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ABSTRACT

This paper describes a new method for mitigating the effects
of atmospheric distortion on observed images, particularly
airborne turbulence which degrades a region of interest (ROI).
In order to provide accurate detail from objects behind the dis-
torting layer, a simple and efficient frame selection method is
proposed to pick informative ROIs from only good-quality
frames. We solve the space-variant distortion problem using
region-based fusion based on the Dual Tree Complex Wavelet
Transform (DT-CWT). We also propose an object alignment
method for pre-processing the ROI since this can exhibit sig-
nificant offsets and distortions between frames. Simple haze
removal is used as the final step. The proposed method per-
forms very well with atmospherically distorted videos and
outperforms other existing methods.

Index Terms— Image restoration, fusion, DT-CWT

1. INTRODUCTION

Various types of atmospheric distortion can influence the vi-
sual quality of a captured video signal. Distortion types in-
clude fog or haze which reduces contrast, and atmospheric
turbulence due to temperature variations or airborne contam-
inants. Such obscurations in the lower atmosphere reduce the
ability to see objects at a distance. A variation in temperature
causes different interference patterns in the light refraction,
leading to unclear, unsharp, waving images of the objects.
Examples of this effect are found in areas such as hot roads
and deserts, as well in the proximity of aircraft jet exhausts.
Examples are shown in columns 1 and 2 of Fig. 3.

Since turbulence in the captured images makes it diffi-
cult to interpret information behind the distorting layer, there
has been significant research activity trying to faithfully re-
construct this useful information using various methods. The
perfect solution however seems impossible since this problem
is irreversible, although it can be simply written as Eq. 1.

Iobv = DIidl + ε (1)

where Iobv and Iidl are the observed and ideal images respec-
tively. D represents geometric distortion and blur, while ε
represents noise. Various approaches have attempted to solve

this problem by using blind deconvolution (BD) [1, 2]. The
results, however, still exhibit artefacts since the point spread
function (PSF) is assumed to be space-invariant.

It is obvious that using a single image is not sufficient
to remove the visible ripples and waves, while utilising a set
of images to construct one enhanced image makes more use-
ful information available. There are two types of restoration
process that use multiple images. The first employs image
registration with deformation estimation to align objects tem-
porally and to solve for small movements due to atmospheric
refraction [3, 4]. Then a deblurring process is applied to the
combined image (which is a challenging task as this blur is
space-variant). The other group employs image selection and
fusion, known as ‘lucky region’ techniques [5]. The regions
of the input frames having the best quality in the temporal di-
rection are selected and then are combined in an intelligent
way. Recently this method has been improved by applying
image alignment to those lucky regions [6].

In this paper, we propose a new fusion method to reduce
image distortion caused by air turbulence. We employ a
region-based scheme to perform fusion at the feature level.
This has advantages over pixel-based processing as more in-
telligent semantic fusion rules can be considered based on
actual features in the image. The fusion is performed in the
Dual Tree Complex Wavelet Transform (DT-CWT) domain
as it provides near shift-invariance and directional selectiv-
ity [7]. Additionally, the phase of a CWT coefficient is robust
to noise and temporal intensity variations thereby providing
an efficient tool for removing the distorting ripples.

Before applying fusion, a set of selected images or ROIs
must be aligned. We introduce an object alignment approach
for distorted images. As randomly distorted images do not
provide identical features, we cannot use conventional meth-
ods to find matching features. We, instead, employ a morpho-
logical image processing technique. Subsequently we select
the ROI (or whole image) from only the informative frames
measured by a novel quality matric, based on sharpness, in-
tensity similarity and ROI size. Then a non-rigid image regis-
tration is applied. After the fusion, haze and fog are removed
using a locally adaptive histogram equalisation.

The remaining part of this paper is organised as follows.
The proposed scheme for mitigating the atmospheric distor-
tion is described in details in Section 2. The performance of



the method is evaluated on a set of images and is compared
with other techniques in Section 3. Finally, Section 4 presents
the conclusions of the study.

2. PROPOSED MITIGATION SCHEME

The proposed process is depicted in Fig. 1. Details of each
step are described below.

Object Alignment Shooting video in the far distance may
cause the ROI in each frame to become misaligned. The inter-
frame distance between the shaking objects may be too large
to apply image registration. Unfortunately matching algo-
rithms which use feature detection are not suitable for the air
turbulence problem as strong gradients within each frame are
distorted randomly. Here a simple approach using morpho-
logical image processing is proposed. The ROI is marked
in the first frame. The histogram, generated from the se-
lected ROI and the surrounding area, is utilised to find an Otsu
threshold [8] which is used to convert the image to a binary
map. An erosion process is then applied and the areas con-
nected to the edge of image are removed. This step is done
iteratvely until the area near the ROI is isolated. The same
Otsu threshold and the number of iterations are employed in
other frames. The centre position of each mask is computed.
If there is more than one isolated area, the area closest in size
and location to the ROI in the first frame is used. Finally the
centre of the mask in each frame is utilised to shift the ROI
to align across the set of frames. Note that the frames with
the incorrectly detected ROIs will be removed in the frame
selection process. These frames are generally significantly
different from others.

Frame Selection In our proposed method, not every frame
in the sequence is used to restore the undistorted image since
the bad images (e.g. the very blurred ones) would possibly
deteriorate the fused result. A set of images are carfully se-
lected using three factors; sharpness Gn, intensity similarity
Sn and detected ROI size An. Gn can be computed from a
summation of intensity gradients or the magnitude of high-
pass coefficients. For Sn, the average frame of the whole se-
quence is used as a reference for calculating the mean square
error (MSE). Then MSE−1 represents the similarity of each
frame. An is the total number of pixels contained in the ROI.
This is used because larger ROIs contain more details. The
cost function Cn for frame n is computed using Eq. 2.

Cn =
wGGn

λG + |Gn|
+

wSSn

λS + |Sn|
+

wAAn

λA + |An|
(2)

where wk and λk are the weight and slope control of the fac-
tor k ∈ {G, S,A}, respectively. The sigmoid function is used
here to prevent one factor dominating the others, e.g. a block-
ing artefact may cause significantly high values of sharpness,
yet this frame should not be included in the selected data set.
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Fig. 1. Block diagram of the proposed method

The λk is set to equal the mean of factor k so that at the mean
value, the cost value of such factor is 0.5. The cost Cn is
ranked from high to low. The Otsu method can be applied to
find how many frames should be included in the selected set.

Image Registration Registration of non-rigid bodies using
the phase-shift properties of the DT-CWT proposed in [9] is
employed in this paper. The algorithm is developed from the
ideas of phase-based multidimensional volume registration,
which is robust to noise and temporal intensity variations.
Motion estimation is performed iteratively, firstly by using
coarser level complex coefficients to determine large motion
components and then by employing finer level coefficients to
refine the motion field.

Image Fusion We have adapted the region-based image fu-
sion technique using complex wavelets proposed in [10] to
address the air-turbulence problem. The method first trans-
forms each image into the DT-CWT domain. Then it employs
an adapted version of the combined morphological spectral
unsupervised image segmentation and a multiscale watershed
segmentation [11] to divide the image into R regions. The
lowpass DT-CWT coefficients of the fused image are simply
constructed from the average of the lowpass values of all im-
ages, while the highpass coeffients are selected according to
an activity measurement indicating the importance of that re-
gion. In this paper, to produce sharper results, we operate on
each sub-band separately. The priority P of region rθ

n ∈ R in
image n is computed with the detail coefficients dθ,l

n (x, y) of
level l and sub-band θ as shown in Eq. 3. The fused image is
consequently constructed based on this priority map.

P (rθ
n) =

1
|rθ

n|
∑

∀l,(x,y)∈rθ
n

∣∣dθ,l
n (x, y)

∣∣ (3)

The air-turbulence scenario is different from other image-
fusion problems as the segmentation boundaries which sep-
arate inhomogeneous regions vary significantly from frame
to frame (due to turbulence distortion). The aim is to pro-
vide the sharpest and most temporally consistent boundaries.
Therefore, at the boundary of each region, we use the maxi-
mum of DT-CWT coefficient magnitudes from all frames in-
stead of using P (rθ

n). To reduce the distortion due to rippling,
the phase of the complex wavelet coefficients play an impor-
tant role since it corresponds to the type of dominant direc-
tional features in its support regions. Hence, the DT-CWT



Fig. 2. Original image (left) and its contrast enhancement with
global HE (middle) and CLAHE (right)

coefficients, dθ,l(x, y), of the fused image are adjusted with
a unit vector representing the average phase from all frames,
N , used in the fusion process (Eq. 4). The average phase
can be used because, in turbulent motion, pixels deviate from
their actual positions with approximately zero mean and with
a quasi-periodic motion [4].

d̃θ,l(x, y) =
∑N

n dθ,l
n (x, y)∣∣∣∑N

n dθ,l
n (x, y)

∣∣∣
∣∣dθ,l(x, y)

∣∣ (4)

To reduce noise, we apply a shrinkage function, As, de-
rived as Maximum A Posteriori (MAP) estimators as in [12].
Then, if sharpening is required, a gain Ag > 1 can be applied
to boost highpass-coefficient magnitudes. However this sim-
ple technique might cause remaining noise to become clearly
visible again. Therefore we recommend to enhance only the
high-pass coefficients when they form regions of large mag-
nitude. We create the binary map Mθ,l for each subband. The
Mθ,l = 1 if

∣∣dθ,l
∣∣ > τ , where τ is a predefined threshold.

The isolated pixels are subsequently removed from Mθ,l. The
modified highpass coeffients are finally rewritten as Eq. 5.

dθ,l = Aθ,l
g Mθ,lAθ,l

s d̃θ,l (5)

Haze Removal A problem that often accompanies turbu-
lence is haze or fog. Simple and fast methods such as his-
togram equalisation (HE) can be used to reduce this effect.
However, in this paper, we consider the ROI and the mean-
ing it carries. In this case, a contrast limited adaptive his-
togram equalisation (CLAHE) is more suitable than global
adjustment. The method calculates local histograms derived
from a neighbourhood region. A threshold is predefined to
limit the cumulative values thereby preventing overamplify-
ing small amounts of noise in largely homogeneous regions.
An example of haze removal with HE and CLAHE is shown
in Fig. 2. The number at the top of the car is much clearer in
the CLAHE result.

3. RESULTS AND DISCUSSIONS

Datasets Four sequences captured from long distance exhibit-
ing significant turbulence distortions are used in our tests.
Two datasets, Hill House and Hot Road, are greyscale only,

while the other two, Cold Car and Number Plate, are colour
sequences. The colour sequences are converted into greyscale
and colour channels, e.g. YCbCr or HSV. Only the greyscale
channel is used in our method. The results are subsequently
combined with colour channels and converted back to the
original colour space. Only the Number Plate sequence shows
a significant shift of the ROI area between frames, so we have
artificially applied spatial shifts of between 1-20 pixels ran-
domly to Hill House, Hot Road and Cold Car.

Parameter Setting The DT-CWT is applied with 3 or 4 de-
composition levels when the image resolution is smaller or
larger than 128 × 128 pixels, respectively. The weights for
the frame selection wG, wS and wA are set to 1. The value
τ for cleaning the map Mθ,l is individually set for each sub-
band in each level to τθ,l = |d|

θ,l
− σθ,l, where |d|

θ,l
and

σθ,l are a mean and a standard deviation of the magnitude of
highpass subband. The gains Aθ,l

g are equal for each subband
at the same level and are 2.5, 1.8, 1.2 and 1 for l = 1, 2, 3 and
4, respectively. For CLAHE, a window of 8×8 pixels is used
to compute local histograms which are clipped at 1%.

Experiment and Discussions The proposed method is com-
pared with i) an average of registered images, ii) Shan’s BD
[13] applied to (i) , iii) SVOLA by Hirsch et al. [3]. To make
a fair comparison, these last two methods are applied to the
registered images constructed from the object alignment and
frame selection. Two original frames which show the extent
of distortion and the associated results are shown in Fig. 3 col-
umn 1-2 and 3-6, respectively. Although ground truth images
are not available, the subjective results clearly show that the
proposed method removes atmosphoric distortion more effi-
ciently than the other approaches. Shan’s blind deconvolution
is inefficient for air turbulence since the PSF is assumed to be
similar for the entire image, while our method runs a set of ho-
mogeneous regions separately. Shan’s method also takes four
times longer to process than our proposed method, mainly
to estimate the PSF. SVOLA subdivides an image into over-
lapped regions and estimates the PSF separately; as a result, it
provides better results compared to Shan’s method. However
the computational time is even longer and the results are not
as sharp as the proposed method. In addition, prior knowl-
edge of PSF size is required for both previous methods.

4. CONCLUSIONS

This paper has introduced a new method for mitigating at-
mospheric distortion in long range surveillance imaging. The
improvement of visibility of an ROI in the image sequence is
achieved using region-based fusion in the DT-CWT domain.
We also propose a simple object alignment method and a new
cost funtion for frame selection to pre-process the distorted
sequence. The process is completed with local contrast en-
hancement to remove haze interference. Experiments with
real data show promising results and superior performance



Original frame 1 Original frame 2 Average Shan’s BD [13] SVOLA [3] proposed

Fig. 3. Original images, Average image, and results of Shan’s BD [13], SVOLA [3] and proposed method

compared with the existing methods.
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