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Image Modeling Using Interscale Phase Properties
of Complex Wavelet Coefficients

Mark Miller, Member, IEEE, and Nick Kingsbury, Member, IEEE

Abstract—This paper describes an approach to image modelling
using interscale phase relationships of wavelet coefficients for use
in image estimation applications. The method is based on the dual
tree complex wavelet transform, but a phase rotation is applied to
the coefficients to create complex “derotated” coefficients. These
derotated coefficients are shown to have increased correlation com-
pared to standard wavelet coefficients near edge and ridge features
allowing improved signal estimation in these areas. The nature of
the benefits brought by the derotated coefficients are analyzed and
the implications for image estimation algorithm design noted. The
observations and conclusions provide a basis for design of the de-
noising algorithm in [1].

Index Terms—Complex, denoising, derotated, derotation, esti-
mation, image modeling, interscale, wavelet.

I. INTRODUCTION

W AVELET transforms have emerged as a popular basis
for photographic image modeling and restoration, due

to the statistically useful properties of wavelet coefficients of
natural images. Methods of parameterizing image statistics, in-
cluding those of neighborhoods of wavelet coefficients, often
involve the use of covariance information [2]. Here, we ex-
amine the covariance information for groups of wavelet coeffi-
cients near discontinuities and show how using phase informa-
tion from coefficients at the next coarser level has the potential
to make covariance based estimation more effective. The multi-
scale transform used is the dual tree complex wavelet transform
(DTCWT) [3], [4].

Interscale phase relationships of wavelet coefficients have
previously been used in texture synthesis [5] and in object
recognition [6]. Suggesting the use of interscale phase rela-
tionships in image quality measurement, Wang and Simoncelli
[7] provide a good analysis of local phase near scale invariant
features for a certain class of continuous wavelets consisting
of a low-pass filter modulated with a complex exponential.
Romberg et al. [8] discuss interscale phase relationships and
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the topic is closely related to Kovesi’s use of phase congruence
in edge detection [9], [10].

We focus on discontinuities, assuming initially that the neigh-
borhood of wavelet coefficients considered is dominated by the
presence of an edge or ridge,1 i.e., any other features present
have little effect on the wavelet coefficient magnitudes. A com-
panion paper to this one [1] demonstrates the successful use of
the proposed image modeling in a state-of-the-art denoising al-
gorithm and shows how to combine the specific modeling of dis-
continuities with standard modeling using an adaptive Bayesian
model section framework. A more accessible introduction to the
use of interscale phase relationships in covariance based estima-
tion is given in [11].

Section II gives background on the wavelet transform used
here and on the phase characteristics of wavelet coefficients.
Section III provides a theoretical framework that motivates the
use of interscale phase relationships to improve signal estima-
tion performance by using a representation with higher signal
correlation. An approach to using interscale phase in estimation
algorithms is recommended in Section IV proposing the use of a
novel ‘derotated’ coefficient. Section IV also provides some ex-
amples to familiarize the reader with the coefficients in 2-D then
illustrates the limitations of the method and states the implica-
tions for image estimation algorithm design. In Section V, we
show that the greater phase alignment of derotated coefficients
seen in Section IV does, indeed, translate to higher correlation
between coefficients (which is not guaranteed) and examine the
nature of the improvement.

II. BACKGROUND

A. Dual Tree Complex Wavelet Transform

The DTCWT uses a dual tree of real wavelet filters to gen-
erate the real and imaginary parts of complex wavelet coeffi-
cients. This introduces a limited amount of redundancy and al-
lows the transform to provide approximate shift invariance and
directionally selective filters, while preserving the usual proper-
ties of perfect reconstruction and computational efficiency.

For a -dimensional input, an scale DT-CWT outputs an
array of real scaling coefficients corresponding to the lowpass
subbands in each dimension and directional sub-
bands of complex wavelet coefficients at level , where

and is the total size of the input data. The total
redundancy of the transform is and independent of . The
mechanics of the DT-CWT are not covered here. See [3] and

1Note that the discontinuity need only be dominant at the scale and orienta-
tion of the neighborhood considered. For example, fine texture surrounding a
multiscale discontinuity will not greatly disrupt the modeling at coarser levels.
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Fig. 1. Magnitude and phase response of a level 3 wavelet coefficient and phase
response of a level 4 coefficient to a step input at a range of offsets. Adapted with
permission from code used to generate graphics in [6]. (a) Magnitude response
at level 3. (b) Phase response at level 3. (c) Phase response at level 4.

[4] for a comprehensive explanation of the transform and de-
tails of filter design for the trees.

In two dimensions, the transform produces six directional
subbands at each scale. We will often refer to a local neighbor-
hood of wavelet coefficients. This is defined as a group of co-
efficients at nearby spatial locations and adjacent scales. Parent
and child coefficients refer to coefficients in the next coarser and
finer subbands respectively in the same directional subband set
and at the same spatial location (possibly interpolated).

B. Phase Characteristics of Complex Wavelet Coefficients

A well-known property of the Fourier transform is that a shift
in the time or spatial domain corresponds to a linear phase ramp
in the Fourier domain as shown in (1)

(1)

Consider an input signal consisting of an object in the spatial
or time domain. A shift of will result in a phase shift of
at frequency in the Fourier domain. A “moving” object will
cause the Fourier coefficients to rotate at a rate proportional to
their frequency .

DT-CWT coefficients display similar properties to Fourier
coefficients for small offsets of a dominant feature in the vicinity
of the coefficient. DT-CWT subbands are centered on a fre-
quency twice that of the next coarser level. Assume the presence
of a single ridge or edge feature at a given scale, orientation and
location. Because adjacent wavelet coefficients are at different
locations relative to the feature, the phase of a complex coef-
ficient will tend to be offset from its neighbor by an amount
twice that of the corresponding parent coefficient (interpolated
at the same location as the child), provided the feature is mul-
tiscale and the frequency spectrum of the feature behaves simi-
larly across both of the scales.

This useful relationship is best illustrated in a 1-D setting.
Fig. 1(a) shows the response of the magnitude and the real and
imaginary parts for a level 3 DT-CWT coefficient as a 1-D step
function is translated past it. Fig. 1(b) and (c) shows the phase

Fig. 2. Magnitude and phase response of a level 3 wavelet coefficient and phase
response of a level 4 coefficient to an impulse input at a range of offsets. Adapted
with permission from code used to generate graphics in [6]. (a) Magnitude re-
sponse at level 3. (b) Phase response at level 3. (c) Phase response at level 4.

response of the coefficients at levels 3 and 4 to the same step.
The horizontal axes give the translation of the step. Fig. 2 shows
the same results for an impulse input. In both cases, the phase of
the level 3 coefficient changes at approximately twice the rate
of its parent at level 4.

III. CORRELATION AND SIGNAL ESTIMATION

In this section, we present a framework that motivates the
use of interscale phase in image estimation applications. We ex-
amine the effect of signal correlation in Wiener estimation and
show that for two Gaussian variables in additive Gaussian noise,
estimation error decreases as the absolute value of the difference
between the noise and signal correlation coefficients increases.
This means that if the noise correlation magnitude is lower than
that of the signal the error variance is a decreasing function of
the signal correlation magnitude.

For a redundant transform like the DT-CWT, noise in the
wavelet domain is not strictly uncorrelated. However, the cor-
relation is generally significantly less than for the signal com-
ponent. This leads to the conclusion that if a signal can be rep-
resented such that it displays additional correlation, e.g., using
the relationships described in the previous section, signal esti-
mation accuracy could be improved.

A. Effect of Signal Correlation in Wiener Filtering

Consider the estimation of a Gaussian variable from the
observation of two correlated variables in Gaussian noise. We
show that the Wiener estimation error as a function of the signal
correlation coefficient is concave and has a local maximum
where the value of the signal correlation coefficient is equal to
that of the noise.

The framework used is the standard denoising problem but
with only two variables
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and are zero mean and have covariance matrices and
, i.e., and . and are

parameterized as shown in (2) and (3). and are correla-
tion coefficients and have values between negative one and one
inclusive. Note that we exclude the cases where

, since, in these cases, the observations are deterministically
linked

(2)

(3)

The standard Wiener estimate is given in (4) for
completeness

(4)

The covariance of the error of a Wiener estimate of given
is shown in (5)

(5)

The variance of the error for each variable is then given by
the leading diagonal elements of

(6)

To analyze the behavior of , we take the derivative of (6)
with respect to the signal correlation coefficient and simplify to
obtain the expression in (7)

(7)

The first product term in (7) is positive for all values of , so
the roots of (7) are determined by the final two product terms.
Given this, (7) has the roots in (8) and (9)

(8)

(9)

The first root lies in the interval . In (9), if it
exists, either is positive and the root is greater than one or
is negative and the root is less than minus one. Hence, the second
root lies in . These are the stationary
points of as a function of , i.e., where the derivative is
zero.

Since there is a single root of on the interval
, we can determine the concavity of the error vari-

ance from the values of at and .

Firstly we consider the estimation error variance gradient when

(10)

By inspection, we see the expression in (10) is positive for all
. Equation (11) gives the gradient when

(11)

The expression in (11) is negative for all . There-
fore, is concave for all with a local maximum
at . This accords with the intuition that for the lowest
estimation error the signal statistics should be as different as
possible from those of the noise.

A consequence of this result is that if the noise correlation is
closer to zero than that of the signal, increased signal correlation
magnitude results in a lower estimation error. Note that this also
implies that image restoration techniques using interscale phase
to gain increased signal correlation may not be as effective if the
noise present is coloured such that the coefficients of its wavelet
domain representation are more correlated.

IV. DEROTATED COMPLEX WAVELET COEFFICIENTS

The constancy of the phase gradient relationship between
wavelet scales demonstrated in Section II-B combined with the
result of Section III motivates the use of coefficients whose
phase has been “derotated” by twice the phase of their interpo-
lated parent coefficient. In the presence of a multiscale feature,
the phases of the derotated coefficients should be approximately
aligned and, therefore, highly correlated. This correlation can
then be used to provide improved signal estimation performance
at these image features.

In both [5] and [6], the interscale phase relationships are
captured using the modified product of coefficients at adjacent
scales shown in (12), where is a wavelet coefficient at a given
scale and orientation, is the corresponding parent coefficient
at the next coarser scale and is the product coefficient.
denotes the phase of

(12)

However, in an image estimation context, avoidance of non-
linearity is important for mathematical tractability so that the
new representation can be readily used in an efficient estima-
tion algorithm. For this reason we propose the use of a coeffi-
cient similar to that in (12) but with the magnitude of the child
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Fig. 3. Locations of overlay examples in Figs. 4 and 5.

Fig. 4. DT-CWT and derotated coefficients at level 3, direction 1 (15 ) in sec-
tion 1 of the Lena image. (a) DT-CWT coefficients. (b) Derotated coefficients.

preserved. Equation (13) defines the new derotated coefficient,

(13)

Analysis of this derotated coefficient via the DT-CWT filter
banks is not straight-forward. However, analytical insight into
the interscale phase relationships of the DT-CWT can be gained
by considering the DT-CWT as a discrete approximation to the
continuous Cauchy wavelet. An analysis along these lines is in-
cluded in Appendix A and reveals the quadrature nature of the
phases of derotated coefficients near edges compared to those
near ridge features.

A. Derotated Coefficients in Two Dimensions

We now look at some examples of derotated coefficients in
2-D and consider their use in estimation algorithms. Figs. 4 and
5 contain examples of DT-CWT and derotated coefficients over-
layed on part of the Lena image. Fig. 3 shows the original image
and the locations of the examples. As we would expect, dero-
tated coefficients are seen to align at edge and ridge features.
Note that we are only considering features aligned with the ori-
entation of the stated subband. Features with other orientations
will not excite the coefficients’ magnitudes. Note that for dero-
tated coefficients within the same subband there is a 90 degree
phase difference between the vectors near edges relative to those
near ridges. See Appendix A for an explanation of this in 1-D.

Unfortunately, phase alignment does not guarantee increased
correlation. Complex wavelet coefficients are a bandpass signal
and will, therefore, rotate with an average rate proportional to
the “center frequency” of the subband’s spectrum. This rota-
tion can have the appearance of a lack of correlation. However,

Fig. 5. DT-CWT and derotated coefficients at level 2, direction 3 (75 ) in sec-
tion 2 of the Lena image. (a) DT-CWT coefficients. (b) Derotated coefficients.

Fig. 6. Location of overlay example in Fig. 7.

Fig. 7. DT-CWT and derotated coefficients at level 2, direction 3 (75 ) in the
Barbara image. (a) DT-CWT coefficients. (b) Derotated coefficients.

covariance information can adequately describe a linear phase
gradient across coefficients. To determine how the derotation
operation contributes to increased correlation we need to ex-
amine the correlation behavior of the two types of coefficient
in greater detail. This is done in Section V.

B. Limitations of Derotated Coefficients

We should also consider the limitations of image modeling
using derotated coefficients and the implications this has for
their use in image estimation algorithms. Image features which
are not multiscale are not suited to representation using dero-
tated wavelet coefficients. Certain features, in particular areas
of regular texture, tend to be more suited to representation using
standard wavelet coefficients. Fig. 7 shows standard and dero-
tated DT-CWT coefficients for part of the Barbara image shown
in Fig. 6. The DT-CWT coefficients show significant correlation
between neighboring coefficients whereas the derotated coeffi-
cients show neither alignment nor constant rotation across the
vectors and have little correlation in these regions.
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Fig. 8. DTCWT and derotated coefficients for straight edges at different offsets. (a) DTCWT coefficients—offset 1. (b) Derotated coefficients—offset 1.
(c) DTCWT coefficients—offset 2. (d) Derotated coefficients—offset 2.

This has important implications for the use of derotated coef-
ficients in image estimation algorithms. Derotated coefficients
are not appropriate for modeling all feature types and restora-
tion algorithms using them will need to have a mechanism for
switching to other modeling methods for neighborhoods of co-
efficients without a dominant edge or ridge feature. In [1], this
is achieved using a Bayesian model selection framework.

V. ANALYSIS OF DT-CWT AND DEROTATED

COEFFICIENT CORRELATIONS

As mentioned previously, the phase alignment illustrated
in Section IV-A does not guarantee increased correlation
(applying a linear phase gradient across a set of coefficients
will change their alignment but will not decrease the level of
correlation between them). To apply the result of Section III-A
to image estimation it is necessary to show that derotated
coefficients have more consistent phase differences between
coefficients, and, therefore, increased correlation at disconti-
nuities compared to DT-CWT coefficients. It is also useful to
know in which situations modeling using derotated coefficients
is likely to offer the most improvement. Therefore, we now
compare covariance information of derotated coefficients at
discontinuities to that of standard DT-CWT coefficients. It turns
out there are three mechanisms by which derotated coefficients
provide an improved description of image discontinuities:

1) improved correlation along discontinuities;
2) improved correlation across discontinuities;
3) improved correlation across scale at edge features.
To begin, we examine the behavior of DT-CWT coefficients

at discontinuities as a reference point to see what is gained by
using derotated coefficients. This is done in Section V-A be-
fore covering the properties listed above in Sections V-B, V-C,
and V-D. In all cases, it is assumed the discontinuity is approx-
imately aligned with the subband’s direction (i.e., within
degrees). If this is not the case, the coefficients’ magnitudes will
be small.

Display of Covariance Information: To illustrate the com-
plex covariance information for a neighborhood of coefficients,
we display the cross correlation of a central coefficient with its
neighbors using vectors with a circle at the base positioned at the
location of the neighbor. The cross correlation with the parent
coefficient is also displayed to the right. For the purpose of clear
illustration we use only the complex covariance information for
all DT-CWT and derotated coefficients.

A. Shift Invariance of Phase Differences: Both Types of
Coefficient

First, we will consider the relationship between coefficients
in the direction approximately perpendicular to the edge. We
can explain the behavior of the phase of DT-CWT and derotated
coefficients in 2-D in terms of the 1-D analysis as follows. The
DT-CWT can be implemented using separable filters. For each
subband, the decomposition can be expressed as a series of (real)
2-D low-pass filtering operations followed by a lowpass filtering
in one direction and highpass in the other direction (near-hori-
zontal and near-vertical subbands) or high-pass filtering in both
dimensions (diagonal subbands). Thus, in the direction perpen-
dicular to the discontinuity, the phase of the coefficients in 2-D
rotate across the filtered discontinuity in a similar manner to the
1-D case.

Fig. 8 shows standard DT-CWT coefficients and derotated
coefficients for a vertical edge at two offsets. The vectors have
rotated as a result of the edge’s shift. However, the phase dif-
ferences between coefficients across the edge are preserved by
the linearity of the step response illustrated in Fig. 1. The phase
of the DT-CWT coefficients is not shift invariant but the phase
differences between adjacent coefficients across the edge are.
Both the phases of derotated coefficients and consequently their
phase differences are shift invariant at the edge.

However, only phase differences between coefficients are rel-
evant in determining covariance information. For both DT-CWT
and derotated coefficients within a given subband, the covari-
ance relationships for an edge at a particular orientation are in-
dependent of the exact position of the edge (note that the same
is not true for the relationship with the parent coefficient). This
is illustrated in Fig. 9, which shows the covariance information
for the edges in Fig. 8. The covariance information within the
same subband for the edge at offset 1 in Fig. 8(a) and (b) is very
close to that for offset two shown in Figs. 8(c) and (d) for both
DT-CWT and derotated coefficients.

B. Improved Correlation Along Discontinuities

Now consider Fig. 10, where the edge has been rotated
clockwise by 30 degrees. The rotation causes the position of the
DT-CWT coefficients relative to the edge to change along the
edge. The phase differences across the edge remain invariant
to the positional change caused by the rotation as explained
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Fig. 9. Complex covariance information for DT-CWT and derotated coefficients for edges at different offsets. The vector to the right corresponds to the cross
correlation with the parent coefficient. (a) Covariance information for DT-CWT coefficients—offset 1. (b) Covariance information for derotated coefficients—offset
1. (c) Covariance information for DT-CWT coefficients—offset 2. (d) Covariance information for derotated coefficients—offset 2.

Fig. 10. DTCWT and derotated coefficients for an edge at an angle.
(a) DTCWT coefficients. (b) Derotated coefficients.

Fig. 11. Covariance information for the edge at a different orientation in
Fig. 10. The vector to the right corresponds to the cross correlation with
the parent coefficient. (a) Covariance information for DT-CWT coefficients.
(b) Covariance information for derotated coefficients.

above. However, there is now a phase change along the edge
due to its rotation.

The change in this rate of rotation with the angle of the edge
is approximately 135 degrees of coefficient phase rotation per
30 degrees (the angular support of each subband) of edge rota-
tion. In contrast, the derotated coefficients’ phases are invariant
to the rotation of the edge, provided that its orientation is ap-
proximately aligned with that of the subband. This is illustrated
by Fig. 11 showing the covariance information for the edge
in Fig. 10. For DT-CWT coefficients, the covariance relation-
ships in the direction approximately aligned with the edge are
different from those for the vertical edges in Fig. 9 (by about
135 degrees). However, the derotated coefficient covariance in-
formation for the rotated edge in Fig. 10 is very similar to that
for the vertical edge in Fig. 9.

Covariance information for derotated coefficients at discon-
tinuities is more constant than for DT-CWT coefficients be-
cause the relationships between coefficients along the edge are
more stable for different orientations of the discontinuity. This

Fig. 12. Phase gradient of DT-CWT step and impulse response. The horizontal
axis gives the relative position of the input in terms of the spatial domain sample
rate.

Fig. 13. Magnitude spectra of discontinuities and a bandpass signal.

means that, relative to derotated coefficients, the covariance in-
formation of wavelet coefficients for an edge at a given angle is
sub-optimal in describing the behavior of coefficients for edges
at other angles within the same angular support of the subband.

C. Improved Correlation Across Discontinuities

We now address the consistency of phase differences in the
direction perpendicular to the edge or ridge. Because the mag-
nitude of wavelet coefficients decreases rapidly in the direction
perpendicular to the discontinuity, we are primarily concerned
with the coefficients within a single sample space of the edge in
the direction perpendicular to the discontinuity.

Fig. 12 shows the phase gradients for the impulse and step
responses of the DT-CWT at levels 4 and 5 in 1-D. This is the
first order derivative of the phase responses in Figs. 1 and 2.
The plots are noisy relative to Figs. 1 and 2 because high fre-
quencies have been boosted through differentiation. The gra-
dient becomes smoother if longer q-shift filters are used in the
DT-CWT. Nevertheless, the approximately constant gradient
means the phase response is nearly linear over a distance up to
about one sample either side of the discontinuity, although the
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Fig. 14. Conditional histogram of real and imaginary parts of DT-CWT and derotated coefficients at adjacent scales. The horizontal axis corresponds to the child
and the vertical axis to the parent coefficient. (a) DTCWT coefficients—real parts. (b) DTCWT coefficients—imaginary parts. (c) Derotated coefficients—real
parts (corresponding to edge features). (d) Derotated coefficients—imaginary parts (corresponding to ridge features).

response is less linear for impulse features than for edges. Stan-
dard DT-CWT coefficients will rotate across the edge or ridge
at a rate that is approximately constant irrespective of the exact
position of the feature. However, Fig. 12 shows that this rate dif-
fers by about 10% depending on whether the feature is an edge
or ridge.

A spectral explanation of this phenomenon is as follows. A
forward DT-CWT transform can be considered to be a com-
plex bandpass filtering operation with negative frequencies sup-
pressed followed by decimation. Fig. 13 shows an illustrative di-
agram of the frequency spectrum of a particular subband before
decimation in 1-D. Also drawn are the spectrum of the parent
level subband, a flat spectrum and a spectrum, the latter
two corresponding to impulse and edge features respectively.

Complex wavelet coefficients are a bandpass signal and will,
therefore, rotate with an average rate that scales proportionally
with the frequency of the passband. The filtering operation, cor-
responding to multiplication of the spectra in Fig. 13, will result
in a higher average rate of rotation for the impulse than the edge
feature. However, provided that a discontinuity at a given level
has a similarly shaped spectrum over the parent subband, as is
the case for the impulse and step spectra in Fig. 13, the phase
differences between derotated coefficients will be close to zero
across the feature.

At level 4 the higher rotation rate of coefficients near an im-
pulse results in the phase difference between adjacent DT-CWT
coefficients at an impulse being at most about 40 degrees more
than that between coefficients at an edge, so the effect is less
significant than the other effects discussed in this section.

D. Improved Correlation Across Scale at Edge Features

We see in Fig. 9, and especially in Fig. 11, that the parent co-
efficient correlation magnitude for DT-CWT coefficients is sig-
nificantly less than that for derotated coefficients. DT-CWT co-
efficients generally display very little first-order correlation with
their parent coefficient. This is a result of the differing phase gra-
dients at each scale as illustrated in Fig. 2.

This lack of correlation was noted in [12] and is illustrated
in Fig. 14(a) and (b), which show the conditional histogram of
the real and imaginary parts of wavelet coefficients at two ad-
jacent scales. A single directional subband at level 2 for var-
ious transposition and reflections of the Peppers image is used
to generate the histograms. Fig. 14(c) and (d) shows the same
histograms for the corresponding derotated coefficients. In this

case, the real parts of the coefficients correspond to edge fea-
tures and the imaginary parts to ridge features.

Fig. 14(c) shows significant correlation between the real parts
of derotated coefficients at adjacent scales. Derotated coeffi-
cients have good correlation with their parent at edges, due to
their invariance to the exact position of the discontinuity, their
consistent relationship with feature type at each level and be-
cause edges are commonly scale invariant across a number of
scales. Note that the statistics in Fig. 14(c) are generated using
the entire image containing a range of features in addition to
multiscale edges, which contribute to the parts of the bow tie dis-
playing less correlation. Any correlation between the imaginary
parts in Fig. 14(d) is much less significant. The difference is that
a ridge feature of a given width has an inherent scale, whereas an
edge is scale invariant across all scales. A ridge at one scale acts
more like two separate edges at a finer scales where its width
becomes significant.

E. Summary of Derotated Coefficient Analysis

The preceding sections show that the phase shift invariance
displayed by derotated coefficients means that covariance rela-
tionships between derotated coefficients are stronger than those
between standard wavelet coefficients at structural image fea-
tures. By extending the logic developed for the two variable
wiener filtering case in Section III we conclude that provided
the wavelet domain representation of the noise present is less
correlated than that of the image, correlation (Wiener) based
estimation of derotated coefficients will be more accurate than
standard wavelet coefficients at image discontinuities.

Derotated coefficients will have the most impact in describing
features at different angles including curving features. If all dis-
continuities are straight and in the same direction there will be
reduced benefit. The use of derotated coefficients also means
a parent coefficient makes a more useful contribution to pre-
dicting the child coefficient.

VI. CONCLUSION

A method for defining the statistics of natural images has
been presented and analyzed. The method derotates complex
wavelet coefficients by twice the phase of the parent coefficient
to create a new “derotated” coefficient. This is a more linear
representation than that used previously in [5] and [6] allowing
the use of the coefficient in covariance based image estimation
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algorithms. Compared to standard wavelet coefficients, dero-
tated coefficients are more invariant to curvature and rotations of
edge and ridge features and display increased correlation near
these features. This allows improved correlation based signal
estimation in these areas. This is demonstrated using a simple
Wiener filtering example in [11]. The use of derotated coeffi-
cients in a state-of-the-art denoising algorithm is demonstrated
in [1].

APPENDIX A
CAUCHY WAVELET ANALYSIS

In this Appendix, an analysis of derotated coefficients is per-
formed by considering the DT-CWT as a discrete approxima-
tion to the continuous Cauchy Wavelet. This comparison was
previously made by Romberg et al. in [8] to illustrate the inster-
scale relationship of wavelet coefficient phases at edges. This
analysis has been adapted to provide a theoretical background
on the quadrature nature of the phase of derotated coefficients
near edges and ridges. A similar analysis can be performed using
a lowpass function modulated by a complex exponential. An
analysis for such continuous wavelets (not derotated) is given
in [7].

Equation (14) gives a generic form of the Cauchy wavelet
including parameters and to control the phase and amplitude
of the complex function

(14)

The dilated and shifted versions of are expressed using the
notation in (15)

(15)

The real parameters , and can be chosen to achieve a
good approximation to the DT-CWT impulse response near the
center of the main support of the wavelet function, the region
with which we are primarily concerned. Fig. 15 shows the ap-
proximation at level 5 in 1-D for the parameter values in Table I.

We now examine the interscale phase relationships of
the Cauchy wavelet analytically. The approximation to the
DT-CWT in 1-D at level and spatial location is given in (16)

(16)

This function has a phase , given in (17)

(17)

Fig. 15. Comparison of the Cauchy Wavelet and combined DT-CWT decom-
position filter at level 5. The scale of the horizontal axis is that of the input in
the spatial domain. Values for the parameters �; c; A, and � are given in Table I.
(a) Magnitude response at level 3. (b) Impulse response at level 3.

TABLE I
PARAMETER VALUES USED IN CAUCHY WAVELET APPROXIMATION

TO DT-CWT IMPULSE RESPONSE IN FIG. 15

The final line of (17) follows if is small, i.e., near the
center of the support of the wavelet function. Hence, derotated
coefficients near an impulse have the phase approximation in
(18)

(18)

This phase is independent of and demonstrating how the
multiscale nature of the impulse results in derotated coefficients
whose phases are invariant to the exact location of the feature.

We now consider the step response, and the corresponding
phase response

(19)
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This has a phase given in (20)

(20)

The derotated coefficients corresponding to the step response
have phases as described in (21)

(21)

The phase in (21) is also invariant to the exact position of the
edge feature and comparison with (18) illustrates the quadrature
nature of the phases of derotated coefficients near edges and
those near ridge features.
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