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ABSTRACT

The aim of seismic imaging is to reconstruct subsurface re-
flectivity from scattered acoustic data. In standard reconstruction
techniques, the reflectivity model parameters are usually defined
as a grid of point scatterers over the area or volume of the subsur-
face to be imaged. We propose an approach to subsurface imaging
using the Dual Tree Complex Wavelet Transform (DT-CWT) as a
basis for the reflectivity. This basis is used in conjunction with an
iterative optimization which frames the problem as a linearized in-
verse scattering problem. We demonstrate the method on a marine
seismic data set acquired over the Gippsland Basin near Australia.
The technique is shown to reduce noise and processing artifacts
while preserving discontinuities. It is likely to be particularly use-
ful in cases where the acquired date is incomplete.

1. INTRODUCTION

The objective of marine seismic imaging is to reconstruct subsur-
face reflectivity from scattered acoustic data generally observed
near the ocean surface. This can be achieved by iteratively min-
imizing a cost function consisting of a data matching term and a
regularization term. In seismic processing literature the procedure
is usually termed least-squares migration (LSM).

LSM has been shown to be effective in optimizing the recon-
struction of subsurface reflectivity, particularly in cases of incom-
plete data [1], [2]. There are several cases where a data set may be
incomplete: finite recording apertures, coarse source/receiver dis-
tribution, gaps between recording lines for 3D imaging and poor
subsurface illumination caused by irregular ray coverage due to
strong lateral variations in velocity.

Choosing a basis that is appropriate for the statistical charac-
teristics of a particular class of input signal is a classical problem.
Linear transforms have proven to be popular due to their simplicity
and mathematical tractability. Reflectivity is usually defined on a
grid of point reflectors. We propose using a complex wavelet basis
for the reflectivity. The Q-shift version of the Dual Tree Com-
plex Wavelet Transform (DT-CWT) is chosen as the wavelet basis
for its key advantages compared to other wavelet transforms [3].
These are summarized as follows:

Shift invariance: Eliminates aliasing defects.

Basis vectors form an almost tight frame: Allows use of the trans-
form in the efficient Conjugate Gradient Descent (CGD) al-
gorithm.

Good directional selectivity: The DT-CWT has six directionally
selective subbands in 2 dimensions and 28 in 3 dimensions.

Limited redundancy: Redundancy is independent of the number
of scales and limited to2n for n dimensions.

Efficient computation: Filters are separable and computation is
less than2n times that of the simple DWT forn dimen-
sions.

Perfect reconstruction.

Wavelet bases tend to decorrelate or diagonalize a range of
non-stationary signals. This has led to extensive use of wavelet
bases in the area of information coding and compression. In LSM,
diagonalization of the model space allows a more accurate and
practical representation of prior information about the model pa-
rameters. This prior information is incorporated in the regulariza-
tion term of the cost function that is minimized.

Using more sophisticated regularization becomes more impor-
tant for missing or undersampled data problems or when increased
resolution is required in the reflectivity model to be reconstructed.
Alternatively, relaxing sampling requirements can reduce the cost
of data acquisition.

Wavelet bases have been successfully applied to other linearized
inverse problems [4] including linear inversion with application
to well logging [5], [6]. Herrmann employed curvelet/contourlet
transforms for seismic imaging similar to that described here but
took a minimax-style approach [7]. The use of a complex wavelet
transform with similar properties to the DT-CWT in seismic pro-
cessing was suggested in [8]. De Rivaz and Kingsbury used the
DT-CWT in a similar manner to here for image restoration in [9].

2. THEORY

Using the high-frequency single-scattering Born approximation the
seismic data can be modeled using a generalized Radon transform:

d = Lm + n (1)

In (1)d is the observed scattered acoustic data which is a func-
tion of time and acoustic source and receiver positions.m is the
reflectivity on a regular grid in 2 or 3 dimensions andL is the lin-
earized seismic modeling operator mapping from one to the other
[1]. Observed data not modeled by the linear operator is modeled
by additive noisen assumed to be Gaussian distributed with co-
varianceCn. Thus, (1) is an inverse problem where the objective
is to recover the reflectivitym from the observed datad.

Expressing the reflectivity using wavelet basis functions by
substitutingm = Pw in (1) results in equation (2).

d = LPw + n (2)



In (2) w are the lexographically ordered wavelet coefficients
whose real and imaginary parts are treated as separate variables.
Starting with equation (2), we derive in a Bayesian framework a
cost function which when minimized provides amaximum a pos-
teriori (MAP) estimate for the wavelet coefficientsw. The condi-
tional probability for the data given the wavelet coefficients is:

pd|w(d|w) =

1

(2π |Cn|)1/2 exp

{
−1

2
(LPw − d)T Cn

−1 (LPw − d)

}

(3)

The MAP estimate for the coefficients is presented in equa-
tion (4) and manipulated into a more convenient form using Bayes
theorem.

wMAP = arg max
w

{
pw|d(w|d)

}

= arg max
w

{
pd|w(d|w) pw(w)

}

= arg min
w

{− log
(
pd|w(d|w) pw(w)

)}

= arg min
w

{
(LPw − d)T Cn

−1 (LPw − d) + f(w)
}

(4)

wheref(w) = − log (pw(w)) is the regularization term. Our
prior model for the wavelet coefficients assumes the real and imag-
inary parts have independent Gaussian distributions with zero mean
and known variance. Thusf(w) becomes:

f(w) = wT Cw
−1w (5)

and we obtain an estimate for the wavelet coefficients by minimiz-
ing:

Ew(w) = (LPw − d)T Cn
−1 (LPw − d) + wT Cw

−1w
(6)

We compare this to the case where a wavelet basis is not used.
The relevant cost function is:

Em(m) = (Lm− d)T Cn
−1 (Lm− d) + f(m) (7)

but a representativef(m) is now more difficult to define.
Note that traditional migration in its most basic form is equiv-

alent to estimating the reflectivity by applying the transpose of the
forward modeling operator to the observed data. This is equiv-
alent to one iteration of a conjugate gradient or steepest descent
minimization procedure like that described here.

3. ALGORITHM

We now turn to the implementation of the algorithm. To speed
up convergence and allow estimation of the coefficient variances,
we start with a non-iterative estimate for the reflectivity. If the
available estimatẽm0 is not scaled correctly, it is multiplied byλ
that minimizesEm(λm̃0) with f(m) = 0, so thatm0 = λm̃0.
This is equivalent to performing one iteration of steepest descent
minimization of (7) withm̃0 as the search direction and no regu-
larization or preconditioning.

Following [9] the coefficient variances are allowed to vary
within each subband but are the same for the real and imaginary
parts of a given coefficient. These variances are estimated from the

forward DT-CWT of the initial reflectivity estimatew0 = PTm0

asσ2
i = 0.5|wi|2 wherewi is the corresponding complex wavelet

coefficient inw0.
The algorithm is initialized withw0 and the energy function

(6) is minimized using a preconditioned CGD algorithm optimized
to use the minimum number of forward and transpose seismic
modeling operators per iteration (one of each), since these opera-
tions comprise the bulk of the computational effort - see appendix.
A block diagram illustrating the algorithm implementation is dis-
played in figure 1. Figure 1(a) shows the preprocessing as detailed
in this section, while figure 1(b) contains the optimized conjugate
gradient loop, where the steepest descent direction is updated at
each iteration rather than recalculated from scratch.

After sufficient iterations the reflectivity estimate is found by
applying the inverse wavelet transform to the current coefficient
estimate:

m̂ = Pŵk (8)

Note that the matricesP andPT required in the conjugate
gradient algorithm are not implemented as matrix multiplications
but using much faster wavelet decomposition and reconstruction
algorithms.

An area where the use of a wavelet basis makes the inversion
more difficult is the preconditioning of the system. To speed up
convergence, CGD algorithms used to solve linear inversion prob-
lems are preconditioned by scaling the variables prior to minimiza-
tion. In its usual form the diagonal elements of the Hessian of the
cost function52E need to be calculated, so that they can be scaled
to unity by the preconditioning. For the non-wavelet cost function
(7), ignoring the regularization term (f(m) = 0), the Hessian is:

52E = LTCn
−1L (9)

However, for wavelet based inversion this becomes:

52E = PTLTCn
−1LP (10)

Calculating the diagonal elements of (10) is more difficult.
Fortunately, for preconditioning the exact values are not required
and a rough estimate is sufficient. The computational effort re-
quired to obtain these values can be significantly reduced by using
heavy interpolation of the wavelet subbands, taking advantage of
the small support of most of the wavelet basis functions and by
decimation of the trace locations for large data sets.

4. RESULTS AND CONCLUSIONS

The data used to generate the results presented here are from a
3-D survey acquired in 2001 over the offshore Gippsland Basin
near Australia. A single shot/streamer line was selected from the
data volume to test the complex wavelet least-squares migration
algorithm in 2 dimensions. From this 14216 traces (lines of data
at particular source/receiver locations) with source/receiver mid-
points along a length of 2km above the area to be imaged are used.
The modeling operatorL is implemented as a Kirchhoff demigra-
tion operator in 2.5 dimensions (3D geometrical spreading with
reflectors homogeneous in one dimension) [10].

The noise covariance matrix is estimated directly from the
trace data. It consists of two components. The first, which mod-
els background noise incoherent scatterers, was picked roughly by
hand, decaying with time and slowly with source/receiver offset
(the distance between the two). The second is proportional to a
windowed average of the data values squared along each trace.
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Fig. 1. Block diagram of the complex wavelet seismic imaging system

This component models the modeling error which is assumed to
be roughly proportional to the data and the stronger reverberations
near strong reflectors.

For our results we used the Kirchhoff based estimatem̃0 =
LTCn

−1d to initialize the algorithm. We demonstrate the al-
gorithm’s ability to cope with undersampled data by using a re-
duced data set where the traces are decimated by a factor of 8.
In the absence of any ground truth data, we compare the result to
the Kirchhoff based estimate obtained using the full data set. We
also compare the result to that obtained with non-wavelet least-
squares migration using the cost function in (7) with the regular-
ization defined asf(m) = mT C−1

m m, whereCm = σ2
mI as

suggested in [11].σ2
m is the variance of the reflectivity model pa-

rameters, which we have estimated as the sample variance of the
initial Kirchhoff estimate.

Figure 2 displays the results for an approximately 1250m wide
by 500m deep target area. Figure 2(a) contains the Kirchhoff esti-
mate for the decimated data used to initialize the complex wavelet
system. The Kirchhoff reconstruction using the full data set in fig-
ure 2(c) suppresses much although not all of the noise seen in the
reconstruction using the decimated data. The result for the com-
plex wavelet system in figure 2(b) is seen to significantly suppress
noise and reduce so called migration artifacts, such as that seen in
figure 2(a) at a horizontal position of about 450m and at depth of
about 1700m.

The non-wavelet iterative algorithm (figure 2(d)) is seen to
somewhat reduce the migration artifacts of the Kirchhoff recon-
struction but does not suppress noise as well as the complex wavelet
system. The non-wavelet algorithm diverges in just a few itera-
tions if no regularization is employed. The results for the complex
wavelet system presented here are stablei.e. continuing for more
iterations brings increasingly smaller updates to the estimate and
the reflectivity estimate does not diverge.
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6. APPENDIX

The Seismic Modelling OperatorL and its TransposeLT

We briefly discuss the computational aspects of applying the
operatorL and its transpose in the following types of calculation:

d = Lm and m̂ = LTd

Assuming that the size of the (2D) modelm is Nx×Nz and there
areNp recorded waveforms (traces) andNt time samples per trace
so thatd is of lengthNpNt, then direct multiplication byL or
LT would require approximatelyNxNzNpNt operations. This is
likely to be unacceptably large. FortunatelyL may be regarded
as the cascade of a sparse matrix multiplication and a relatively
efficient convolution process, summarized as follows:

a) Each point in the modelm excites each recorded waveform
with a band-limited impulse of short duration, at a point deter-
mined by the total propagation delay from source to receiver via
that point inm. In applyingL these short pulses may be added to
the traces in turn, and only affect a proportionα of the total gathers
in which the path delay lies within the range of delays being mea-
sured ind. Interpolated pulse waveforms are used to synthesize
fractional sample delays and the pulses areNs samples long. Each
pulse is scaled by an appropriate attenuation coefficient, dependent
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(a) Initial Kirchhoff estimate - decimated data

Horizontal distance (m)

D
ep

th
 (

m
)

0 200 400 600 800 1000 1200

1300

1400

1500

1600

1700

1800

(b) 10 iterations of complex wavelet imaging - decimated data
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(d) Non-wavelet LSM - decimated data

Fig. 2. Results of the complex wavelet seismic imaging system

on the path. This all requires approximatelyαNxNzNsNp opera-
tions.

b) Each trace is convolved with the source basis function (com-
bined ’source wavelet’ and ’wavelet shaping factor’ in seismic pro-
cessing terminology). This is typically performed in the frequency
domain and requires of orderNpNt log2(Nt) operations, signifi-
cantly less processing than step (a).

Hence the total processing is of orderNsNxNzNp operations.
Note that this is much greater than the DT-CWT of the model,
which is approximately100NxNz operations in 2D. Applying the
adjoint operatorLT to d requires about the same amount of com-
putation as applying the forward operator tom, and is essentially
step (b) with the filters reversed, followed by step (a) but going
from the trace domain to the model domain.
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