 reports the mean error with respect to
the Hurst parameter. The results show that the DTCWT is at
least comparable to the slower Gabor method. Similar results
were found whenH was held constant over space and allowed
to vary over direction.

4.3. Directionality classification

A final experiment was designed to test how the methods per-
formed at distinguishing between a background and target ob-
ject, with the same fractal dimension, but different directional-
ity. First we generated a180◦ periodic intervalΘ with a width
of 30◦ and a centre randomly chosen from the set{5m◦}35

0 .
The background256× 256 was generated by synthesising an
fBs with HurstH restricted toΘ. For the target, a rectangle
with size10× 14 was randomly rotated and randomly placed
on the background image. An fBs, restricted to the rectan-
gle, was generated using the sameH but different randomly
selected centre angle from{5m◦}35

0 . The Hurst value was
estimated at each orientation using the DTCWT, Gabor, and
Daubechies wavelets. The resulting256 × 256, 6-element (3-
element for Daubechies) vectors were then clustered with the
k-means method. This was carried out 100 times for each
value ofH . Fig. 5 reports the percentage of pixels misclas-
sified. Fig. 6 highlights a significant weakness of other dis-
crete wavelet methods, namely that they cannot distinguish
between angles of±45◦. The results show that the DTCWT
is once again comparable to the slower Gabor. Further exper-
iments showed similar relative results for other target sizes.



(a) Anisotropic fractional Brownian
surface withH = H(x, θ).
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Fig. 3. Fractional Brownian surface with anisotropic and lo-
cally varying fractal dimension.
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Fig. 4. Hurst error for anisotropic and locally varyingH .

5. CONCLUSION

It has been shown that the DTCWT outperforms other fast
wavelet transforms, and is at least as good as the slower Ga-
bor transform, for Hurst estimation of fractional Brownian
surfaces. The directional selectivity of the DTCWT can be
exploited to compute Hurst parameters that vary non-trivially
with direction and space. Thus, the DTCWT has been iden-
tified as a fast and effective means to compute local and
anisotropic fractal dimension.
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