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Introduction

Complex Wavelets: What are they and what can they do?
Basic form of the DT CWT
Shift invariance of subband transfer functions
DT CWT in 2-D – directional selectivity (6 subbands)
DT CWT in 3-D – more selectivity (28 subbands)
Image Registration
Fusion
Deconvolution with sparsity-based regularisation
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Real DWT

Features of the (Real) Discrete Wavelet Transform (DWT)
Good compression of signal energy.
Perfect reconstruction with short support filters.
No redundancy – hence orthonormal or bi-orthogonal transforms
are possible.
Very low computation – order-N only.

But
Severe shift dependence.
Poor directional selectivity in 2-D, 3-D etc.

The DWT is normally implemented with a tree of highpass and
lowpass filters, separated by 2 : 1 decimators.
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Real DWT

Real Discrete Wavelet Transform (DWT) in 1-D
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Figure: (a) Tree of real filters for the DWT. (b) Reconstruction filter block for 2
bands at a time, used in the inverse transform.
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Shift Invariance

Visualising Shift Invariance / Dependence

Apply a standard input (e.g. unit step) to the transform for a range
of shift positions.
Select the transform coefficients from just one wavelet level at a
time.
Inverse transform each set of selected coefficients.
Plot the component of the reconstructed output for each shift
position at each wavelet level.
Check for shift invariance (similarity of waveforms).

See Matlab demonstration / next slide.
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Shift Invariance

Shift Invariance of DT CWT / Dependence of DWT

(a) Dual Tree CWT
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Dual-Tree CWT

Features of the Dual Tree Complex Wavelet Transform (DT CWT)
Good shift invariance = negligible aliasing. Hence transfer
function through each subband is independent of shift and
wavelet coefs can be interpolated within each subband,
independent of all other subbands.
Good directional selectivity in 2-D, 3-D etc. – derives from
analyticity in 1-D (ability to separate positive from negative
frequencies).
Perfect reconstruction with short support filters.
Limited redundancy – 2:1 in 1-D, 4:1 in 2-D etc.
Low computation – much less than the undecimated (à trous)
DWT.

Each tree contains purely real filters, but the two trees produce the real
and imaginary parts respectively of each complex wavelet coefficient.

Nick Kingsbury (Univ. of Cambridge) Dual-Tree Complex Wavelets UDRC 2013 (1) 7 / 56



Dual-Tree CWT

Q-shift Dual Tree Complex Wavelet Transform in 1-D
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Figure: Dual tree of real filters for the Q-shift CWT, giving real and imaginary
parts of complex coefficients from tree a and tree b respectively.
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Dual-Tree CWT

Features of the Q-shift Filters
Below level 1:

Half-sample delay difference is obtained with filter delays of 1
4 and 3

4 of a
sample period (instead of 0 and 1

2 a sample for our original DT CWT).

This is achieved with an asymmetric even-length filter H(z) and its
time reverse H(z−1).

Due to the asymmetry (like Daubechies filters), these may be designed
to give an orthonormal perfect reconstruction wavelet transform.

Tree b filters are the reverse of tree a filters, and reconstruction filters
are the reverse of analysis filters, so all filters are from the same
orthonormal set.

Both trees have the same frequency responses.

The combined complex impulse responses are conjugate symmetric
about their mid points, even though the separate responses are
asymmetric. Hence symmetric extension still works at image edges.
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Dual-Tree CWT

Q-shift DT CWT Basis Functions – Levels 1 to 3

Basis functions for
adjacent sampling
points are shown
dotted.
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Dual-Tree CWT

Frequency Responses of 18-tap Q-shift filters
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Dual-Tree CWT

Frequency Responses of 14-tap Q-shift filters
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Dual-Tree CWT

Frequency Responses of 6-tap Q-shift filters

−8 −6 −4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

frequency (sample freq / 16)

1234

Scaling fn. at level 4

Wavelets at level:

Frequency responses of 6−tap Q−shift wavelets (n = 5)

Nick Kingsbury (Univ. of Cambridge) Dual-Tree Complex Wavelets UDRC 2013 (1) 13 / 56



DT CWT in 2-D

The DT CWT in 2-D
When the DT CWT is applied to 2-D signals (images), it has the following
features:

It is performed separably, using 2 trees for the rows of the image and 2
trees for the columns – yielding a Quad-Tree structure (4:1 redundancy).

The 4 quad-tree components of each coefficient are combined by simple
sum and difference operations to yield a pair of complex coefficients.
These are part of two separate subbands in adjacent quadrants of the
2-D spectrum.

This produces 6 directionally selective subbands at each level of the
2-D DT CWT. Fig 3 shows the basis functions of these subbands at level
4, and compares them with the 3 subbands of a 2-D DWT.

The DT CWT is directionally selective (see fig 5) because the complex
filters can separate positive and negative frequency components in
1-D, and hence separate adjacent quadrants of the 2-D spectrum.
Real separable filters cannot do this!
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DT CWT in 2-D

2-D Basis Functions at level 4
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Figure: Basis functions of 2-D Q-shift complex wavelets (top), and of 2-D real
wavelet filters (bottom), all illustrated at level 4 of the transforms. The
complex wavelets provide 6 directionally selective filters, while real wavelets
provide 3 filters, only two of which have a dominant direction. The 1-D bases,
from which the 2-D complex bases are derived, are shown to the right.
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DT CWT in 2-D

Frequency Responses of 2-D Q-shift filters at levels 3 and 4

Contours shown at
−1 dB and −3 dB.
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DT CWT in 2-D

Test Image and Colour Palette for Complex Coefficients
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DT CWT in 2-D

2-D DT CWT Decomposition into Subbands

Figure: Four-level DT CWT decomposition of Lenna into 6 subbands per level (only
the central 128× 128 portion of the image is shown for clarity). A colour-wheel palette
is used to display the complex wavelet coefficients.
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DT CWT in 2-D

2-D DT CWT reconstruction components from each subband

Figure: Components from each subband of the reconstructed output image for a
4-level DT CWT decomposition of Lenna (central 128× 128 portion only).
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DT CWT in 2-D

2-D Shift Invariance of DT CWT vs DWT

Input (256 x 256)

Components of reconstructed ’disc’ images

DT CWT

wavelets:

DWT

level 1 level 2 level 3 level 4 level 4 scaling fn.

Figure: Wavelet and scaling function components at levels 1 to 4 of an image of a
light circular disc on a dark background, using the 2-D DT CWT (upper row) and 2-D
DWT (lower row). Only half of each wavelet image is shown in order to save space.
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DT CWT in 3-D

The DT CWT in 3-D
When the DT CWT is applied to 3-D signals (eg medical MRI or CT datasets),
it has the following features:

It is performed separably, with 2 trees used for the rows, 2 trees for the
columns and 2 trees for the slices of the 3-D dataset – yielding an
Octal-Tree structure (8:1 redundancy).

The 8 octal-tree components of each coefficient are combined by simple
sum and difference operations to yield a quad of complex coefficients.
These are part of 4 separate subbands in adjacent octants of the 3-D
spectrum.

This produces 28 directionally selective subbands (4× (8− 1)) at
each level of the 3-D DT CWT. The subband basis functions are now
planar waves of the form e j(ω1x+ω2y+ω3z) , modulated by a 3-D Gaussian
envelope.

Each subband responds to approximately flat surfaces of a particular
orientation. There are 7 orientations on each quadrant of a hemisphere.
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DT CWT in 3-D

3D subband orientations on one quadrant of a hemisphere

One octant of the
3D frequency domain:

3D Gabor-like basis functions: X
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hk1,k2,k3(x , y , z) ' e−(x
2 + y2 + z2)/2σ2

× ej(ωk1 x +ωk2 y +ωk3 z)

These are 28 planar waves (7 per quadrant of a hemisphere)
whose orientation depends on ωk1 ∈ {ωL, ωH} and ωk2, ωk3 ∈ {±ωL,±ωH},
where ωH ' 3ωL.
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Applications

Applications of the DT CWT

Motion estimation [Magarey 98] and compensation

Registration [Kingsbury 02, Chen 12]

Denoising [Choi 00, Miller 06] and deconvolution [Jalobeanu 00, De
Rivaz 01, J Ng 07, Y Zhang 10]

Texture analysis [Hatipoglu 99] and synthesis [De Rivaz 00]

Segmentation [De Rivaz 00, Shaffrey 02]

Classification [Romberg 00] and image retrieval [Kam & T T Ng 00,
Shaffrey 03]

Watermarking of images [Loo 00] and video [Earl 03]

Compression / Coding [Reeves 03]

Seismic analysis [van Spaendonck & Fernandes 02, Miller 05]

Diffusion Tensor MRI visualisation [Zymnis 04]

Object matching & recognition [Anderson & Fauqueur 06, Nelson 11]
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Application 1: Registration

Application 1: Registration

Efficient displacement estimation / registration of noisy data
Applied to:

Registration of medical datasets taken some time apart and correction
for patient movement

Conversion from low-quality video to high-quality still images –
e.g. correction of fluctuations in atmospheric refraction (heat shimmer)

Motion estimation for non-rigid objects and fluids

Registration of multi-look images affected by speckle, usually due to
illumination from coherent sources such as lasers or synthetic aperture
radar (SAR).

Displacement estimation usually involves measuring gradients, derivatives
or differences. High noise levels mean that registration algorithms must be
robust to noise if the noise is uncorrelated between images.
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Application 1: Registration

Key Features of Robust Registration Algorithms
Edge-based methods are more robust than point-based ones.
Bandlimited multiscale (wavelet) methods allow spatially adaptive
denoising.
Phase-based bandpass methods can give rapid convergence and
immunity to illumination changes between images (but we have to
be careful about 2π ambiguities) .
If the displacement field is smooth, a wider-area parametric
(affine) model of the field is likely to be more robust than a
highly-local translation-only model.

Note: Biological vision systems have evolved to use multiscale
directional bandpass filters as their front-end process (e.g. the V1
cortical filters in humans / mammals).
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Application 1: Registration

Selected Methods

Dual-tree Complex Wavelet Transform (DT CWT):

efficiently synthesises a multiscale directional shift-invariant
filterbank, with perfect reconstruction;
provides complex coefficients whose phase shift depends
approximately linearly on displacement;
allows each subband of coefficients to be interpolated (shifted)
independently of other subbands (because of shift invariance of the
subband H(z)).

Parametric model of displacement field, whose solution is based on local
edge-based motion constraints (Hemmendorff, Andersson, Kronander
and Knutsson, IEEE Trans Medical Imaging, Dec 2002):

derives straight-line constraints from directional subbands of the DT
CWT;
solves for spatially-varying affine model parameters which minimise
constraint error energy over multiple directions and scales.
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Application 1: Registration

Registration Algorithm:

Image A
?

DT CWT
?

Select CWT scales (levels) according to iteration
?

?

Shift within subbands

?
q

?
Inverse DT CWT

?
Image A registered to Image B

Image B
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DT CWT
?

Form constraints ci

?
Calculate QX at each locality X

?
Smooth elements of QX across image

?
Solve for aX ,min at each X

increment of
parameter field aX

Generate displacement
field v(xi)
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Store aX
(initialise to zero)
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field aX
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Application 1: Registration

Basic Linear Flow Model
Key Assumption for local translation model:

Time derivative of the phase θ of each complex wavelet coefficient
depends approximately linearly on the local velocity vector v.

This can be expressed as a flow equation in time and spatial
derivatives:

∂θ

∂t
= ∇x θ . v

We can rearrange this to be in the form:

∇x θ . v− ∂θ

∂t
= 0

or [
∇x θ

−∂θ
∂t

]T

ṽ = 0 where ṽ =

[
v
1

]
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Application 1: Registration

Parametric Model: Linear Constraint Equations

Let the displacement vector at the i th location xi be v(xi); let ṽi =

[
v(xi)

1

]
.

Note that, as well as xi , the locator i also specifies a subband direction di
(1 . . . 6) and a scale (level) si . A straight-line constraint on v(xi) can be
written

cT
i ṽi = 0 or c1,i v1,i + c2,i v2,i + c3,i = 0

For a phase-based system in which wavelet coefficients at {xi ,di , si} in
images A and B have phases θA,i and θB,i , approximate linearity of phase θ
vs. displacement v(xi) means that

cT
i ṽi ≈ 0 if ci = Ci

[
∇x θi

θA,i − θB,i

]
In practise we compute this by averaging finite differences at the centre xi of
a 2× 2× 2 block of coefficients from a given subband {di , si} of images A
and B.

Note: Ci is a constant which does not affect the line defined by the constraint, but it is
important as a weight for combining constraint errors (see later).
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Application 1: Registration

Parameters of the Model
We can define a 6-term affine parametric model a for v such that

v(x) =
[

a1
a2

]
+

[
a3 a5
a4 a6

] [
x1
x2

]
or in a more useful form

v(x) =
[

1 0 x1 0 x2 0
0 1 0 x1 0 x2

]
.

a1
...

a6

 = K(x) . a

Affine models can synthesise translation, rotation, constant zoom, and shear.
A quadratic model, which allows for linearly changing zoom (approx
perspective), requires up to 6 additional parameters and columns in K of the
form [

. . . x1x2 0 x2
1 0 x2

2 0
. . . 0 x1x2 0 x2

1 0 x2
2

]

Nick Kingsbury (Univ. of Cambridge) Dual-Tree Complex Wavelets UDRC 2013 (1) 30 / 56



Application 1: Registration

Solving for the Model Parameters
Using techniques (due to Hemmendorff et al) similar to homogeneous
coordinates:

Let K̃i =

[
K(xi) 0

0 1

]
and ã =

[
a
1

]
so that ṽi = K̃i ã .

Ideally for a given scale-space locality X , we wish to find the parametric
vector ã such that

cT
i ṽi = 0 when ṽi = K̃i ã for all i such that {xi ,di , si} ∈ X .

In practise this is an overdetermined set of equations, so we find the LMS
solution, i.e. the value of a which minimises the squared error

EX =
∑
i∈X

||cT
i ṽi ||2 =

∑
i∈X

||cT
i K̃i ã||2 =

∑
i∈X

ãT K̃T
i ci cT

i K̃i ã = ãT Q̃X ã

where Q̃X =
∑
i∈X

K̃T
i ci cT

i K̃i .
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Application 1: Registration

Solving for the Model Parameters (cont.)

Since ã =

[
a
1

]
and Q̃X is symmetric, we define Q̃X =

[
Q q
qT q0

]
X

so that

EX = ãT Q̃X ã = aT Q a + 2 aT q + q0

EX is minimised when ∇a EX = 2 Q a + 2 q = 0 , so aX ,min = − Q−1 q .

The choice of locality X will depend on application:

If it is expected that the affine (or quadratic) model will apply accurately
to the whole image, then X can be the whole image (including all
directions d and all selected scales s) and maximum robustness will be
achieved.

If not, then X should be a smaller region, chosen to optimise the tradeoff
between robustness and model accuracy. A good way to produce a
smooth field is to make X fairly small (e.g. a 32× 32 pel region) and
then to apply a smoothing filter across all the Q̃X matrices, element by
element, before solving for aX ,min in each region.
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Application 1: Registration

Constraint Weighting Factors Ci

Returning to the equ. for the constraint vectors, ci = Ci

[
∇x θ(xi)

θB(xi)− θA(xi)

]
,

the constant gain parameter Ci will determine how much weight is given to
each constraint in Q̃X =

∑
i∈X

K̃T
i ci cT

i K̃i .

Hemmendorf proposes some quite complicated heuristics for computing Ci ,
but for our work, we find the following gives maximum weight to consistent
sets of wavelet coefficients and works well:

Ci =
|dAB|2

4∑
k=1

|uk |3 + |vk |3
where dAB =

4∑
k=1

u∗k vk

and
[

u1 u2
u3 u4

]
and

[
v1 v2
v3 v4

]
are 2× 2 blocks of wavelet coefficients centred

on xi in images A and B respectively.
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Application 1: Registration

Registration Algorithm:

Image A
?

DT CWT
?

Select CWT scales (levels) according to iteration
?

?

Shift within subbands

?
q

?
Inverse DT CWT

?
Image A registered to Image B
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?

DT CWT
?

Form constraints ci

?
Calculate QX at each locality X

?
Smooth elements of QX across image

?
Solve for aX ,min at each X

increment of
parameter field aX

Generate displacement
field v(xi)

-

Store aX
(initialise to zero)
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field aX
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Application 1: Registration

3-D Implications for the Phase-based Parametric Method

xi and v(xi) become 3-element vectors, so ci and ṽi become 4-vectors.

For a 3-D affine model, K becomes a 3× 12 matrix, so that:

v(x) =

1 0 0 x1 0 0 x2 0 0 x3 0 0
0 1 0 0 x1 0 0 x2 0 0 x3 0
0 0 1 0 0 x1 0 0 x2 0 0 x3

 .
 a1

...
a12

 = K(x) .a

and K̃ becomes a 4× 13 matrix.

Hence Q̃X =
∑
i∈X

K̃T
i ci cT

i K̃i becomes a 13× 13 symmetric matrix,

containing 13× 7 = 91 distinct elements per locality X . At each selected
scale si and spatial location xi in X , there are now 28 subband
directions di .
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Application 1: Registration

Demonstrations

Enhancement of video corrupted by atmospheric turbulence

75 frames of video of a house on a distant hillside, taken through a
high-zoom lens with significant turbulence of the intervening atmosphere
due to rising hot air (courtesy of Don Fraser, ADFA).

Task is to register each frame to a ‘mean’ image from the sequence, and
then to reconstruct a high-quality still image from the registered
sequence.

Registration of CT scans

Two 3-D scans of the abdomen of the same patient, taken at different
times with significant differences in position and contrast.

Task is to register the two 3-D datasets as well as possible, despite the
differences.
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Application 1: Registration

Tests of registration with 3D CT scans

(a) Venous phase (b) Delay phase

Registration of 3-D CT scans (384 x 512 x 128) with contrast agent, where the venous
phase dataset is being registered to the delay phase dataset. The registration is
performed in 3-D, but only a single slice is displayed here for the convenience of
visualization.
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Application 1: Registration

Tests of registration with 3D CT scans - difference images

(a) Before registration (b) After registration

Difference between venous and delay phases, before and after registration.
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Application 1: Registration

Speed of registration

Our image registration algorithm is implemented in Matlab and tested with
one 2.8 GHz CPU. The experimental datasets are of size 256 x 256 x 128.

The simulation run times in seconds are:

3-D DT CWT on two input datasets: 5.8 s
Iterations for affine parameter estimation:

20.7 s for using level 5 coefficients
23.1 s for using level 4 coefficients
26.4 s for using level 3 coefficients
25.2 s for using level 5 and level 4 coefficients
28.2 s for using level 4 and level 3 coefficients
66.4 s for using level 3 and level 2 coefficients

14.0 s to convert affine parameters to motion vectors
5.7 s to register the datasets by spatial shift

If 5 iterations are performed, the total time ≈ 150 s.
If level 2 is used in a 6th iteration, the total time ≈ 220 s.
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Application 1: Registration

Registration – conclusions

Our proposed algorithm for robust registration effectively combines

The Dual-Tree Complex Wavelet Transform

Linear phase vs. shift behaviour

Easy shiftability of subbands

Directional filters select edge-like structures

Good denoising of input images

with

Hemmendorf’s phase-based parametric method

Finds LMS fit of parametric model to edges in images

Allows simple filtering of QX to fit more complex motions

Integrates well with multiscale DT CWT structure
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Application 2: Deconvolution

Application 2: Iterative Methods for Deconvolution

Bayesian Wavelet-based Deconvolution
Assume an image measurement process with blur H and noise n of variance
σ2

n :
y = Hx + n

Get MAP estimate of x by minimising

J(x) = 1
2 ||y− Hx||2 − σ2

n log(p(x))

where p(x) represents the prior expectation about the image structure.
It is often easiest to model p(x) in the wavelet domain, with wavelet coefs
w = Wx and x = Mw. Then we find w to minimise

J(w) = 1
2 ||y− HMw||2 + 1

2 wT Aw

where A is diagonal and Aii = σ2
n/E(|wi |2), based on a Gaussian Scale

Mixture (GSM) model for the wavelet coefs wi , ∀i in vector w.
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Application 2: Deconvolution

Advantages of working with Wavelet Subbands
Simple steepest descent minimisation of J(w) yields a gradient descent
direction

−∇wJ(w) = MT HT (y− HMw)− Aw
but this blurs the differences between y and HMw.
Subband emphasis can alleviate this and dramatically speed up
convergence. We now minimise:

J(w) = 1
2 ||y− H

∑
j∈S

Mjwj︸ ︷︷ ︸
x = Mw

||2 + 1
2

∑
j∈S

wT
j Ajwj

where Mj , Aj and wj are subband versions of M, A and w in which all entries
apart from those in subband j have been set to zero.

The term ||HMw||2 makes it difficult to minimise J(w) because of all the cross
terms in wT MT HT HMw; so we use the ideas of Daubechies, Defrise & De
Mol (2004) on each subband independently, as suggested by Vonesch &
Unser (2008), to minimise J(w), an upper bound on J(w).
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Application 2: Deconvolution

Advantages of working with Wavelet Subbands (cont.)
Let

Jn(w) = J(w) + 1
2

∑
j∈S

(
αj ||Wjx(n) −wj ||2 − ||HMj(Wjx(n) −wj)||2

)
where x(n) is the estimate for x at iteration n. As long as each αj is chosen
to be no less than |H(ω)|2 for all frequencies ω within the passband of
subband j , it can be shown that Jn(w) ≥ J(w), with approximate equality
when wj is near Wjx(n).
The proof of this requires that the transform defined by W and M is a tight
frame and that it is shift invariant so that MjWjH = HMjWj – i.e. the transfer
function of each subband can commute with the blurring function.
The Q-shift DT CWT approximately satisfies these criteria. The Shannon
wavelet also satisfies these, but it is not compactly supported.
By choosing αj optimally for each subband, we can overcome the problems of
slow convergence of wavelet coefficients in spectral regions where H has low
gain.
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Application 2: Deconvolution

The Resulting Algorithm:

Jn(w) = 1
2

(
||y− HMw||2 + wT Aw

+
∑
j∈S

αj ||Wjx(n) −wj ||2 − ||H(x(n) −Mw)||2
)

= C(x(n),y) +
∑
j∈S

(
(Hx(n) − y)T HMjwj

+ 1
2αj ||Wjx(n) −wj ||2 + 1

2 wT
j Ajwj

)
where C(x(n),y) is independent of w. This is a simple quadratic in wj , and its
global minimum is achieved when ∂Jn(w)/∂wj = 0. This gives

(αj I + Aj)wj = αjWjx(n) + MT
j HT (y− Hx(n)) ∀j

Hence, noting that MT
j = Wj for a tight frame, we get the new wj and x:

w(n+1)
j = (αj I + Aj)

−1
(
αjWjx(n) + WjHT (y− Hx(n))

)
∀j

x(n+1) = M
∑
j∈S

w(n+1)
j
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Application 2: Deconvolution

Updating the prior A

Note: In the preceding analysis, we have assumed that all coefs in w were
purely real, and that complex transforms (like DT CWT) created coefs whose
real and imaginary parts were separate real elements of w.
However in the following, we assume that these parts have been combined
together into complex elements of w.

Bayesian analysis with a Gaussian scale mixture (GSM) model gives a
diagonal prior matrix A such that Aii = σ2

n/E(|wi |2).

In practise we use Aii =
σ2

n

E(|wi |2) + ε2
so that

w∗i Aii wi = σ2
n

|wi |2

E(|wi |2) + ε2
≈ σ2

n ||wi ||0

In this way we maximise sparsity, where ε defines the approximate
threshold for |wi | between being counted or not counted in ||wi ||0. E(|wi |2) is
updated from the squared magnitudes of the complex coefs of Wx(n) at each
iteration n.
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Application 2: Deconvolution

Updating the prior A (cont.)

We call this function the L02 penalty, because
It is closer to the L0-norm than to the L1-norm;
It is smooth and differentiable (like the L2-norm) within each
iteration of the algorithm.

But what are the expected wavelet variances, E(|wi |2) ∀i ?
In practice, the estimated image is often contaminated by artifacts and
noise, so the simple approach of calculating E(|wi |2) = |w

(n)
i |

2 direct
from each complex coefficient in Wx(n) does not work as well as we
might hope.
We find we can obtain better estimates by calculating denoised
wavelet coefficients ŵ (n)

i and setting E(|wi |2) = |ŵ
(n)
i |

2.
For denoising, we use the Bayesian bi-variate shrinkage algorithm of
Sendur & Selesnick (2002), which models well the inter-scale
(parent-child) dependencies of complex wavelet coefficients.
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Application 2: Deconvolution

Initialisation and update strategies

We initialise our algorithm with an under-regularised Wiener-like filter,
implemented in the frequency domain:

x(0) = (HT H + 10−3σ2
n I)−1 HT y

Diagonal regularisation matrix A is initialised using

Aii =
σ2

n

|ŵi |2 + ε2
∀ i , where ŵ = denoise(Wx(0)) and ε = 0.01

Optionally, A is updated using ŵ = denoise(Wx(n))

at regular intervals in the iteration count n.

Nick Kingsbury (Univ. of Cambridge) Dual-Tree Complex Wavelets UDRC 2013 (1) 47 / 56



Application 2: Deconvolution

y: Cameraman, 9× 9 uniform blur
+ noise at 40 dB PSNR

x(0): Initial image from
under-regularised Wiener-like filter
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Application 2: Deconvolution

x(10): Iteration 10 of DT CWT
with update of A

x(0): Initial image from
under-regularised Wiener-like filter
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Application 2: Deconvolution

x(10): Iteration 10 of DT CWT
with update of A

x(30): Iteration 30 of DT CWT
with update of A
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Application 2: Deconvolution

x: Original
of Cameraman

x(30): Iteration 30 of DT CWT
with update of A
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Application 2: Deconvolution

Convergence rate comparisons with

Fast Thresholded Landweber algorithm (Vonesch & Unser)

Improvement in SNR (dB)
of Cameraman image
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Application 2: Deconvolution

3D widefield fluorescence microscope data

y: 3D fluorescence data
with widefield imaging blur

x(0): Initial data from
under-regularised Wiener-like filter

Size of 3D dataset= 256× 256× 80 = 5.24 . 106 voxels
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Application 2: Deconvolution

3D widefield fluorescence microscope data

x(10): Iteration 10 of DT CWT
with update of A

x(0): Initial data from
under-regularised Wiener-like filter

Size of 3D dataset= 256× 256× 80 = 5.24 . 106 voxels
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Application 2: Deconvolution

3D widefield fluorescence microscope data

x(10): Iteration 10 of DT CWT
with update of A

x(30): Iteration 30 of DT CWT
with update of A

Size of 3D dataset= 256× 256× 80 = 5.24 . 106 voxels
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Application 2: Deconvolution

Deconvolution – conclusions

We have discussed some techniques for performing
Deconvolution with overcomplete transforms, such as the DT
CWT.
We have shown how sparsity helps with these types of large
inverse problems, provided that the transform produces sparse
representations of typical images (good directional selectivity
helps here).
We have discussed the reweighted L2 penalty function and shown
that Fast Thresholded Landweber (FTL) techniques may be used
effectively with overcomplete transforms that possess tight-frame
and shift-invariance properties, such as the DT CWT.

Papers on complex wavelets and related topics are available at:
http://www.eng.cam.ac.uk/~ngk/
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