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Abstract

We describe the Dual Tree Complex Wavelet Transform (DT CWT), a form of discrete wavelet

transform which generates complex coefficients by using a dual tree of wavelet filters to obtain their

real and imaginary parts. This introduces limited redundancy (2m : 1 for m-dimensional signals)

and allows the transform to provide approximate shift invariance and directionally selective filters

(properties lacking in the traditional wavelet transform) while preserving the usual properties of

perfect reconstruction and computational efficiency with good well-balanced frequency responses.

We analyse why the new transform can be designed to be shift invariant, and describe how to

estimate the accuracy of this approximation and design suitable filters to achieve this. We describe

why the DT CWT is particularly suitable for images and other multi-dimensional signals, and

summarise some applications of the transform that take advantage of its unique properties, including

denoising, sparse coding, and registration.
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Features of the (Real) Discrete Wavelet Transform (DWT)

• Good compression of signal energy.

• Perfect reconstruction with short support filters.

• No redundancy.

• Very low computation – order-N only.

But

• Severe shift dependence.

• Poor directional selectivity in 2-D, 3-D etc.

The DWT is normally implemented with a tree of highpass and lowpass filters,
separated by 2 : 1 decimators.
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Real Discrete Wavelet Transform (DWT) in 1-D
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Figure 1: (a) Tree of real filters for the DWT. (b) Reconstruction filter block for 2 bands at a time,

used in the inverse transform.
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Features of the Dual Tree Complex Wavelet Transform (DT
CWT)

• Good shift invariance.

• Good directional selectivity in 2-D, 3-D etc.

• Perfect reconstruction with short support filters.

• Limited redundancy – 2:1 in 1-D, 4:1 in 2-D etc.

• Low computation – much less than the undecimated (à trous) DWT.

Each tree contains purely real filters, but the two trees produce the real and
imaginary parts respectively of each complex wavelet coefficient.
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Q-shift Dual Tree Complex Wavelet Transform in 1-D
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Figure 2: Dual tree of real filters for the Q-shift CWT, giving real and imaginary parts of complex

coefficients from tree a and tree b respectively. Figures in brackets indicate the approximate delay for

each filter, where q = 1
4 sample period.
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Features of the Q-shift Filters

Below level 1:

• Half-sample delay difference is obtained with filter delays of 1
4 and 3

4 of a sample
period (instead of 0 and 1

2 a sample for our original DT CWT).

• This is achieved with an asymmetric even-length filter H(z) and its time
reverse H(z−1).

• Due to the asymmetry (like Daubechies filters), these may be designed to give an
orthonormal perfect reconstruction wavelet transform.

• Tree b filters are the reverse of tree a filters, and reconstruction filters are the
reverse of analysis filters, so all filters are from the same orthonormal set.

• Both trees have the same frequency responses.

• Symmetric sub-sampling – see below.
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Q-shift DT CWT Basis Functions
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Figure 3: Basis functions (reconstruction impulse responses) of the Q-shift DT CWT filters for levels 1

to 3. Tree a bases are shown in red and tree b in blue. The magnitudes of the complex bases, formed

by combining the two trees, are in green. Bases for adjacent sampling points are shown dotted.
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Sampling Symmetries

In a regular multi-resolution pyramid structure each parent coefficient must lie
symmetrically below the mean position of its 2 children (4 children in 2-D). Each
filter should also be symmetric about its mid point.

• For the Q-shift filters, fig 3 shows that parents are symmetrically below their
children, and that Hi and Lo filters at each level are aligned correctly.

• Since one Q-shift tree is the time-reverse of the other, the combined complex
impulse responses are conjugate symmetric about their mid points, even
though the separate responses are asymmetric (see fig 3, right). Hence
symmetric extension is still an effective technique at image edges.



Dual Tree Complex Wavelets – 9 Nick Kingsbury

Q-shift DT CWT Filter Design

For the two trees we need lowpass filters with group delays which differ by half a
sample period. This ensures low aliasing energy and hence good shift invariance.

The Q-shift version of the DT CWT achieves this with filters with group delays
' 1

4 and 3
4 of a sample period, and has the following additional features:

• Tree b filters are the time-reverse of the Tree a filters.

• Reconstruction filters are the time-reverse of the Analysis filters.

• Bases are orthonormal, yielding a tight-frame transform.

• The complex bases are linear phase, since their magnitudes are symmetric and
their phases are anti-symmetric (with a 45 degree offset).
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Q-shift Filter Design Requirements
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Fig. 2: 2-band analysis and reconstruction filter banks.

1. No aliasing: G1(z) = zH0(−z) ; H1(z) = z−1G0(−z)

2. Perfect reconstruction: H0(z)G0(z) + H0(−z)G0(−z) = 2

3. Orthogonality: G0(z) = H0(z−1)

4. Group delay ' 1
4 sample period for H0.

5. Good smoothness properties when iterated over scale.
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Filter Design — Delay

To get 2n-tap lowpass filters, H0(z) and G0(z), with 1
4 and 3

4 sample delays:

• Design a 4n-tap symmetric lowpass filter HL2(z) with half the required
bandwidth and a delay of 1

2 sample;

• Subsample HL2(z) by 2:1 to get H0(z) and G0(z).
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Fig. 3: Impulse response of HL2(z) for n = 6. The H0 and
G0 filter taps are shown as circles and crosses respectively.
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Filter Design – Perfect Reconstruction (PR)

For PR and orthogonality:

H0(z) G0(z) = H0(z)H0(z−1) must have no terms in z2k except the term in z0.

.
.
. H0(z2) H0(z−2) must have no terms in z4k except the term in z0.

But
HL2(z) = H0(z2) + z−1H0(z−2)

and so

HL2(z)HL2(z−1) = 2 H0(z2) H0(z−2) + z−1H2
0(z−2) + zH2

0(z2)︸ ︷︷ ︸
odd powers of z only

.
.
. HL2(z) HL2(z−1) must have no terms in z4k except the term in z0.

Hence we can include PR as a direct design constraint on HL2(z) HL2(z−1).
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Filter Design — Smoothness

To obtain smoothness when iterated over many scales:

• Ensure that the stopband of H0(z) suppresses energy at
frequencies where unwanted passbands appear from subsampled
filters operating at coarser scales.

Consider the combined frequency response of H0 over just two scales:

H0(z)H0(z2)|z=ejω = H0(ejω) H0(e2jω)

If the stopband of H0(ejω) covers ωs ≤ ω ≤ π, then the unwanted transition band
and passband of H0(e2jω) will extend from π − ωs

2 to π.

For H0(ejω) to suppress the unwanted bands of H0(e2jω) (see fig. 4):

ωs ≤ π − ωs
2 .

.
. ωs ≤ 2π

3
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Optimization for MSE in the frequency domain

We have now reduced the ideal design conditions for the length 4n symmetric
lowpass filter HL2 to be:

• Zero amplitude for all the terms of HL2(z) HL2(z−1) in z4k except the term in
z0, which must be 1 (these are quadratic constraints on coef vector hL2);

• Zero (or near-zero) amplitude of HL2(ejω) for the stopband, π
3 ≤ ω ≤ π (these

are linear constraints on hL2).

If all constraints were linear, the LMS error solution for hL2 could be found using a
matrix pseudo-inverse method. .

.
. we linearise the problem and iterate.

If hL2 at iteration i is hi = hi−1 + ∆hi, then

hi ∗ hi = (hi−1 + ∆hi) ∗ (hi−1 + ∆hi) = hi−1 ∗ (hi−1 + 2∆hi) + ∆hi ∗∆hi

Since ∆hi becomes small as i increases, the final term can be neglected and the
convolution (∗) is expressed as a linear function of ∆hi.
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Hence we solve for ∆hi such that:

Ci−1 (hi−1 + 2∆hi) = [0 . . . 0 1]T

F (hi−1 + ∆hi) ' [0 . . . 0]T

where Ci−1 calculates every 4th term in the convolution with hi−1, and F evaluates
the Fourier transform at M discrete frequencies ω from π

3 to π (typically M ' 8n)

Note that only one side of the symmetric convolution is needed in the rows of Ci−1,
and the columns of Ci−1 and F can be combined in pairs so that only the first half
of the symmetric ∆hi need be solved for.

To obtain high accuracy solutions to the PR constraints, we scale the
equations in Ci−1 up by βi = 2i to get the following iterative LMS method for ∆hi

and then hi:

[
2βiCi−1

F

]
∆hi =

[
βi(c−Ci−1hi−1)

−F hi−1

]
with hi = hi−1 + ∆hi

where c = [0 . . . 0 1]T .
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Two Final Refinements

• To include transition band effects, we scale rows of F by diagonal matrix Ti,
the gain (at iteration i) of H0(z2)/H0(1) at frequencies corresponding to
π
3 ≤ ω ≤ π

2 in the frequency domain of HL2 (Ti is the red curve in fig. 4).

• To insert predefined zeros in H0(z) or HL2(z), we first note that a zero at
z = ejπ in H0 will be produced by a pair of zeros at z = e±jπ/2 in HL2. We can
force zeros in HL2 by forming a convolution matrix Hf such that Hf h′i = hi,
where h′i is the coef vector of the filter which represents all the zeros of HL2 that
are not predefined, and Hf produces convolution with the predefined zeros.

Hence we now solve for ∆h′i and then hi using

[
2βiCi−1

Ti−1F

]
Hf ∆h′i =

[
βi(c−Ci−1hi−1)
−Ti−1F hi−1

]
with hi = hi−1 + Hf ∆h′i
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Initialisation

To initialise the iterative algorithm when i = 1, we must define h0 and hence C0

and T0.

This is not critical and can be achieved by a simple inverse FFT of an ‘ideal’
lowpass frequency response for HL2(ejω) with a root-raised-cosine transition band
covering the range

π
6 < ω < π

3

The impulse response is truncated symmetrically to length 4n to obtain h0.

C0 and T0 may then be calculated from h0.

Convergence

For some larger values of n, convergence can be slow. We have found this can be
improved by using

hi = hi−1 + αHf ∆h′i where 0 < α < 1 (e.g. α ∼ 0.8)
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Results

• Figs. 4 and 5 show the frequency responses of HL2(z) for the cases n = 6, 8, 12
and 16, when there is one predefined zero at ω = π

2 and one at ω = π.

• Figs. 6 to 15 show, for a range of values of n, the impulse response of HL2(z),
the level-4 DT CWT scaling functions and wavelets, the frequency responses of
H0(z) and of H0(z) H0(z2), and the group delay of H0(z).

• Figs. 6 to 11 show these responses for the cases n = 5, 6 and 7, with either 0 or 1
predefined zero in H0(z) at ω = π.

• Figs. 12 to 15 show these responses for the cases n = 8, 12 and 16, with 1
predefined zero in H0(z) at ω = π.

Note how the responses improve with increasing n. The effect of predefining a zero
in H0 is in general quite small. More predefined zeros tend to degrade performance.

n = 7 gives a good tradeoff between complexity and performance.
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Fig. 6: Q-shift filters for n = 5 (10 filter taps) and no predefined zeros.
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Fig. 7: Q-shift filters for n = 5 (10 filter taps) and 1 predefined zero at ω = π.
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Fig. 8: Q-shift filters for n = 6 (12 filter taps) and no predefined zeros.
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Fig. 9: Q-shift filters for n = 6 (12 filter taps) and 1 predefined zero at ω = π.
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Fig. 10: Q-shift filters for n = 7 (14 filter taps) and no predefined zeros.
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Fig. 11: Q-shift filters for n = 7 (14 filter taps) and 1 predefined zero at ω = π.
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Fig. 12: Q-shift filters for n = 8 (16 filter taps) and 1 predefined zero at ω = π.
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Fig. 13: Q-shift filters for n = 10 (20 filter taps) and 1 predefined zero at ω = π.
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Fig. 14: Q-shift filters for n = 12 (24 filter taps) and 1 predefined zero at ω = π.
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Fig. 15: Q-shift filters for n = 16 (32 filter taps) and 1 predefined zero at ω = π.
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Filter Design – Conclusions

• The proposed algorithm gives a fast and effective way of designing Q-shift filters
for the DT CWT.

• All filters produce perfect reconstruction, tight frames and linear-phase complex
wavelets.

• As the length of the filters (2n) increases, the design method gives improvements
in stopband attenuation, constancy of group delay, and smoothness in the
resulting wavelet bases. Hence we get increasing accuracy of shift-invariance.

• The algorithm works well for filter lengths from 10 to over 50 taps.

• Matlab code for the algorithm and papers on the DT CWT can be downloaded
from the author’s website, http://www-sigproc.eng.cam.ac.uk/˜ngk/.

• Matlab code to implement the DT CWT is free for researchers and available by
emailing the author at ngk@eng.cam.ac.uk .
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Visualising Shift Invariance

• Apply a standard input (e.g. unit step) to the transform for a range of shift
positions.

• Select the transform coefficients from just one wavelet level at a time.

• Inverse transform each set of selected coefficients.

• Plot the component of the reconstructed output for each shift position at each
wavelet level.

• Check for shift invariance (similarity of waveforms).

Fig 4 shows that the DT CWT has near-perfect shift invariance, whereas the
maximally-decimated real discrete wavelet transform (DWT) has substantial shift
dependence.
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Shift Invariance of DT CWT vs DWT

(a)
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(b) Real DWT

(b)

Real

DWT

Figure 4: Wavelet and scaling function components at levels 1 to 4 of 16 shifted step responses of the

DT CWT (a) and real DWT (b). If there is good shift invariance, all components at a given level

should be similar in shape, as in (a).
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Shift Invariance of simpler DT CWTs
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DT CWT

(n=5)

Figure 5: Wavelet and scaling function components at levels 1 to 4 of 16 shifted step responses of simpler

forms of the DT CWT, using (a) 14-tap and (b) 6-tap Q-shift filters with n = 7 and 5 respectively.
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Shift Invariance – Quantitative measurement
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Basic configuration of the dual tree if either wavelet or scaling-function
coefficients from just level m are retained (M = 2m).

Letting W = ej2π/M , multi-rate analysis gives:

Y (z) =
1
M

M−1∑

k=0

X(W kz)[A(W kz)C(z) + B(W kz) D(z)]

For shift invariance, aliasing terms (k 6= 0) must be negligible. So we design
B(W kz)D(z) to cancel A(W kz) C(z) for all non-zero k that give overlap of the
passbands of filters C(z) or D(z) with those of shifted filters A(W kz) or B(W kz).
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A Measure of Shift Invariance

Since

Y (z) =
1
M

M−1∑

k=0

X(W kz)[A(W kz)C(z) + B(W kz) D(z)]

we quantify the shift dependence of a transform by calculating the ratio of the total
energy of the unwanted aliasing transfer functions (the terms with k 6= 0)
to the energy of the wanted transfer function (when k = 0):

Ra =
∑M−1

k=1 E{A(W kz)C(z) + B(W kz) D(z)}
E{A(z) C(z) + B(z) D(z)}

where E{U(z)} calculates the energy,
∑

r |ur|2, of the impulse response of a
z-transfer function, U(z) =

∑
r urz

−r.

E{U(z)} may also be interpreted in the frequency domain as the integral of the
squared magnitude of the frequency response, 1

2π

∫ π

−π
|U(ejθ)|2 dθ from Parseval’s

theorem.
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Types of DT CWT filters

We show results for the following combinations of filters:

A (13,19)-tap and (12,16)-tap near-orthogonal odd/even filter sets.

B (13,19)-tap near-orthogonal filters at level 1, 18-tap Q-shift filters at levels
≥ 2.

C (13,19)-tap near-orthogonal filters at level 1, 14-tap Q-shift filters at levels
≥ 2.

D (9,7)-tap bi-orthogonal filters at level 1, 18-tap Q-shift filters at levels ≥ 2.

E (9,7)-tap bi-orthogonal filters at level 1, 14-tap Q-shift filters at levels ≥ 2.

F (9,7)-tap bi-orthogonal filters at level 1, 6-tap Q-shift filters at levels ≥ 2.

G (5,3)-tap bi-orthogonal filters at level 1, 6-tap Q-shift filters at levels ≥ 2.
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Aliasing Energy Ratios,

Values of Ra in dB, for filter types A to G over levels 1 to 5.

Filters: A B C D E F G DWT
Complexity: 2.0 2.3 2.0 1.9 1.6 1.0 0.7 1.0
Wavelet
Level 1 -∞ -∞ -∞ -∞ -∞ -∞ -∞ -9.40
Level 2 -28.25 -31.40 -29.06 -22.96 -21.81 -18.49 -14.11 -3.54
Level 3 -23.62 -27.93 -25.10 -20.32 -18.96 -14.60 -11.00 -3.53
Level 4 -22.96 -31.13 -24.67 -32.08 -24.85 -16.78 -15.80 -3.52
Level 5 -22.81 -31.70 -24.15 -31.88 -24.15 -18.94 -18.77 -3.52
Scaling fn.
Level 1 -∞ -∞ -∞ -∞ -∞ -∞ -∞ -9.40
Level 2 -29.37 -32.50 -30.17 -24.32 -23.19 -19.88 -15.93 -9.38
Level 3 -28.17 -35.88 -29.21 -36.94 -29.33 -21.75 -20.63 -9.37
Level 4 -27.88 -37.14 -28.57 -37.37 -28.56 -24.37 -24.15 -9.37
Level 5 -27.75 -36.00 -28.57 -36.01 -28.57 -24.67 -24.65 -9.37
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The DT CWT in 2-D

When the DT CWT is applied to 2-D signals (images), it has the following features:

• It is performed separably, with 2 trees used for the rows of the image and 2 trees
for the columns – yielding a Quad-Tree structure (4:1 redundancy).

• The 4 quad-tree components of each coefficient are combined by simple sum and
difference operations to yield a pair of complex coefficients. These are part
of two separate subbands in adjacent quadrants of the 2-D spectrum.

• This produces 6 directionally selective subbands at each level of the 2-D
DT CWT. Fig 6 shows the basis functions of these subbands at level 4, and
compares them with the 3 subbands of a 2-D DWT.

• The DT CWT is directionally selective (see fig 9) because the complex filters can
separate positive and negative frequency components in 1-D, and
hence separate adjacent quadrants of the 2-D spectrum. Real separable
filters cannot do this!
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2-D Basis Functions at level 4
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Figure 6: Basis functions of 2-D Q-shift complex wavelets (top), and of 2-D real wavelet filters (bottom),

all illustrated at level 4 of the transforms. The complex wavelets provide 6 directionally selective filters,

while real wavelets provide 3 filters, only two of which have a dominant direction. The 1-D bases, from

which the 2-D complex bases are derived, are shown to the right.
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2 levels of DT CWT in 2-D
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Dual Tree Complex Wavelets – 42 Nick Kingsbury

Test Image and Colour Palette for Complex Coefficients
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2-D DT-CWT Decomposition into Subbands

Figure 8: Four-level DT-CWT decomposition of Lenna into 6 subbands per level (only the central

128 × 128 portion of the image is shown for clarity). A colour-wheel palette is used to display the

complex wavelet coefficients.
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2-D DT-CWT Reconstruction Components from Each Subband

Figure 9: Components from each subband of the reconstructed output image for a 4-level DT-CWT

decomposition of Lenna (central 128× 128 portion only).
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2-D Shift Invariance of DT CWT vs DWT

Input (256 x 256)

Components of reconstructed ’disc’ images

DT CWT

wavelets:

DWT

level 1 level 2 level 3 level 4 level 4 scaling fn.

Figure 10: Wavelet and scaling function components at levels 1 to 4 of an image of a light circular disc

on a dark background, using the 2-D DT CWT (upper row) and 2-D DWT (lower row). Only half of

each wavelet image is shown in order to save space.
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Applications

The Q-shift DT CWT provides a valuable analysis and reconstruction tool for a
variety of application areas:

• Motion estimation [Magarey 98] and compensation

• Registration [Kingsbury 02]

• Denoising [Choi 00] and deconvolution [Jalobeanu 00, De Rivaz 01]

• Texture analysis [Hatipoglu 99] and synthesis [De Rivaz 00]

• Segmentation [De Rivaz 00, Shaffrey 02]

• Classification [Romberg 00] and image retrieval [Kam & Ng 00, Shaffrey
03]

• Watermarking of images [Loo 00] and video [Earl 03]

• Compression / Coding [Reeves 03]

• Seismic analysis [van Spaendonck & Fernandes 02]

• Diffusion Tensor MRI visualisation [Zymnis 04]
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De-Noising – Method:

• Transform the noisy input image to compress the image energy into as few
coefs as possible, leaving the noise well distributed.

• Suppress lower energy coefs (mainly noise).

• Inverse transform to recover de-noised image.

What is the Optimum Transform ?

• DWT is better than DCT or DFT for compressing image energy.

• But DWT is shift dependent – Is a coef small because there is no signal
energy at that scale and location, or because it is sampled near a zero-crossing in
the wavelet response?

• The undecimated DWT can solve this problem but at significant cost –
redundancy (and computation) is increased by 3M : 1, where M is no. of DWT
levels.

• The DT CWT has only 4 : 1 redundancy, is directionally selective, and works
well.
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Figure 11: Probability density functions (pdfs) of small and large variance Gaussian distributions,

typical for modelling real and imaginary parts of complex wavelet coefficients.
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Figure 12: Probability density functions (pdfs) of small and large variance Rayleigh distributions,

typical for modelling magnitudes of complex wavelet coefficients.
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Image Denoising with different Wavelet Transforms - Lenna

AWGN
SNR =
3.0 dB

Undec. WT
SNR =
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Image Denoising with different Wavelet Transforms - Peppers
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Heirarchical Denoising with Gaussian Scale Mixtures (GSMs)

Non-heir.
DT CWT
SNR =

12.99 dB

Non-heir.
DT CWT
SNR =

13.51 dB

Heirarchical
DT CWT
SNR =

13.51 dB
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SNR =

13.85 dB
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Coding with the DT CWT

• DT CWT is 4 : 1 redundant – Why use it for compression?

Because:

• Overcomplete dictionaries of basis functions are known to provide the potential
for better coding (e.g. Matching Pursuits).

• The 4 reconstruction trees average the quantisation noise.

• Reconstruction is a projection from 4N -space to N -space. Noise components,
which are not in the N -dimensional range space of the transform, are in the
3N -dimensional null space and do not affect the decoded image.

• Complex wavelet coefficients can define edge locations more accurately than real
coefficients.
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How to achieve sparsity ?

Basic Algorithm – motivated by Matching Pursuits:

1. Set i = 1 and take the DT CWT of the input image.

2. Set to zero all wavelet coefs with magnitude smaller than a threshold θi.

3. Take DT CWT−1 and measure the error due to loss of smaller coefs.

4. Take DT CWT of the error image and adjust the non-zero wavelet coefs from
step 2 to reduce the error.

5. Increment i, reduce θi a little (to include a few more non-zero coefs) and repeat
steps 2 to 4.

6. When there are sufficient non-zero coefs to give the required rate-distortion
tradeoff, keep θi constant and iterate a few more times until converged.
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Iterative Projection
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If S is the range space of the DT CWT, projection onto S is PS = AR, and onto
the null space is P⊥ = I−PS.

On iteration i: wi = kA(x−Rŷi) = ky0 − kPSŷi

.
.
. yi+1 = ŷi + wi = ky0 + (I− kPS)ŷi = y0 + P⊥ŷi if k = 1

Thus on each iteration the range-space component of yi+1 remains at y0 (so its
inverse transform is always x) while its null-space component varies and attempts to
minimise ||ei||. Note that yi+1 is a projection of ŷi.
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Convergence
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With a centre-clipping non-linearity and k = 1, convergence to a local minimum
can be proved by Projection onto Convex Sets (POCS).

Substantial improvements in the converged result can be achieved by:

• Gradual reductions in clip threshold θi with i.

• Use of a soft non-linearity, such as Wiener function, for early iterations.

• Increasing k (must be kept < 2 for stability). k ≈ 1.8 is good.
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Convergence of loop RMS error for Centre-Clipper
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 Update of mask every 5th iteration

Update of mask every iteration 

The centre-clipper first selects a mask of coefs to clip, and then multiplies by the
mask (a projection operation - hence can use POCS).
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Threshold Modification Experiments for DT CWT (k = 1)
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Threshold Modification Experiments:
k = 1.8 and Wiener non-linearity for first 15 iterations (better by 0.34 dB).
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Comparison of DT CWT and DWT (centre-clipping only)
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Compression results for 512× 512 ‘Lena’ image (fully quantised)
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Non-redundant DWT
0.0975 bit/pel (30.66 dB PSNR)rms errors: 7.4733   rate: 0.0975

4:1 Overcomplete DT CWT
0.0970 bit/pel (31.08 dB PSNR)
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Non-redundant DWT
0.1994 bit/pel (33.47 dB)rms errors: 5.4080   rate: 0.1994

4:1 Overcomplete DT CWT
0.1992 bit/pel (34.12 dB)
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Non-redundant DWT
0.3876 bit/pel (36.41 dB)rms errors: 3.8552   rate: 0.3876

4:1 Overcomplete DT CWT
0.3839 bit/pel (36.93 dB)
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Non-redundant DWT
0.8024 bit/pel (39.94 dB)rms errors: 2.5687   rate: 0.8024

4:1 Overcomplete DT CWT
0.8018 bit/pel (40.17 dB)
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Iterative Projection – Conclusions

• Reducing the centre-clipping threshold θi from an initial value that is at least
twice the final value, as iterations proceed, improves performance.

• Setting k = 1.8 and using a soft non-linearity for early iterations improves
performance and convergence rate.

• Despite a redundancy of 4 : 1, the DT CWT can achieve coding performance
that is competitive with the non-redundant DWT (PSNR 0.65 dB better).

• Visibility of some coding artifacts can be reduced with the DT CWT.

• With a suitably optimised convergence strategy, computation rate should be
significantly less than for matching pursuits.
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Key Features of Robust Registration Algorithms

• Edge-based methods are more robust than point-based ones.

• Must be automatic (no human picking of correspondence points) in order to
achieve sub-pixel accuracy in noise.

• Bandlimited multiscale (wavelet) methods will allow spatially adaptive denoising.

• Phase-based bandpass methods can give rapid convergence and immunity to
illumination changes between images.

• Displacement field should be smooth, so use of a wide-area parametric (affine)
model is preferable to local translation-only models.
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Selected Method

• Dual-tree Complex Wavelet Transform (DT CWT):

◦ provides complex coefficients whose phase shift depends approximately linearly
with displacement;

◦ allows each subband of coefficients to be interpolated independently of other
subbands (because of shift invariance).

• Parametric model of displacement field, whose solution is based on local
edge-based motion constraints (Hemmendorf et al., IEEE Trans Medical
Imaging, submitted 2002):

◦ derives straight-line contraints from directional subbands of DT CWT;
◦ solves for model parameters which minimise constraint error energy over

multiple directions and scales.
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Parametric Model: Constraint equations

Let the displacement vector at the ith location xi be v(xi); and let ṽi =
[
v(xi)

1

]
.

A straight-line constraint on v(xi) can be written

cT
i ṽi = 0 or c1,iv1,i + c2,iv2,i + c3,i = 0

For a phase-based system in which wavelet coefficients at xi in images A and B
have phases θA and θB, approximate phase linearity means that

ci = Ci

[ ∇x θ(xi)
θB(xi)− θA(xi)

]

In practise we compute this by averaging finite differences at the centre of a
2× 2× 2 block of coefficients from images A and B.

Ci is a constant which does not affect the line defined by the constraint, but which
is important later.
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Parameters of the Model

We can define an affine parametric model for v such that

v(x) =
[

a1

a2

]
+

[
a3 a5

a4 a6

] [
x1

x2

]

or in a more useful form

v(x) =
[

1 0 x1 0 x2 0
0 1 0 x1 0 x2

]
.




a1
...

a6


 = K(x) . a

Affine models can synthesise translation, rotation, constant zoom, and shear.

A quadratic model, which allows for linearly changing zoom (approx perspective),
requires up to 6 additional parameters and columns in K of the form

[
. . . x1x2 0 x2

1 0 x2
2 0

. . . 0 x1x2 0 x2
1 0 x2

2

]
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Solving for the Model Parameters

Let K̃i =
[
K(xi) 0

0 1

]
and ã =

[
a
1

]
so that ṽi = K̃i ã .

Ideally for a given image locality X , we wish to find the parametric vector ã such
that

cT
i ṽi = 0 when ṽi = K̃i ã for all i such that xi ∈ X .

In practise this is an overdetermined set of equations, so we find the LMS solution,
the value of a which minimises the squared error

EX =
∑

i∈X
||cT

i ṽi||2 =
∑

i∈X
||cT

i K̃i ã||2 = ãT Q̃X ã

where Q̃X =
∑

i∈X
(K̃T

i ci cT
i K̃i) .



Dual Tree Complex Wavelets – 73 Nick Kingsbury

Solving for the Model Parameters (cont.)

Since ã =
[
a
1

]
and Q̃X is symmetric, we define Q̃X =

[
Q q
qT q0

]

X
so that

EX = ãT Q̃X ã = aT Q a + 2 aTq + q0

EX is minimised when ∇a EX = 2 Q a + 2 q = 0 , so aX ,min = − Q−1 q .

The choice of locality X will depend on application:

• If it is expected that the affine (or quadratic) model will apply accurately to the
whole image, then X can be the whole image and maximum robustness will be
achieved.

• If not, then X should be a smaller region, chosen to optimise the tradeoff
between robustness and model accuracy. A good way to produce a smooth field
is to make X fairly small (e.g. a 32× 32 pel region) and then to apply a
smoothing filter across all the Q̃X matrices, element by element, before solving
for aX ,min in each region.



Dual Tree Complex Wavelets – 74 Nick Kingsbury

Constraint Weighting Factors

Returning to the equation for the constraint vectors, ci = Ci

[ ∇x θ(xi)
θB(xi)− θA(xi)

]
,

the constant gain parameter Ci will determine how much weight is given to each

constraint in Q̃X =
∑

i∈X
(K̃T

i ci cT
i K̃i) .

Hemmendorf proposes some quite complicated heuristics for computing Ci, but for
the DT CWT, we find the following works well:

Ci =
|dAB|2

4∑

k=1

|uk|3 + |vk|3
where dAB =

4∑

k=1

u∗k vk

and

[
u1 u2

u3 u4

]
and

[
v1 v2

v3 v4

]
are 2× 2 blocks of wavelet coefficients centred on xi

in images A and B respectively.
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Conclusions

The Dual-Tree Complex Wavelet Transform provides:

• Approximate shift invariance

• Directionally selective filtering in 2 or more dimensions

• Low redundancy – only 2m : 1 for m-D signals

• Perfect reconstruction

• Orthonormal filters below level 1, but still giving linear phase (conjugate
symmetric) complex wavelets

• Low computation – order-N ; less than 2m times that of the fully decimated
DWT (∼ 3.3 times in 2-D, ∼ 5.1 times in 3-D)
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Conclusions (cont.)

• A general purpose multi-resolution front-end for many image analysis
and reconstruction tasks:

◦ Enhancement (deconvolution)
◦ Denoising
◦ Motion / displacement estimation and compensation
◦ Texture analysis / synthesis
◦ Segmentation and classification
◦ Watermarking
◦ 3D data enhancement and visualisation
◦ Coding (?)

Papers on complex wavelets are available at:
http://www.eng.cam.ac.uk/˜ngk/

A Matlab DTCWT toolbox is available on request from:
ngk@eng.cam.ac.uk


