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Abstract We here harmonise two significant contributions
to thefieldofwavelet analysis in thepast twodecades, namely
the locally stationary wavelet process and the family of dual-
tree complexwavelets. By combining these two components,
we furnish a statistical model that can simultaneously access
benefits from these two constructions. On the one hand, our
model borrows the debiased spectrum and auto-covariance
estimator from the locally stationary wavelet model. On the
other hand, the enhanced directional selectivity is obtained
from the dual-tree complex wavelets over the regular lattice.
The resulting model allows for the description and identi-
fication of wavelet fields with significantly more directional
fidelity thanwas previously possible. The corresponding esti-
mation theory is established for the new model, and some
stationarity detection experiments illustrate its practicality.
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1 Introduction

This paper has been completed by the second, third and fourth
authors following the untimely death of thefirst author, James
Nelson, in September 2016. It has been submitted for publi-
cation in his memory.

Building on the non-stationary time-series work of
Dahlhaus (1997) and first proposed by Nason et al. (2000),
the locally stationary wavelet (LSW) model provides an
overcomplete, translation-invariant representation of a large
class of non-stationary time series. Unlike many other such
tools, LSW-based methodology affords a statistically well-
principled means to capture the local covariance and local
spectrum. That auto-covariance estimation of non-stationary
processes by any other means comes entangled with var-
ious fundamental difficulties has enabled LSW models to
gain traction across a variety of domains such as forecast-
ing for finance (Fryzlewicz 2005); establishing dependencies
in electrophysiological data for neuroscience applications
(Sanderson et al. 2010); and spectral estimation of environ-
mental time series and ECG traces with missing data (Knight
et al. 2012).

Recent years have seen much basic theoretical develop-
ment of locally stationary processes. For example, work has
focussed on: variants of the smoothness constraints placed
on the local spectrum function, such as the work by van Bel-
legem and von Sachs (2008), Fryzlewicz and Nason (2006),
and Nason and Stevens (2015); confidence intervals for the
empirical local covariance as recently derived by Nason
(2013); and changepoint estimation, such as the work of Kil-
lick et al. (2013) and Cho and Fryzlewicz (2015).
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Of particular interest here is the extension of the LSW the-
ory to two-dimensional processes as recently driven by Eck-
ley et al. (2010) and Eckley and Nason (2011). In particular,
they extended the result that the local auto-covariance con-
verges uniformly to auto-covariance as sample size increases
and that there is an invertible linear mapping from one to the
other. This work was subsequently followed by methodol-
ogy applied to non-stationarity detection in image textures by
Taylor et al. (2014) and segmentation of imagery into station-
ary regions by Nunes et al. (2014). A regularised smoothing
strategy for the two-dimensional LSW process is developed
in Gibberd and Nelson (2016). Very recently, Taylor et al.
(2017) combined the lattice and multivariate extensions to
formulate an LSW model for multivalued image data. As
such, this can be exploited to computemultiscale estimates of
the local inter-spectral covariance structure of multispectral
imagery. The model was then applied to the task of classifi-
cation of colour image textures.

The locally stationary wavelet model is hence becom-
ing a flexible, extensible means to capture rich behaviour
in spatial and image data and to solve practical problems.
The overcompleteness of the LSWmodel, compared to, say,
decimated wavelet schemes, is a key property which enables
the LSW to elicit the auto-covariance. The increased number
of wavelet coefficients permits a multiscale sample auto-
covariance of sorts to be computed about any point in space.
This is problematic in the decimated case since the peri-
odogram is computed over the dyadic grid, and as Nason
et al. (2000) notes, the decimated LSWmodel fails to accom-
modate all stationary processes (von Sachs et al. 1998). This
contrasts with the non-decimated LSW model, which can
describe any stationary process with finite integrated auto-
covariance.

Overcompleteness not only affords a feasible means to
estimate auto-covariance but also, as a side benefit, results
in a translation-invariant periodogram. In effect, it provides
the same information as a decimated transform at arbitrary
integer shifts of the input data.

The main thrust of our work herein is to posit that fur-
ther overcompletenessmay provide extra value. In particular,
when considering random fields such as image data defined
over the lattice, directionality can be of significant impor-
tance. Often such data present an anisotropic covariance
structure. A simple example of an anisotropic field is illus-
trated in Fig. 1. Here the piecewise non-stationarity is due
to a simple relative rotation in the auto-covariance function,
between the inner rectangle and outer annulus. In image pro-
cessing, the ability to distinguish between such directionality
of textures greatly aids tasks such as classification and seg-
mentation.

Unfortunately, traditional real-valued (mono) wavelets
such as the Daubechies family, favoured by the LSW the-
ory, possess very limited directionality. This constrains their

AE(90) AE(70)

AE(50) AE(30)

Fig. 1 Anisotropically non-stationary textures drawn fromAE(θ) pro-
cess, as defined in Sect. 4.2.2. Processes comprise an inner and outer
region with different orientations, cf. Nelson and Gibberd (2016)

ability to model and represent highly directional phenomena
typical in most modern image processing problems. As such,
this has given rise to many so-termed ‘directional wavelets’,
including the curvelets of Starck et al. (2002), the contourlets
of Do and Vetterli (2002), the steerable pyramids of Portilla
and Simoncelli (2000) and the monogenic Riesz–Laplace
wavelets of Unser et al. (2009).

We here investigate the incorporation of a special direc-
tional wavelet basis, namely the dual-tree complex wavelets
(Kingsbury 2001; Selesnick et al. 2005), into the locally
stationary wavelet framework. It is shown that, since these
complex wavelets are constructed as natural extensions of
real-valued wavelets, much of the existing LSW theory can
be developed by considering a complex-valued variant of the
LSW framework. Indeed, in the sense that the dual-tree com-
plexwavelet framework is amultiwavelet tight frame of order
two, it can be considered ‘closer’ to the usual real-valued
wavelets than some of the other more exotic and redundant
directional wavelets, and as such, it provides a natural means
to extend enhanced directionality into the LSW framework.

In Sect. 2, we propose the dual-tree complex locally sta-
tionary wavelet processes, denoted hereafter as LSW(C).
The processes are real-valued but the definition quite natu-
rally permits complex-valued wavelets and transfer
functions—hence extending the usual LSW model.
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An additional property, taken straight from dual-tree com-
plex wavelet theory, is placed on the relationship between
the real and imaginary parts of the wavelet filters. This
stipulates that they form a Hilbert pair and furnishes the
wavelets with directional selectivity and polarity. Theorem
1 transfers a central result from the LSW case that the local
auto-covariance converges to auto-covariance for LSW(C)

processes.
Some estimation theory is covered in Sect. 3. We provide

results that show the LSW(C) periodogram is a biased esti-
mator of the spectrum. Furthermore, we establish the result
that, under reasonable conditions, the biasing matrix can
be inverted; equivalently, the corresponding auto-correlation
wavelets retain linear independence; that the spectrum is
uniquely defined, given the LSW(C) process; and that the
mapping between spectrum and covariance is invertible.

In Sect. 4, simulations and experiments on a recent sta-
tionarity detectionmethod confirm the utility of the enhanced
directionality afforded by the proposed model.

Thus, for the first time, ourwork reconciles two significant
contributions to the field of wavelet analysis, combining the
locally stationary wavelet model with the family of dual-tree
complex wavelets.

2 The complex locally stationary wavelet model

The dual-tree complex wavelet transform (Kingsbury 2001;
Selesnick et al. 2005) employs a family of carefully con-
structed wavelet functions with the remarkable property
that they jointly maintain approximate translation invari-
ance and admit a full multiresolution analysis in the sense
that the resulting two-scale relations are satisfied with finite
sequence filters. This enables an implementation of a near-
shift-invariant discrete wavelet transform at around the cost
of two decimated, fast discrete wavelet transforms which can
be computed in parallel.

The two decomposition trees are interpreted as the real
and imaginary parts of the complex wavelet coefficients. The
near-translation-invariance property is achieved by design-
ing the wavelet filter sequences in such a way that they
form an approximate Hilbert transform pair—where the real
and imaginary parts are 90◦ out of phase with each other.
That such invariance is achieved in concert with a genuine
multiresolution analysis places dual-tree wavelets in a very
special and unique category in what many refer to informally
as the ‘wavelet zoo’.

In 2-D, the dual-tree scheme also naturally gives rise
to improved directionality relative to regular, real-valued
wavelets [such as, for example, Daubechies wavelets used
by Eckley et al. (2010)]. Figure 2 contrasts the directional-
ity afforded by a regular, real-valued, discrete 2-D wavelet
(or impulse response) function and that of a dual-tree com-

Real DWT

90 045(?)

DT CWT real part

15 45 75 −75 −45 −15(deg)

DT CWT imaginary part

Fig. 2 Dual-tree wavelets provide six directionally selective filters,
while real wavelets provide three filters, only two of which have a dom-
inant direction

plex wavelet function. The real-valued wavelet function
comprises filters oriented at 0◦ and 90◦ to the horizontal
in addition to a filter oriented at both ± 45◦. This third
‘diagonal’ filter will merge together any content oriented at
± 45◦—a practitioner will therefore be unable to distinguish
between these two directions by studying the magnitude of
the wavelet coefficients. For this reason, at best, one could
perhaps argue that this wavelet function has a directionality
of 2.5.

On the other hand, Fig. 2 also illustrates that the dual-tree
complex wavelets offer six fully directional filters, oriented
at {(30� − 15)◦}6�=1. Furthermore, the complex nature of the
filters also yields polarity, or phase, information about image
edges and singularities.

The resultingdual-tree complexwavelet impulse responses
resemble the multiscale directional band-pass filters that the
V1 human/mammalian cortical filters use as a front-end pro-
cess to their visual systems far more faithfully than the
directionally limited conventional wavelets—in their experi-
mentally ledworkHubel andWiesel (1962) first remarked on
the strong responses to directionality in mammalian vision
and, more recently, Ng et al. (2006) provide a review which
includes a discussion of the analogous role of wavelets with
respect to the underlying biology.

In practice, the directionality offers far richer information
than the classical, real-valued wavelet functions. As such,
dual-tree complex wavelets and their various extensions con-
tinue to find hundreds of applications in image modelling
and processing areas such as variational Bayesian enhance-
ment (Zhang andKingsbury2015), registration and fusion for
atmosphere correction (Anantrasirichai et al. 2013), segmen-
tation via semi-local scaling exponent estimation (Nelson
et al. 2016), and many more.
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Eckley’s 2-D local stationary wavelet (LSW) model
describes a stochastic process or field

X =
∑

j,�

∑

u

w�
j (u) ξ�

j (u) ψ�
j (u − ·), (1)

over the finite lattice T := [[1, T ]]2 as a dynamically
weighted filtering. This combines a real-valued weighting
sequence w�

j of a centred orthonormal increment sequence

ξ�
j , and an overcomplete basis comprising what Nason et al.

(2000) and Eckley et al. (2010) term (undecimated) ‘discrete
wavelet functions’ ψ�

j (·) ∈ �2(Z
2), indexed over both scale

j and orientation �. As usual, the ‘2-D’ wavelet functions
are separable and are constructed from ‘1-D’ mother and
father wavelets where the discrete mother wavelet functions
are defined by the recursions

ψ j (s) =
∑

k

h0(s − 2k) ψ j−1(k), (2)

for j > 0 and s ∈ [[1, T ]], with ψ0(s) = h1(s), where
the h0 and h1 are, respectively, the low- and high-pass fil-
ter sequences of the wavelet ψ . Similar recursions hold
for the father wavelets, cf. Daubechies (1992) and Eckley
et al. (2010). As noted by Nason et al. (2000), these discrete
wavelet functions are not (necessarily) the result of discretis-
ing a continuous wavelet function. In fact, the recursions
described by (2) are equivalent to setting all wavelet coef-
ficients, except one at the j th finest scale level, to zero and
then performing an inverse decimatedwavelet transformwith
upsampling. Further discussion on the construction of these
sequences, and their numerical generation, can be found in
(Daubechies 1992, p. 204).

The LSW can be loosely described as a multiscale,
dynamic, moving average model. For only one scale j0 and
direction �0, say, the LSW becomes a moving average model
with weights that can evolve over space via the sequence
w = {w(k)}k . If, in addition, the weights are constant over
spacew = w0, say, then the LSW collapses down to a simple
moving average model with parameters {w0ψ

�0
j0

(k)}k .
For the sake of controlling notational clutter, we fuse the

scale and orientation indexes into one single index η =
η( j, �) ∈ H ≡ {1, . . . , 6J }. Without loss of generality, put
η = j + (� − 1)J , for j ∈ [[1, J ]].

We further note that the LSW can be equivalently stated
in terms of convolutions X = ∑

η∈H wηξη ∗ψη,where the ·
denotes a left-right and up-down spatial flip: ϕ := ϕ(−·).
Aside from providing an alternative convenient means of
conceptualising the model, introducing such operator nota-
tion also helps mitigate notational clutter in some of the later
proofs.

Definition 1 places further constraints on how quickly the
weighting sequence can vary over the spatial support. We

here transfer all of the basic real-valued LSW modelling
assumptions in Nason et al. (2000) and Eckley et al. (2010)
over to our (dual-tree) complexwavelet case. The differences
are that (i) the transfer sequences w and transfer functions
W , below, are now complex-valued, and (ii) Property 5 is
added in order to exploit the approximate Hilbert transform
pair property of the dual-tree complex wavelets and there-
fore produce wavelets which are directionally selective and
which carry phase information.

Unlike the LSW model, the DTCWT, as originally
designed, is decimated. Instead, we here incorporate a non-
decimated version of the DTCWT into the LSW. Although
the resulting extra computation has little affect on transla-
tion invariance (the DTCWT is already near-shift invariant),
the dual-tree complex wavelets do greatly enhance the poor
directional description suffered by the LSW model and the
non-decimated construction provides a simple mechanism to
introduce them into the LSW framework. Undecimated ver-
sions of the DTCWT have recently been proposed by Hill
et al. (2015) who, in addition, note the added virtues that
the resulting wavelet coefficients are truly co-located over
the scale levels rather than lying on the usual dyadic grid.
Although we do note that a big attraction of the DTCWT is
the ability to perform a decimated transform, the incorpora-
tion of decimation, partially or wholly, into the LSW is left
as further work for now.

Definition 1 The locally stationary dual-tree complex
wavelet stationary processes are defined as the class LSW(C)

of all stochastic processes X : T �→ R over the finite lattice
T := [[1, T ]]2 which satisfy the following representation in
the mean-squared sense:

X =
∑

η∈H
wηξη ∗ ψη,

with complex-valued sequences wη ∈ �2(T ), centred
orthonormal increment processes ξη : T �→ R, discrete
complex wavelet functions ψη : T �→ C, and where there
exist functions Wη : T

2 := (0, 1)2 �→ C, and constants
Cη, λη ∈ R such that all the following properties hold for all
η ∈ H.

1. supt∈T |wη(t) − Wη(t/T )| ≤ Cη/T , with
∑

η Cη < ∞.
2. W is square-summable over the scale-orientation indexes:∑

η|Wη(z)|2 < ∞, uniformly in z ∈ T
2.

3. Wη is L1-Lipschitz, viz.

∥∥∥∥Wη

(
k + ·
T

)
− Wη

( ·
T

)∥∥∥∥
L1(R2)

≤ λη‖k/T ‖1

4. The Lipschitz constants λη are uniformly bounded in η

and
∑

�

∑
j∈N 22 jλη( j,�) < ∞.
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5. The complex wavelet functions satisfy the approximate
Hilbert pair property, cf. Kingsbury (2003) and Selesnick
et al. (2005), in that its real ψ·;0 and imaginary ψ·;1 parts
satisfy: ψ = ψ·;0 + iψ·;1, with ψ·;0, ψ·;1 : T �→ R,
and where the associated filter sequences hab satisfy the
below properties, where b = 0 or b = 1 signifies the
low-pass or high-pass band sequences, respectively, and
where a = 0 denotes the real part of the tree and a = 1
the imaginary part of the tree:

ha1(k) = (−1)t ha0(n − k), (3)

h10(k) = h00(n − 1 − k), (4)

and where n is the length of the filter sequence.

Note that the approximate Hilbert pair property betweenψ.;0
and ψ.;1 ensures that the negative half of the spectrum of ψ

becomes approximately zero. This is the key to obtaining
directionally selective filters in 2-D from separable 1-D fil-
ters, as explained in Selesnick et al. (2005).

The collection of functions {Wη} comprise the parame-
ters of the LSW model. They determine how much auto-
correlation is present at each scale level. As T → ∞ and
the number of sample points increases, then properties 1 and
2 above associate the collection of transfer sequences {wη}
with, what become, the bounded family of transfer functions
{Wη}. Properties 3 and 4 stipulate that the transfer function
should be smooth.Asymptotically, theweights are associated
with Lipschitz continuous functions Wη : T2 �→ C, defined
over rescaled space z = t/T , t ∈ T . This condition restricts
the variation of the weights over space and thus captures the
fact that the local structure becomes more stationary when
observed over evermore smaller spatial neighbourhoods.

A central premise, and unique selling point, of the LSW
model is that it very naturally offers access to a measure
of local covariance via the local spectrum and the auto-
correlation wavelet.

Definition 2 (Complex ACW ) Let the superscript ·	 denote
complex conjugation. Define the (complex) auto-correlation
wavelet ACW associated with the possibly complex-valued,
discrete wavelet ψ : N2 �→ C by

Ψη = ψη ∗ ψ	
η =

∑

t∈T
ψ	

η(t)ψη(· + t). (5)

Definition 3 (Local wavelet spectrum) Let X ∈ LSW(C)

have transfer functions Wη : T
2 �→ C. Then, the local

wavelet spectrum (LWS) of X is defined by

Sη(·) := |Wη(·)|2 .

Definition 4 (Local auto-correlation) Let S be the local
wavelet spectrum, defined by Definition 3, of an LSW(C)

process (Definition 1) and let Ψ be the auto-correlation
wavelet as described by Definition 2. Then, the local covari-
ance is defined by

C(z, t) =
∑

η∈H
Sη(z)Ψη(t), z ∈ T

2, t ∈ Z
2.

A remarkable property is that this local covariance forms a
good estimate for the auto-covariance of the, possibly non-
stationary, LSW process. The next result establishes this fact
for the locally stationary dual-tree complex wavelet pro-
cesses.

Theorem 1 (Convergence of auto-covariance) Let C and
CT be, respectively, the local auto-covariance and auto-
covariance of an LSW process X ∈ LSW(C). Then

|CT (z, t) − C(z, t)|= O(T−1).

as T → ∞, uniformly in t ∈ Z
2, and z ∈ T

2.

Remark 1 (Complex extension of the LSW) For X ∈
LSW(C):

1. The auto-correlation wavelet is defined via the natural
complex extension of the auto-correlation operator.

2. The local wavelet spectrum quantity works in much the
same way as it does in the real LSW case only now it is
formed by computing the complex modulus of the trans-
fer function.

3 Estimation theory

The (local wavelet) spectrum S represents: the parameters of
the LSW(C); the amount of ‘energy’ present at a particular
scale and orientation; and, via Theorem 1 the spectrum also
establishes the second-order behaviour of the field. Two key
questions naturally follow. The first is how the spectrum can
be estimated and, second, is whether the spectrum is uniquely
defined, given a field.

The (undecimated) local wavelet periodogram (LWP)

X∼
η (·) :=

∣∣∣X ∗ ψ	
η

∣∣∣
2
offers a straightforward but naive esti-

mate of the spectrum. As Theorem 2 shows, the redundancy
in the LWS model spreads content, via a so-termed biasing
matrix across the periodogram scales.

Definition 5 (LS-DTCW biasing matrix) Let Ψ be the com-
plex ACW as above. Then, the associated biasing matrix is

Aη,ν = 〈Ψη,Ψν〉 =
∑

t

Ψη(t)Ψ
	
ν (t). (6)
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Theorem 2 (Periodogram bias) Let the LSW(C) process
X : T �→ R, defined on the lattice T := [[1, T ]]2, have
periodogram X∼

η :=
∣∣∣X ∗ ψ	

η

∣∣∣
2
, where {ψη}η∈H is a dis-

crete, undecimated, dual-tree complex wavelet basis and let
A be the associated biasing matrix. Then

EX∼
η =

∑

ν

AηνSν

( ·
T

)
+ O(T−1) (7)

The biasing matrix is the agent of this spread or mixing of
redundancy. Note that Definition 5 is but the complex exten-
sion of the inner product used to define the real biasingmatrix
of the locally stationary, real-valued, wavelet model. In addi-
tion to facilitating some subsequent results, it is perhaps of
intrinsic interest to note that the biasingmatrix is real-valued.

Lemma 1 (Bias is real) LetΨ be the ACW (Definition 2. The
entries of the biasing matrix (Definition 5) are positive, real,
and symmetric.

Remark 2 (Unbiased spectrum estimator) If the biasing
matrix is invertible, then one can derive an unbiased estimate
of the spectrum via:

Ŝη(z) =
∑

ν

A−1
η,ν X∼

ν (z). (8)

The consistencyof the smoothedversion of the real-valued
wavelet periodogram is established and discussed by Nason
et al. (2000) in the 1-D case and Eckley et al. (2010) in the
2-D case. A proof of consistency of the Nadaraya–Watson
kernel estimator (cf. Nadaraya 2016; Watson 1964) is given
by Taylor et al. (2017).

The existence of the debiasing matrix—the inverse of
the biasing matrix—rests solely upon the choice of wavelet.
Nason et al. (2000) proved existence for the 1-D Daubechies
wavelets, and Eckley et al. (2010) extended this to the 2-D
Daubechies wavelets. A similar result, for other wavelet fam-
ilies, has remained a conjecture and open problem ever since
Nason et al. (2000) carried out their original work.

Instead, we can here report that, in practice, the debiasing
matrices exist for 2-D locally stationary dual-tree wavelets
with data sizes 2n × 2n for n ∈ [[1, 9]]. Furthermore, we
present the following result that, given the existence of a debi-
asing matrix associated with a generic 1-D wavelet function,
the corresponding dual-tree wavelet function will also have
an associated debiasing matrix.

Theorem 3 (Invertibility of the biasing matrix) Let the bias-
ing matrix A′ associated with an appropriately chosen
real-valuedwaveletψ·;0 definedover [[1, T ]]benon-singular.
Then, the biasing matrix A (Definition 5) associated with
the dual-tree wavelet (cf. Property 5 of Definition 1) ψ =
ψ·;0 + iψ·;1 is non-singular with A = 2A′.

An equivalent result holds which reveals the connection
between the invertibility of the biasing operator and the linear
independence of the auto-correlation wavelet.

Theorem 4 (Linear independence of ACW) Let the auto-
correlation wavelet Ψ ′ associated with an appropriately
chosen real discrete wavelet function ψ·;0 defined over
[[1, T ]] be linearly independent. Then, the auto-correlation
wavelet Ψ associated with the dual-tree wavelet ψ = ψ·;0 +
iψ·;1 is also linearly independent.

Remark 3 (Invertibility and ACW independence) Since the
matrix A is aGramian, the linear independence ofΨ is equiv-
alent to the non-singularity of A.

Crucially, linear independence naturally gives rise to unique-
ness.

Corollary 1 (LWSuniqueness)TheLWS is uniquely defined,
given the corresponding LSW(C) process.

For completeness, and analogous to the real-valued
wavelet case, there is also an inversion property between the
spectrum and local auto-covariance function.

Proposition 1 (LS-DTCW covariance inversion, Nelson
and Gibberd 2016) Assume that the debiasing matrix A is
non-singular, then

Sη(z) =
∑

ν

A−1
η,ν

∑

t

c(z, t)Ψ 	
ν (t).

4 Experiments

The advantages of the additional directionality afforded by
the dual-tree complex wavelets are manifested in various
ways according to the task at hand. We here consider just
a few numerical experiments, but note that, since the non-
LSW form of the dual-tree complex wavelet transform has
spawned hundreds of applications in signal and image pro-
cessing, there are many other such potential applications
of this LSW-based model. We focus here on a couple of
examples that have been discussed specifically in the LSW
literature. Firstly, we qualitatively demonstrate the broader
model space provided by theLS-DTCW.Numerical evidence
is then offered towards the benefits of greater directionality
to the task of non-stationarity detection.

4.1 Simulating anisotropic stationary random fields

An attractive property of the LSW framework is that, given a
known local wavelet spectrum S, one can readily draw sim-
ulated fields from the prescribed models. In the absence of
knowledge about S, a good alternative is to perform estima-
tion of the spectrum. Thus, if one can both estimate S and use
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LSW simulation; j = 4 = 1 LS-DTCW resim.; j = 4 = 1 LSW simulation; j = 4 = 3 LS-DTCW resim.; j = 4 = 3

LSW simulation; j = 3 = 1 LS-DTCW resim.; j = 3 = 1 LSW simulation; j = 3 = 3 LS-DTCW resim.; j = 3 = 3

LSW simulation; j = 2 = 1 LS-DTCW resim.; j = 2 = 1 LSW simulation; j = 2 = 3 LS-DTCW resim.; j = 2 = 3

Fig. 3 LS-DTCW simulations of LSW fields. The indexes j refer to scale level, and � = 1, 3, respectively, correspond to the real filters in the
horizontal and diagonal positions, or DTCW filters at (30� − 15)◦

this approximation to simulate a process, then it is possible to
informally and qualitatively compare the two model spaces
for LSW and LS-DTCW. In the proceeding experiment, a
simple texture is simulated using one model (either LSW or
LS-DTCW) and then the other model is used to estimate the
spectrum of the simulated process. Using the estimate, an
attempt to ‘resimulate’ the texture from this spectrum can be
made.

As described in Sect. 3, the spectrum can be estimated in
a pointwise fashion even when the field in question is non-
stationary. Algorithm 1 provides the required simple recipe.
First of all, the periodogram |X ∗ ψ	

η |2 of the random field
X is computed. This is merely a double convolution over
space. Since the wavelets considered here, either Haar in
the LSW case or q-shift in the LS-DTCW case, are fairly
short—2-taps for Haar, and around 12 or more taps for q-

shift—this is not a significant computational task. For larger
filters and, especially, those with infinite support, speed-ups
can be obtained by performing the convolution in the Fourier
domain. Either way, the periodogram is then bias-corrected
by applying the inverse mapping: Ŝη = ∑

η∈H A−1
η,νX

∼
η (·).

For each pixel t , this is equivalent to applying a H×H matrix
transform to a vectorised form of the periodogram, namely[
X∼
1 (t), . . . , X∼

H (t)
]� ∈ R

H , with H := #H.
In the interests of comparing the extra directionality pro-

vided by the LS-DTCWwith that of the LSW, it is instructive
to, first of all, consider a simple stationary case. In Fig. 3, the
sub-figures labelled ‘simulation’, with indexes j and � are
fields simulated by setting Sη(·) ≡ 1 for the particular stated
value of η = j + (� − 1)J , where j is the j th coarsest scale
level, and � is the directional sub-band such that: � = 1 refers
to a horizontal stripe direction, � = 2 a vertical stripe direc-
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tion, and � = 3 refers to the ‘diagonal’ sub-band direction.
All other values of Sη (for any other ( j, �)) are set to zero and
thefield is simply drawn from themodel via X = √

Sηξη∗ψη,
with ξη ∼ N (0, 1).

For example, the processes illustrated at the top of the first
column of Fig. 3 are simulated using the simple piecewise
construction

S( j,�)(·) ≡
{
1, if j = 4 and � = 1

0, otherwise
.

Similarly, the processes depicted in the third column of the
first row have a spectrum equal to δ�,3δ j,4 across the field.

Of course, strictly speaking, this contravenes the Lipschitz
continuity of the spectrum, as per Definition 1, Property 3
but, nonetheless, it serves as a simple, intuitive example. The
directional sub-band � = 1, here refers to a horizontal stripe
orientation. As such, horizontally oriented waves of texture
should be more perceptible than vertical ones in any of the
three ‘LSW simulation’ sub-figures with � = 1. Similarly,
the third column of sub-figures depicts LSW random fields
oriented in the ‘diagonal’ direction. Likewise, here, waves of
texture oriented at ±45◦ should be evident.

In this simple simulation scenario, the stationarity of
the resulting fields means that spectrum estimates can be
improved by simply averaging the spectrum estimate over
the entire spatial support. Algorithms 1 and 2 describe the
recipes required to first estimate the spectrum and then, sec-
ondly, resimulate the texture. The second and fourth columns
of Fig. 3 illustrate the LS-DTCW resimulations of the LSW
textures in columns one and three, respectively.

It can be seen, for example, that the second column reflects
the horizontal wave directions of the first column in the
appropriate levels of scale fairly well. Likewise, the waves
oriented at ± 45◦ in the third, LSW simulated, column are
also present in the fourth, LS-DTCW resimulated, column.

In contrast, Fig. 4 shows the reverse of this experiment
where, firstly, textures are simulated from the LS-DTCW
model and then, secondly, they are estimated and resimu-
lated using the LSW model. The processes plotted in the
first column have textures oriented at 15◦ to the horizontal
axis. However, owing to its poor directionality and direc-
tional selectivity, the LSW is unable to convincingly capture
this behaviour. Likewise, the third columndepictsLS-DTCW
textures orientated at 45◦ to the horizontal axis. Again, the
LSW cannot resimulate textures that resemble anything sim-
ilar to the original textures. In short, in this example, the
LS-DTCW can capture behaviour seen in the LSW model
but not vice versa. Since more complex textures can be con-
structed from linear combinations of these simple building
block examples, it could therefore be argued that the LS-
DTCW model is, broadly speaking, more general than the
LSW model. This is perhaps not surprising since the LS-

DTCWmodel comprises twice the number of wavelet atoms
than the LSW model, but it is interesting to note that the
difference manifests quite decidedly when considering the
directionality of the texture.

Algorithm 1Unbiased spectrum estimation, LWSE, cf. Tay-
lor et al. (2014)
Ŝη = LWSE(X)

Input: image X
Output: estimated spectrum Ŝη

compute periodogram X∼
η =

∣∣∣X ∗ ψ	
η

∣∣∣
2

estimate spectrum Ŝη = ∑
ν∈H A−1

η,νX
∼
ν (·)

Algorithm 2 Simulation algorithm, LWSIM, cf. Taylor et al.
(2014)
X̂ = LWSIM(X)

Input: image X
Output: simulated image X̂

for (level, orientation) = η; do
estimate spectrum Ŝη = LWSE(X) via Alg. 1

estimate transfer sequence ŵη(·) :≡
√
T−2

∑
t Ŝη(t)

simulate: X̂ = ∑
η∈H

(
ŵηξη

) ∗ ψη, with ξη ∼ N (0, 1)

4.2 Stationarity testing

Taylor et al. (2014) explored the role of the LSW to the
problem of non-stationarity detection in images. This was
applied to the problem of machine-vision detection of pilling
effects in fabrics. Since the LSW provides a model which
can be simulated from, Taylor et al. (2014) was able to
derive a hypothesis testing procedure to determine stationar-
ity. However, the pervasiveness of anisotropic non-stationary
random fields in image processingmotivates the extension of
this test to our locally stationary dual-tree complex wavelet
framework. Such an extension recognises the fact that non-
stationarity can be caused, at least in part, by a rotation of
the auto-covariance function, cf. Fig. 1.

More generally, detection and characterisation of such
directional non-stationaritywould be of interest to image pro-
cessing tasks such as segmentation (Nunes et al. 2014;Nelson
et al. 2016); denoising or decluttering of highly directional
textures such as sand ripples in sonar imagery (Nelson and
Kingsbury 2010, 2012); or change detection in remote sens-
ing imagery (Hussain et al. 2013). Non-stationarity detection
is also closely aligned with the saliency detection task (Raj
et al. 2007). This open problem in image processing is a cru-
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LS-DTCW sim.; j = 4 = 1 LSW resim.; j = 4 = 1 LS-DTCW sim.; j = 4 = 3 LSW resim.; j = 4 = 3

LS-DTCW sim.; j = 3 = 1 LSW resim.; j = 3 = 1 LS-DTCW sim.; j = 3 = 3 LSW resim.; j = 3 = 3

LS-DTCW sim.; j = 2 = 1 LSW resim.; j = 2 = 1 LS-DTCW sim.; j = 2 = 3 LSW resim.; j = 2 = 3

Fig. 4 LSW simulations of LS-DTCW fields

cial and profound challenge towards higher-level automatic
semantic understanding of image data.

Taylor et al. (2014) extended ideas from time series to use
the LSWmodel to perform stationarity hypothesis testing on
random fields. Bootstrapping forms the central premise. The
sample variance of the observed field is compared to that of
series of simulated fields, where the simulations are drawn
under the assumption that the observed field is stationary.
Algorithms 1 and 2 can therefore be employed to perform
the necessary spectrum estimation and simulation. The basic
intuition is that, if the observation is stationary, then it will
have a variance drawn from the same population as the simu-
lations. If it is non-stationary, the observed variance will, on
average, tend to be greater than the variances of the (station-
ary) simulations. Repeatedly drawing simulations from the
hypothesised model then yields a p value. The advantage of

this approach is that the distribution of the process need not
be known analytically.

We follow the spirit of Taylor et al. (2014) and perform two
sets of experiments. The size and power were assessed using
a selection of stationary and non-stationary random fields,
respectively. Unlike Taylor et al. (2014), and since one of
our interests here is the added directionality afforded by the
LS-DTCW model, we include some anisotropic models.

4.2.1 Algorithm

Unlike Nelson and Gibberd (2016) who concentrated on the
simpler case where the null hypothesis is rejected based on
the average spectrum sample variance statistic over all scales
and orientations, we follow the multiple hypothesis testing
framework. Here, instead, the null hypothesis is tested for all
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scale and orientation pairs individually and is rejected if any
of the spectra sample variances (over η) deviates significantly
from constancy:

H0 : Sη(z) = const. ∀z ∈ T
2

HA : Sη(z) �= const. ∀z ∈ T
2

As in Taylor et al. (2014), we draw on themultiple hypoth-
esis testing bootstrapping framework constructed byDavison
and Hinkley (1997) to accommodate any distributional dif-
ferences and dependencies in the spectrum sample variance
statistics over the different scales and orientations. To this
end, if πη is the tail probability of the statistic τ(η) for
scale/orientation pair η, then the multiple hypothesis frame-
work uses the test statistic q = minηπη. Algorithm 3 lays
out the hypothesis testing procedure.

4.2.2 Data

Three stationary processes were used, namely:

1. A simple, white noise process X ∼ N (0, 1).
2. A spatial moving average, order one process

X ∈ MA(1) ⇔ X (ti )

= ε(ti ) +
∑

k∈∂(i)

ϕk ε(tik), ϕk ≡ 0.9,

where (tik)k∈∂(i) is the four-neighbourhood of the point
ti .

3. An anisotropic stationary field with exponential covari-
ance X (t) ∈ AE(0) ⇔

cov
(
X (t), X (t ′)

) = exp
( − (t − t ′)�D(t − t ′)

)
,

with D = Diag(4, 1).

Furthermore, three non-stationary fields were considered,
viz.:

1. A piecewise constant stationary random field montage of
two moving average, order one fields MA(1), denoted
by MA(1; σ), where one half has an innovation process
ε with var ε = 1 and the other half has var ε = σ .

2. An anisotropic non-stationary field with exponential
covariance X (t) ∈ AE(θ) ⇔

cov
(
X (t), X (t ′)

) = exp
( − (t − t ′)�DRθ ′(t − t ′)

)
,

with D = Diag(4, 1) and where the rotation matrix
Rθ ′(t) is piecewise constant with

θ ′ :=
{
0, for t ∈ T0
θ, otherwise

where T0 is a central square region, cf. Fig. 1. The dif-
ference in rotation between the inner and outer regions,
namely θ , was varied in the experiments to furnish eight
non-stationary processes with

θ ∈ {5◦, 10◦, 20◦, 30◦, 40◦, 50◦, 70◦, 90◦}.

3. A montage of Brodatz textures: each half of the image
comprised a different texture, selected from the Brodatz
texture sub-catalogue: D06, D11, D19, D29, D36, D52,
D79, D84, D87, cg. Fig. 5. The images were then rotated
by angles {0◦, 10◦, 20◦, 30◦, 40◦}.

Remark 4 Note that processes AE(θ) are stationary for θ =
0 and non-stationary for any other value. The non-stationarity
is due to the angular difference in the orientation of the tex-
tures in the inner and outer regions.

Algorithm 3 Multi-hypothesis Stationarity detection, cf.
Taylor et al. (2014)
p = TESTSTAT(X)

Input: image X
Output: p-value p

Estimate observed local spectrum Ŝη = LWSE(X)

Compute observed statistic τ∗(η) = v̂ar
(
Ŝη

)

for k in 1 : K bootstraps do
Simulate X̂ k = LWSIM(X) with Alg. 2
Estimate bootstrapped local spectrum Ŝkη = LWSE(Xk)

Compute statistic τk(η) = v̂ar
(
Ŝkη

)

for m in 1 : M bootstraps do
Simulate X̂ km = LWSIM(Xi ) with Alg. 2
Est. bootstrapped spectrum Ŝkmη = LWSE(Xkm)

Compute statistic τkm(η) = v̂ar
(
Ŝkmη

)

Compute test statistic
qk :=(M + 1)−1min

{
1 + #{τk(η) ≤ τkm(η)}Mm=1

}
η∈H

Compute test statistic
q∗ :=(K + 1)−1min

{
1 + #{τ∗(η) ≤ τk(η)}Kk=1

}
η∈H

Compute p-value p := 1 + #{qk ≤ q∗}Kk=1

K + 1

4.3 Stationarity results

Wehere compare the locally stationarity (real-valued)wavelet
test with that of the locally stationary dual-tree complex
wavelet test. For completeness, in addition to the multiple
hypothesis tests, denoted by MH in Tables 1, 2, 3 and 4,
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D06 D11 D19 D29 D36 D52 D79 D84 D87

Fig. 5 Brodatz textures used for real texture experiments

Table 1 Proportion (%) of samples with p value below 0.05 for three
stationary random fields

Method/process WN MA(1) AE(0)

LS-DTCW (MH) 5 6 5

LS-DTCW (SH) 0 0 6

LSW (MH) 2 2 5

LSW (SH) 0 1 0

Bold values highlight the best performance amongst methods under
analysis

Table 2 Proportion (%) of samples with p value below 0.05 for the
non-stationary anisotropic random fields, AE(θ)

Method/θ 5 10 20 30 40 50 70 90

LS-DTCW (MH) 5 26 59 99 100 100 100 100

LS-DTCW (SH) 6 21 39 66 95 98 99 99

LSW (MH) 5 8 8 24 84 98 99 99

LSW (SH) 0 0 0 0 1 5 10 9

Bold values highlight the best performance amongst methods under
analysis

Table 3 Proportion (%) of samples with p value below 0.05 for the
non-stationary isotropic random fields, MA(1; σ)

Method/σ 1.2 1.3 1.4 1.5

LS-DTCW (MH) 37 62 91 100

LS-DTCW (SH) 4 30 75 97

LSW (MH) 36 66 92 100

LSW (SH) 1 4 20 53

Bold values highlight the best performance amongst methods under
analysis

Table 4 Proportion (%) of samples with p value below 0.05 for the
rotated, Brodatz montage data set

Method/θ 0 10 20 30 40

LS-DTCW (MH) 100 100 100 100 100

LS-DTCW (SH) 60 51 44 37 57

LSW (MH) 56 60 66 60 50

LSW (SH) 7 6 6 7 7

Bold values highlight the best performance amongst methods under
analysis

we also include results using the simpler, but less accurate,
single-hypothesis test (denoted SH) as described by Taylor
et al. (2014) and, later, Nelson and Gibberd (2016).

Allmultiple hypothesis experiments here belowwere con-
ducted on 250 × 250 bootstraps (K = 250, M = 250 in
Algorithm 3) and 100 instances of each image. The single
hypothesis tests were conducted on 250 bootstraps.

Hence, for example, Table 1 records that, two out of 100
white noise processes caused a rejection of the null hypothe-
sis at the 5% level when using the real-valued LSWmultiple
hypothesis test. The single-hypothesis tests were very con-
servative, triggering no null-hypotheses at all.

The dual-tree multiple hypothesis test managed to reach
a figure closest to the ideal value of 5%. The tests on the
MA(1) processes resulted in similar outcomes. Interestingly,
unlike the real-valued LSW, the dual-tree single-hypothesis
tests resulted in a less conservative figure for the anisotropic
stationary process AE(0) experiments than it did for the
isotropic processes.

The conservatism of the single-hypothesis test, relative to
themultiple hypothesis test, broadly alignswith observations
by Cardinali and Nason (2010) and Taylor et al. (2014).

The three non-stationary examples provide a means to
assess the power of the stationarity tests. Table 2 provides
the number of null-hypothesis rejections for 100 instances
of the AE(θ) process, per angle parameter θ . In a sense, this
process becomes increasingly stationary as the angle θ is
decreased away from 90◦ towards 0◦.

It can be seen that, as expected, all tests improve as the
angle increases. However, there is a very clear difference in
the rate at which each test improves. The multiple hypothe-
sis LS-DTCW is the most sensitive. The multiple hypothesis
tests again obtain better (more sensitive) results than their
respective single-hypothesis versions. Interestingly, how-
ever, the single-hypothesis version of the LS-DTCW obtains
better results than the multiple hypothesis LSW. In this case,
the extra directionality provided by the dual-tree wavelet
model is able to elicit smaller changes in the anisotropic
non-stationarity.

Table 3 provides results on the isotropic and non-
stationary process MA(1, σ ). One hundred realisations were
used per value of variance σ ∈ {1.2, 1.3, 1.4, 1.5}. The
results suggest that, even though the single hypothesis
version of the LS-DTCW appears more sensitive to the
single-hypothesis LSW, the multihypothesis LS-DTCW is
only roughly comparable to the multihypothesis LSW test.
Intuitively, since the ‘information’ about non-stationarity is
spread over all directions there appears to be no advantage
in splitting up the directional content of the processes any
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further than the three bands of the usual real-valued wavelet
decomposition.

Finally, Table 4 shows the results from the Brodatz data.
The percentage of null-hypothesis rejections are presented
over the data set of 72 montage images. Again, the multi-
ple hypothesis tests detect more non-stationarities than the
single hypothesis tests. The LS-DTCW correctly declared
all images to be non-stationary, irrespective of what angle
the data were rotated. The single-hypothesis LS-DTCW per-
formed a little worse and much more inconsistently with
respect to angle than the multiple hypothesis LSW test.
The single-hypothesis LSW test performed very poorly and
only managed to pick up 6 or 7% of the non-stationarities.
This experiment lends some credence to the view that, as
long as some of the non-stationarity is distinguishable using
directional information, then a wavelet decomposition with
greater directionality may provide a more sensitive test.

5 Conclusions and further work

This work has focused on the case where the LSW spec-
trum is smoothly varying in the Lipschitz sense. However,
for complicated image scenes with multiple objects, and
distinct boundaries between those objects, a more realistic
scenario would be to permit piecewise jumps in the under-
lying spectrum. This alternative formalism, whereby the
transfer function W is assumed to have piecewise bounded
variation, has been explored for univariate, time-series LSW
models in several other works such as Fryzlewicz and Nason
(2006) and Nason and Stevens (2015) via the Haar–Fisz
device. Extending this concept to the spatial and complex
LSW model would provide a natural target for further work.

The main thrust of this work was to incorporate a wavelet
basis into the existing LSW model which was even more
overcomplete than the existing undecimated basis. This idea
can be pushed further. Other bases are possible such as
the M-band extension of the dual-tree wavelets constructed
by Chaux et al. (2006), wavelet packets schemes such as
Bayram and Selesnick (2008), andmixtures of wavelets such
as Nelson (2015). Although these constructions offer useful
additional functionality, their statistically properties have yet
to be explored. Placing such constructions in the LSW frame-
work could provide an interestingmeans to extend the current
theory and functionality.

Further work towards the non-stationarity detection appli-
cation could also consider a more complete range of
anisotropy testing machinery such as that proposed by Mon-
dal and Percival (2012) and Thon et al. (2015). It could also
consider incorporating the dual-tree complex framework into
the very recent multibasis approach of Cardinali and Nason
(2016) which discovers a broader range of non-stationary
behaviours that is possible with only one basis on its own.
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A Proofs

Lemma 2 Let w, W , and C be the transfer sequence, func-
tion, and coefficients, respectively, from Definition 3. Then

|wη(t)|2 = |Wη(t/T )|2 + O(Cη/T ). (9)

Proof The result is easily obtained from Definition 1, prop-
erty (1), viz.

sup
t

|wη(t) − Wη(t/T )| ≤ Cη

T

sup
t

|wη(t)| − |Wη(t/T )| ≤ Cη

T

|wη(t)| = |Wη(t/T )| + O(Cη/T )

|wη(t)|2 = |Wη(t/T )|2 + O(Cη/T )

= Sη(t/T ) + O(Cη/T ).

��

Lemma 3 Let S be the local wavelet spectrum of the LSW
process X ∈ LSW(C). Then

Sη

(
k + ·
T

)
= Sη

( ·
T

)
+ O(λη‖k/T ‖1).

Proof The proof follows that of Eckley et al. (2010) without
any necessary adjustments. We include it here for com-
pleteness. Using Definition 1, property (3), the triangular
inequality, the square summability of the transfer function
(Definition 1, property 2) and the boundedness of the Lip-
schitz constants (Definition 1, property 4), respectively, we
have that

|Wη

(
k + ·
T

)
− Wη

( ·
T

)
| ≤ λη‖k/T ‖1

|Wη

(
k + ·
T

)
| − |Wη

( ·
T

)
| ≤ λη‖k/T ‖1
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|Wη

(
k + ·
T

)
| = |Wη

( ·
T

)
| + O

(
λη‖k/T ‖1

)

|Wη

(
k + ·
T

)
|2 = |Wη

( ·
T

)
|2+O

(
λη‖k/T ‖1

)
.

��
Theorem 1 (Convergence of auto-covariance) Let C and
CT be, respectively, the local auto-covariance and auto-
covariance of an LSW process {X (t)}t∈T ∈ LSW(C). Then

|CT (z, t) − C(z, t)|= O(T−1).

as T → ∞, uniformly in t ∈ Z
2, and z ∈ T

2.

Proof Since X is zero mean,

CT (z, t) = E{X ([zT ])X ([zT ] + t)}
= E

{ ∑

η,ν∈H

(
w	

ηξη ∗ ψη

)
([zT ])(wνξν ∗ ψ	

ν

)
([zT ] + t)

}
,

where [·] denotes the integer part of · . The orthonormality of
the increments gives

CT (z, t) =
∑

η∈H

∑

k∈Z2

∣∣wη(k + [zT ])∣∣2 Ψη(k, t) ,

withΨη(k, t) := ψη(k)ψ	
η(k−t). The remainder of the proof

now follows the same arguments as Eckley et al. (2010),
namely:

|CT (z, t) − C(z, t)|
=

∣∣∣∣
∑

η∈H

∑

k∈Z2

|wη(k + [zT ])|2Ψη(k, t) −
∑

η∈H
Sη(z)Ψη(t)

∣∣∣∣

=
∣∣∣∣
∑

η∈H

∑

k∈Z2

(|wη(k + [zT ])|2−Sη(k/T + z)
)
Ψη(k, t)

−
∑

η∈H

∑

k∈Z2

(
Sη(k/T + z) − Sη(z)

)
Ψη(k, t)

∣∣∣∣

≤
∑

η∈H

∑

k∈Z2

∣∣Ψη(k, t)
∣∣
(∣∣|wη(k + [zT ]|2 − Sη(k/T + z)

∣∣

+ ∣∣Sη(k/T + z) − Sη(z)
∣∣
)

Lemmas 2 and 3 now yield

|CT (z, t) − C(z, t)| ≤
∑

η∈H

∑

k∈Z2

∣∣Ψη(k, t)
∣∣Cη + λη

∥∥k
∥∥
1

T
,

and the result is obtained by invoking the boundedness prop-
erties (1 and 4 from Definition 1) of the constants C and λ.

��

Theorem 2 (Periodogram bias) Let the LSW(C) process
X : T �→ R, defined on the lattice T := [[1, T ]]2, have
periodogram X∼

η :=
∣∣∣X ∗ ψ	

η

∣∣∣
2
, where {ψη}η∈H is a dis-

crete, undecimated, dual-tree complex wavelet basis and let
A be the associated biasing matrix. Then

EX∼
η =

∑

ν

AηνSν

( ·
T

)
+ O(T−1) (10)

Proof The proof follows the spirit of Eckley et al. (2010),
but, here, special attention is required to take care of the fact
that both the wavelet functions ψ and the transfer sequences
w are complex-valued, rather than real-valued. In addition,
a slightly more ‘operator-theory’ flavour is applied to the
final elements of the calculations whereby convolution prop-
erties are exploited to circumvent the need for some tedious
changes of variables.

EX∼
η = E|X ∗ ψ	

ηrvert
2

= E

∣∣∣∣
∑

t∈T
X (t)ψ	

η(· − t)

∣∣∣∣
2

= E

∣∣∣∣
∑

t∈T

∑

ν∈H

∑

k∈Z2

wν(k)ξν(k)ψν(k − t)ψ	
η(· − t)

∣∣∣∣
2

=
∑

ν∈H

∑

k∈Z2

|wν(k)|2
∣∣∣∣
∑

t∈T
ψν(k − t)ψ	

η(· − t)

∣∣∣∣
2

=
∑

ν∈H

∑

k∈Z2

|wν(k + ·)|2
∣∣∣∣
∑

t∈T
ψν(k − t)ψ	

η(−t)

∣∣∣∣
2

=
∑

ν∈H

∑

k∈Z2

|wν(k + ·)|2∣∣(ψν ∗ ψ	
η)(k)

∣∣2,

where the fourth equality results from the orthonormality of
the increment processes ξ . From Lemma 2, we now use the
fact that

∣∣wν(k + ·)∣∣2 = Sν

(
k + ·
T

)
+ O

(
Cν

T

)
,

to write

EX∼
η =

∑

ν∈H

∑

k∈Z2

(
Sν

(
k + ·
T

)
+O

(
Cν

T

))∣∣(ψν ∗ψ	
η)(k)

∣∣2.

Now, since
∑

ν∈H Cν < ∞ and, since the
∣∣(ψν ∗ψ	

η)(k)
∣∣2

is finite and bounded as a function of k (recall ψ has finite
support), then

EX∼
η =

∑

ν∈H

∑

k∈Z2

S

(
k + ·
T

)∣∣(ψν ∗ ψ	
η)(k)

∣∣2 + O(T−1) .
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From Lemma 3, we similarly use

S

(
k + ·
T

)
= S

( ·
T

)
+ O

(
λν‖k‖1

T

)
,

to get that

EX∼
η =

∑

ν∈H
S

( ·
T

) ∑

k∈Z2

∣∣(ψν ∗ ψ	
η)(k)

∣∣2 + O(T−1).

Finally, the following convolution property completes the
proof.

∑

k∈Z2

|(ψν ∗ ψ	
η)(k)|2 =

∑

k∈Z2

(ψν ∗ ψ	
η)(k)(ψν ∗ ψ	

η)(k)

=
∑

k∈Z2

(ψ	
η ∗ ψη)(k)(ψν ∗ ψ	

ν )(k)

=
∑

k∈Z2

Ψη(k)Ψ
	
ν (k)

= 〈Ψη,Ψν〉
= Aην.

��
Lemma 1 (Bias is real) LetΨ be the ACW (Definition 2. The
entries of the biasing matrix (Definition 5) are positive, real,
and symmetric.

Proof By construction, A is a Gram matrix. Hence, symme-
try follows immediately. We then invoke Plancherel to write
Aη,ν = 〈

ψη ∗ ψ	
η, ψν ∗ ψ	

ν

〉 = 〈∣∣ψ∧
η

∣∣2,
∣∣ψ∧

ν

∣∣2〉. ��
Theorem 3 (Invertibility of the biasing matrix) Let the bias-
ing matrix A′ associated with an appropriately chosen
real-valuedwaveletψ·;0 definedover [[1, T ]]benon-singular.
Then, the biasing matrix A (Definition 5) associated with
the dual-tree wavelet (cf. Property 5 of Definition 1) ψ =
ψ·;0 + iψ·;1 is non-singular with A = 2A′.

Proof We use the same arguments as the proof of Lemma
1 and then note that the Fourier magnitudes of the real and
imaginary parts of the dual-tree wavelets are identical by
design:

Aη,ν = 〈
ψη ∗ ψ	

η, ψν ∗ ψ	
ν

〉

= 〈∣∣ψ∧
η

∣∣2,
∣∣ψ∧

ν

∣∣2〉

= 〈∣∣ψ∧
η;0

∣∣2 + ∣∣ψ∧
η;1

∣∣2,
∣∣ψ∧

ν;0
∣∣2 + ∣∣ψ∧

ν;1
∣∣2〉

= 2
〈∣∣ψ∧

η;0
∣∣2,

∣∣ψ∧
ν;0

∣∣2〉.

Unlike the brief proof in Nelson andGibberd (2016), we here
justify why the real and imaginary parts have the same filter
characteristic, namely

∣∣ψ∧
η;1

∣∣2 = ∣∣ψ∧
η;0

∣∣2. The strategy is to

writeψ∧
η;1 in terms of the filter sequence frequency responses

h1∧1 and h1∧0 . The filter relations in Eqs. (3) and (4) are then
used to write these in terms of h0∧1 and h0∧0 and hence strike
an explicit comparison with respect to the filter response of
the real wavelet ψ∧

η;0.
Firstly, from the dual-tree wavelet filter properties (3) and

(4) and the dual-tree version of the recursions in Equation
(2), namely:

ψ j;a =
∑

k

ha0(· − 2k) ψ j−1(k), j > 0 (11)

ψ0;a = ha1, (12)

we have that:

ψ∧
0;1(ω) = h1∧1 (ω) = 1√

2

∑

t

h11(t) e
−iωt

= (−1)n−1 1√
2

∑

t

h01(n − t − 1) e−iωt

= (−1)n−1e−i(n−1)ωh0∧1 (−ω). (13)

Likewise, we have that

h1∧0 (ω) = 1√
2

∑

t

h10(t) e
−iωt

= 1√
2

∑

t

h00(n − t − 1) e−iωt

= e−i(n−1)ωh00(−ω). (14)

Now, from Equation (11), we have

ψ∧
j;0(ω) = 2( j−1)/2 h0∧1 (2 jω)

j−1∏

�=0

h0∧0 (2�ω).

Similarly,

ψ∧
j;1(ω) = 2( j−1)/2 h1∧1 (2 jω)

j−1∏

�=0

h1∧0 (2�ω).

Now, using (13) and (14) gives

ψ∧
j;1(ω) = 2( j−1)/2(−1)n−1 e−i(n−1)2 jω h0∧1 (−2 jω)×

j−1∏

�=0

e−i(n−1)2�ω h00(−2�ω)

= z j 2
( j−1)/2 h0∧1 (−2 jω)

j−1∏

�=0

h00(−2�ω),
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with z j = (−1)n−1e−i(n−1)(2 j+1−1)ω. But the right-hand side
can be expressed in terms of ψ∧

j;1(ω), viz.

ψ∧
j;1(ω) = z jψ

∧
j;0(−ω)

= z jψ
∧∗
j;0(ω).

Noting that |z j | = 1 completes the proof. ��
Theorem 4 (Linear independence of ACW) Let the auto-
correlation wavelet Ψ ′ associated with an appropriately
chosen real discrete wavelet function ψ·;0 defined over
[[1, T ]] be linearly independent. Then, the auto-correlation
wavelet Ψ associated with the dual-tree wavelet ψ = ψ·;0 +
iψ·;1 is also linearly independent.

Proof This result holds courtesy of the equivalent result
in Theorem 3. However, we here provide an extra proof
restricted to the real scalars as an alternative means to estab-
lish Corollary 1.

We have

∑

η∈H
Δη(z)Ψη(t) = 0

⇒ �
∑

η∈H
Δη(z)Ψη(t) = 0

⇒
∑

η∈H
Δη(z)�

(
ψη ∗ ψ∗

η

)
(t) = 0

⇒
∑

η∈H
Δη(z)

(
ψη;0 ∗ ψη;0 + ψη;1 ∗ ψη;1

) = 0

Now we note that ψη;1 ∗ ψη;1 = ψη;0 ∗ ψη;0 because convo-
lution is commutative and ψ·;1 (and ψ·;1) are just translated
versions of ψ·;0 (and ψ·;0), respectively. Hence, we have
established that

∑

η∈H
Δη(z)Ψη(t) = 0 ⇒

∑

η∈H
Δη(z)Ψ

′
η(t) = 0,

for all t ∈ Z
2, z ∈ T

2. But we know that, since Ψ ′ is linearly
independent we must therefore have that Δη(z) = 0. Hence,
Ψ is also linearly independent. ��
Corollary 1 (LWSuniqueness)TheLWS is uniquely defined,
given the corresponding LSW(C) process.

Proof Similar to Nason et al. (2000) and Eckley et al. (2010),
we follow a proof by contradiction and assume that the LWS
is not uniquely defined. In which case, there exist two dif-
ferent LWS sequences {S(1)

η (z)}z∈T2 and {S(2)
η (z)}z∈T2 , say,

which are associated with the same process and hence give
rise to the same local auto-correlation, namely

C(z, t) =
∑

η∈H
S(1)
η (z)Ψη(t) =

∑

η∈H
Sη(z)

(2)Ψη(t),

for z ∈ T
2, t ∈ Z

2. Defining

Δη(z) := S(1)
η (z) − S(2)

η (z) ∈ R,

this would mean that

∑

η∈H
Δη(z)Ψη(t) = 0. (15)

However, by Theorem 4, Ψ is linearly independent with
respect to real scalars and the only way that (15) could hold,
therefore, is if Δη(z) = 0 which contradicts the original
assumption. ��
Proposition 1 (LS-DTCW covariance inversion) Assume
that the debiasing matrix A is non-singular, then

Sη(z) =
∑

ν

A−1
η,ν

∑

t

C(z, t)Ψ 	
ν (t).

Proof As in Nelson and Gibberd (2016) and Nason et al.
(2000), we follow a proof by verification and then note that
A is both symmetric and, by Lemma 1, real.:

∑

ν

A−1
η,ν

∑

t

∑

η′
Sη′(z)Ψη′(t)Ψ 	

ν (t)

=
∑

η′
Sη′(z)

∑

ν

A−1
η,ν

∑

t

Ψη′(t)Ψ 	
ν (t)

=
∑

η′
Sη′(z)

∑

ν

A−1
η,ν Aν,η′ =

∑

η′
Sη′(z)δη,η′ = Sη(z).

��
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