
DUAL TREE

COMPLEX WAVELETS

Part 2

Nick Kingsbury

Signal Processing Group, Dept. of Engineering

University of Cambridge, Cambridge CB2 1PZ, UK.

ngk@eng.cam.ac.uk
www.eng.cam.ac.uk/~ngk

February 2005

UNIVERSITY OF

CAMBRIDGE



Dual Tree Complex Wavelets – 1 Nick Kingsbury

Dual Tree Complex Wavelets

Part 1:

• Basic form of the DT CWT

• How it achieves shift invariance

• DT CWT in 2-D and 3-D – directional selectivity

• Application to image denoising

Part 2:

• Q-shift filter design

• How good is the shift invariant approximation

• Further applications – regularisation, registration, object recognition,
watermarking.
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Features of the Dual Tree Complex Wavelet Transform (DT
CWT)

• Good shift invariance.

• Good directional selectivity in 2-D, 3-D etc.

• Perfect reconstruction with short support filters.

• Limited redundancy – 2:1 in 1-D, 4:1 in 2-D etc.

• Low computation – much less than the undecimated (à trous) DWT.

Each tree contains purely real filters, but the two trees produce the real and
imaginary parts respectively of each complex wavelet coefficient.
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Q-shift Dual Tree Complex Wavelet Transform in 1-D
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Figure 1: Dual tree of real filters for the Q-shift CWT, giving real and imaginary parts of complex

coefficients from tree a and tree b respectively. Figures in brackets indicate the approximate delay for

each filter, where q = 1
4 sample period.
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Features of the Q-shift Filters

Below level 1:

• Half-sample delay difference is obtained with filter delays of 1
4 and 3

4 of a sample
period (instead of 0 and 1

2 a sample for our original DT CWT).

• This is achieved with an asymmetric even-length filter H(z) and its time
reverse H(z−1).

• Due to the asymmetry (like Daubechies filters), these may be designed to give an
orthonormal perfect reconstruction wavelet transform.

• Tree b filters are the reverse of tree a filters, and reconstruction filters are the
reverse of analysis filters, so all filters are from the same orthonormal set.

• Both trees have the same frequency responses.

• Symmetric sub-sampling – see below.
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Q-shift DT CWT Basis Functions – Levels 1 to 3

−20 −15 −10 −5 0 5 10 15 20

−5

−4

−3

−2

−1

0

1
1−D complex wavelets & scaling functions at levels 1 to 3.

sample number

Level 1:
scaling fn.

wavelet

Level 2:
scaling fn.

wavelet

Level 3:
scaling fn.

wavelet

Tree a

Tree b

|a + jb|

Figure 2: Basis functions for adjacent sampling points are shown dotted.
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Q-shift DT CWT Filter Design

For the two trees we need lowpass filters with group delays which differ by half a
sample period. This ensures low aliasing energy and hence good shift invariance.

The Q-shift version of the DT CWT achieves this with filters with group delays
' 1

4 and 3
4 of a sample period, and has the following additional features:

• Tree b filters are the time-reverse of the Tree a filters.

• Reconstruction filters are the time-reverse of the Analysis filters.

• Bases are orthonormal, yielding a tight-frame transform.

• The complex bases are linear phase, since their magnitudes are symmetric and
their phases are anti-symmetric (with a 45 degree offset).
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Q-shift Filter Design Requirements
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Fig. 2: 2-band analysis and reconstruction filter banks.

1. No aliasing: G1(z) = zH0(−z) ; H1(z) = z−1G0(−z)

2. Perfect reconstruction: H0(z)G0(z) + H0(−z)G0(−z) = 2

3. Orthogonality: G0(z) = H0(z−1)

4. Group delay ' 1
4 sample period for H0.

5. Good smoothness properties when iterated over scale.
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Filter Design — Delay

To get 2n-tap lowpass filters, H0(z) and G0(z), with 1
4 and 3

4 sample delays:

• Design a 4n-tap symmetric lowpass filter HL2(z) with half the required
bandwidth and a delay of 1

2 sample;

• Subsample HL2(z) by 2:1 to get H0(z) and G0(z).
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Fig. 3: Impulse response of HL2(z) for n = 6. The H0 and
G0 filter taps are shown as circles and crosses respectively.
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Filter Design – Perfect Reconstruction (PR)

For PR and orthogonality:

H0(z) G0(z) = H0(z)H0(z−1) must have no terms in z2k except the term in z0.

.
.
. H0(z2) H0(z−2) must have no terms in z4k except the term in z0.

But
HL2(z) = H0(z2) + z−1H0(z−2)

and so

HL2(z)HL2(z−1) = 2 H0(z2) H0(z−2) + z−1H2
0(z−2) + zH2

0(z2)︸ ︷︷ ︸
odd powers of z only

.
.
. HL2(z) HL2(z−1) must have no terms in z4k except the term in z0.

Hence we can include PR as a direct design constraint on HL2(z) HL2(z−1).



Dual Tree Complex Wavelets – 10 Nick Kingsbury

Filter Design — Smoothness

To obtain smoothness when iterated over many scales:

• Ensure that the stopband of H0(z) suppresses energy at
frequencies where unwanted passbands appear from subsampled
filters operating at coarser scales.

Consider the combined frequency response of H0 over just two scales:

H0(z)H0(z2)|z=ejω = H0(ejω) H0(e2jω)

If the stopband of H0(ejω) covers ωs ≤ ω ≤ π, then the unwanted transition band
and passband of H0(e2jω) will extend from π − ωs

2 to π.

For H0(ejω) to suppress the unwanted bands of H0(e2jω) (see fig. 4):

ωs ≤ π − ωs
2 .

.
. ωs ≤ 2π

3
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Optimization for MSE in the frequency domain

We have now reduced the ideal design conditions for the length 4n symmetric
lowpass filter HL2 to be:

• Zero amplitude for all the terms of HL2(z) HL2(z−1) in z4k except the term in
z0, which must be 1 (these are quadratic constraints on coef vector hL2);

• Zero (or near-zero) amplitude of HL2(ejω) for the stopband, π
3 ≤ ω ≤ π (these

are linear constraints on hL2).

If all constraints were linear, the LMS error solution for hL2 could be found using a
matrix pseudo-inverse method. .

.
. we linearise the problem and iterate.

If hL2 at iteration i is hi = hi−1 + ∆hi, then

hi ∗ hi = (hi−1 + ∆hi) ∗ (hi−1 + ∆hi) = hi−1 ∗ (hi−1 + 2∆hi) + ∆hi ∗∆hi

Since ∆hi becomes small as i increases, the final term can be neglected and the
convolution (∗) is expressed as a linear function of ∆hi.
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Hence we solve for ∆hi such that:

Ci−1 (hi−1 + 2∆hi) = [0 . . . 0 1]T

F (hi−1 + ∆hi) ' [0 . . . 0]T

where Ci−1 calculates every 4th term in the convolution with hi−1, and F evaluates
the Fourier transform at M discrete frequencies ω from π

3 to π (typically M ' 8n)

Note that only one side of the symmetric convolution is needed in the rows of Ci−1,
and the columns of Ci−1 and F can be combined in pairs so that only the first half
of the symmetric ∆hi need be solved for.

To obtain high accuracy solutions to the PR constraints, we scale the
equations in Ci−1 up by βi = 2i to get the following iterative LMS method for ∆hi

and then hi:

[
2βiCi−1

F

]
∆hi =

[
βi(c−Ci−1hi−1)

−F hi−1

]
with hi = hi−1 + ∆hi

where c = [0 . . . 0 1]T .
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Two Final Refinements

• To include transition band effects, we scale rows of F by diagonal matrix Ti,
the gain (at iteration i) of H0(z2)/H0(1) at frequencies corresponding to
π
3 ≤ ω ≤ π

2 in the frequency domain of HL2 (Ti is the red curve in fig. 4).

• To insert predefined zeros in H0(z) or HL2(z), we first note that a zero at
z = ejπ in H0 will be produced by a pair of zeros at z = e±jπ/2 in HL2. We can
force zeros in HL2 by forming a convolution matrix Hf such that Hf h′i = hi,
where h′i is the coef vector of the filter which represents all the zeros of HL2 that
are not predefined, and Hf produces convolution with the predefined zeros.

Hence we now solve for ∆h′i and then hi using

[
2βiCi−1

Ti−1F

]
Hf ∆h′i =

[
βi(c−Ci−1hi−1)
−Ti−1F hi−1

]
with hi = hi−1 + Hf ∆h′i
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Initialisation

To initialise the iterative algorithm when i = 1, we must define h0 and hence C0

and T0.

This is not critical and can be achieved by a simple inverse FFT of an ‘ideal’
lowpass frequency response for HL2(ejω) with a root-raised-cosine transition band
covering the range

π
6 < ω < π

3

The impulse response is truncated symmetrically to length 4n to obtain h0.

C0 and T0 may then be calculated from h0.

Convergence

For some larger values of n, convergence can be slow. We have found this can be
improved by using

hi = hi−1 + αHf ∆h′i where 0 < α < 1 (e.g. α ∼ 0.8)
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Results

• Figs. 4 and 5 show the frequency responses of HL2(z) for the cases n = 6, 8, 12
and 16, when there is one predefined zero at ω = π

2 and one at ω = π.

• Figs. 6 to 15 show, for a range of values of n, the impulse response of HL2(z),
the level-4 DT CWT scaling functions and wavelets, the frequency responses of
H0(z) and of H0(z) H0(z2), and the group delay of H0(z).

• Figs. 6 to 11 show these responses for the cases n = 5, 6 and 7, with either 0 or 1
predefined zero in H0(z) at ω = π.

• Figs. 12 to 15 show these responses for the cases n = 8, 12 and 16, with 1
predefined zero in H0(z) at ω = π.

Note how the responses improve with increasing n. The effect of predefining a zero
in H0 is in general quite small. More predefined zeros tend to degrade performance.

n = 7 gives a good tradeoff between complexity and performance.
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Fig. 6: Q-shift filters for n = 5 (10 filter taps) and no predefined zeros.
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Fig. 7: Q-shift filters for n = 5 (10 filter taps) and 1 predefined zero at ω = π.
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Fig. 8: Q-shift filters for n = 6 (12 filter taps) and no predefined zeros.
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Fig. 9: Q-shift filters for n = 6 (12 filter taps) and 1 predefined zero at ω = π.
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Fig. 10: Q-shift filters for n = 7 (14 filter taps) and no predefined zeros.
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Fig. 11: Q-shift filters for n = 7 (14 filter taps) and 1 predefined zero at ω = π.
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Fig. 12: Q-shift filters for n = 8 (16 filter taps) and 1 predefined zero at ω = π.
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Fig. 13: Q-shift filters for n = 10 (20 filter taps) and 1 predefined zero at ω = π.
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Fig. 14: Q-shift filters for n = 12 (24 filter taps) and 1 predefined zero at ω = π.
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Fig. 15: Q-shift filters for n = 16 (32 filter taps) and 1 predefined zero at ω = π.
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Filter Design – Conclusions

• The proposed algorithm gives a fast and effective way of designing Q-shift filters
for the DT CWT.

• All filters produce perfect reconstruction, tight frames and linear-phase complex
wavelets.

• As the length of the filters (2n) increases, the design method gives improvements
in stopband attenuation, constancy of group delay, and smoothness in the
resulting wavelet bases. Hence we get increasing accuracy of shift-invariance.

• The algorithm works well for filter lengths from 10 to over 50 taps.

• Matlab code for the algorithm and papers on the DT CWT can be downloaded
from the author’s website, http://www-sigproc.eng.cam.ac.uk/˜ngk/.

• Matlab code to implement the DT CWT is free for researchers and available by
emailing the author at ngk@eng.cam.ac.uk .
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Visualising Shift Invariance

• Apply a standard input (e.g. unit step) to the transform for a range of shift
positions.

• Select the transform coefficients from just one wavelet level at a time.

• Inverse transform each set of selected coefficients.

• Plot the component of the reconstructed output for each shift position at each
wavelet level.

• Check for shift invariance (similarity of waveforms).

Fig 3 shows that the DT CWT has near-perfect shift invariance, whereas the
maximally-decimated real discrete wavelet transform (DWT) has substantial shift
dependence.
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Shift Invariance of DT CWT vs DWT
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Figure 3: Wavelet and scaling function components at levels 1 to 4 of 16 shifted step responses of the

DT CWT (a) and real DWT (b). If there is good shift invariance, all components at a given level

should be similar in shape, as in (a).
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Shift Invariance of simpler DT CWTs
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Figure 4: Wavelet and scaling function components at levels 1 to 4 of 16 shifted step responses of simpler

forms of the DT CWT, using (a) 14-tap and (b) 6-tap Q-shift filters with n = 7 and 5 respectively.
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Shift Invariance – Quantitative measurement
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Basic configuration of the dual tree if either wavelet or scaling-function
coefficients from just level m are retained (M = 2m).

Letting W = ej2π/M , multi-rate analysis gives:

Y (z) =
1
M

M−1∑

k=0

X(W kz)[A(W kz)C(z) + B(W kz) D(z)]

For shift invariance, aliasing terms (k 6= 0) must be negligible. So we design
B(W kz)D(z) to cancel A(W kz) C(z) for all non-zero k that give overlap of the
passbands of filters C(z) or D(z) with those of shifted filters A(W kz) or B(W kz).
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A Measure of Shift Invariance

Since

Y (z) =
1
M

M−1∑

k=0

X(W kz)[A(W kz)C(z) + B(W kz) D(z)]

we quantify the shift dependence of a transform by calculating the ratio of the total
energy of the unwanted aliasing transfer functions (the terms with k 6= 0)
to the energy of the wanted transfer function (when k = 0):

Ra =
∑M−1

k=1 E{A(W kz)C(z) + B(W kz) D(z)}
E{A(z) C(z) + B(z) D(z)}

where E{U(z)} calculates the energy,
∑

r |ur|2, of the impulse response of a
z-transfer function, U(z) =

∑
r urz

−r.

E{U(z)} may also be interpreted in the frequency domain as the integral of the
squared magnitude of the frequency response, 1

2π

∫ π

−π
|U(ejθ)|2 dθ from Parseval’s

theorem.
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Types of DT CWT filters

We show results for the following combinations of filters:

A (13,19)-tap and (12,16)-tap near-orthogonal odd/even filter sets.

B (13,19)-tap near-orthogonal filters at level 1, 18-tap Q-shift filters at levels
≥ 2.

C (13,19)-tap near-orthogonal filters at level 1, 14-tap Q-shift filters at levels
≥ 2.

D (9,7)-tap bi-orthogonal filters at level 1, 18-tap Q-shift filters at levels ≥ 2.

E (9,7)-tap bi-orthogonal filters at level 1, 14-tap Q-shift filters at levels ≥ 2.

F (9,7)-tap bi-orthogonal filters at level 1, 6-tap Q-shift filters at levels ≥ 2.

G (5,3)-tap bi-orthogonal filters at level 1, 6-tap Q-shift filters at levels ≥ 2.
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Aliasing Energy Ratios,

Values of Ra in dB, for filter types A to G over levels 1 to 5.

Filters: A B C D E F G DWT
Complexity: 2.0 2.3 2.0 1.9 1.6 1.0 0.7 1.0
Wavelet
Level 1 -∞ -∞ -∞ -∞ -∞ -∞ -∞ -9.40
Level 2 -28.25 -31.40 -29.06 -22.96 -21.81 -18.49 -14.11 -3.54
Level 3 -23.62 -27.93 -25.10 -20.32 -18.96 -14.60 -11.00 -3.53
Level 4 -22.96 -31.13 -24.67 -32.08 -24.85 -16.78 -15.80 -3.52
Level 5 -22.81 -31.70 -24.15 -31.88 -24.15 -18.94 -18.77 -3.52
Scaling fn.
Level 1 -∞ -∞ -∞ -∞ -∞ -∞ -∞ -9.40
Level 2 -29.37 -32.50 -30.17 -24.32 -23.19 -19.88 -15.93 -9.38
Level 3 -28.17 -35.88 -29.21 -36.94 -29.33 -21.75 -20.63 -9.37
Level 4 -27.88 -37.14 -28.57 -37.37 -28.56 -24.37 -24.15 -9.37
Level 5 -27.75 -36.00 -28.57 -36.01 -28.57 -24.67 -24.65 -9.37
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Application Examples

• Regularisation – e.g. for de-convolution, to avoid unwanted noise
amplification.

• Registration – e.g. of panoramic images or motion of non-rigid bodies, such as
medical images after time lapses.

• Object recognition – efficient searching for objects with known
characteristics, without requiring precise location of the search template.

• Watermarking – making the watermark (noise) spectrum match the local
properties of the host image.
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Deconvolution Problem Formulation

Assume degradation of the image x is represented by a known stationary linear
filter H plus white noise n of zero mean and known variance σ2.

In vector form for notational convenience, the degraded image y is given by:

y = Hx + n (1)

For an image with K pixels, y, x and n will all be K × 1 column vectors while H
will be a K ×K (sparse) convolution matrix.

Note: Full matrix multiplications in this vector form are impractical since matrices
would be very large (e.g. K2 = 2564 ≈ 4 . 109 elements for a typical 256× 256
image), but other order-K operations, such as transforms, convolutions and
dot-products which we represent by matrix multiplications, are quite feasible.

For example the 2-D convolution, Hx in (1) above, might be performed by a 2-D
FFT, a dot-product (multiplication by a diagonal matrix) in the frequency domain,
and then an inverse 2-D FFT.
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Bayesian Deconvolution

For additive white Gaussian noise of variance σ2, the likelihood of y, given x, is

p(y|x) =
K∏

i=1

1√
2πσ2

exp

{
− ([Hx]i − yi)

2

2σ2

}

∝ exp

{
−‖Hx− y‖2

2σ2

}

The MAP (maximum a posteriori) estimate of x is then given by:

xMAP = argmaxx p(x|y) = argmaxx p(y|x) p(x)

= argminx [− log (p(y|x))− log (p(x))]

= argminx

[
1

2σ2
‖Hx− y‖2 + f(x)

]
(2)

where f(x) = − log (p(x)) – but what is this log expectation f(x) ?
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Bayesian Wavelet Deconvolution

Expectations about x can most easily be formulated in the complex wavelet domain
due to the transform’s good signal energy compaction properties and approximate
shift invariance.

We represent the inverse DT CWT by a matrix P such that x = Pw is the image
reconstructed from a vector of wavelet coefficients w.

We assume a scaled gaussian prior model for the complex wavelet coefficients (Re
and Im parts), so that, following [Wang et al 1995], the prior pdf is given by
p(w) ∝ exp

{−1
2w

TAw
}

where A is a diagonal matrix, such that A−1
ii is the

expected variance of wi and wT is the complex-conjugate transpose of w.
Now wMAP (which produces xMAP ) is given by:

wMAP = argminw [− log (p(y|w))− log (p(w))]

= argminw

[
1

2σ2
‖HPw − y‖2 − 1

2
wTAw

]
(3)

Note that the variances in A are allowed to vary between coefficients rather than
being the same for all coefficients in a given subband.
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Figure 5: Original Cameraman image (left) and version (right) blurred with a 9 × 9 uniform filter

H plus added white Gaussian noise of σ = 0.555 (BSNR = 40 dB).
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Energy Minimisation

Our problem may now be formulated as:

Find the w which minimises the energy function

E(w) = 1
2‖HPw − y‖2 + 1

2w
Tσ2Aw (4)

We attempt to minimise E(w) by repeating one-dimensional searches in sensible
search directions. The steps in our method are:

1. Estimate Px(f) the PSD of the image (e.g. Hillery and Chin method, 1991)

2. Estimate the variances of the noise and the wavelet coefficients to obtain σ2A.

3. Initialise the wavelet coefficients to w(0). Let k = 1.

4. Calculate a search direction h(k) (using conjugate gradients).

5. Minimise E(w(k)) along a line w(k) = w(k−1) + ah(k). Update x̂(k) = Pw(k).

6. Repeat steps 4 and 5 for k = 2 to N (typically N ≤ 20).
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Conjugate Gradient Algorithm

Differentiating equation (4) w.r.t. w:

∇wE(w) = PTHT (HPw − y) + σ2Aw (5)

Let g(k) = −∇wE(w(k−1)) be the steepest descent vector at iteration k. Then,
from Press et al. Numerical Recipes, the conjugate gradient vector is given by:

h(k) = g(k) +
|g(k)|2
|g(k−1)|2h

(k−1) where h(0) = g(0) (6)

Since E is quadratic in w, the value of a which minimises E(w(k)) when
w(k) = w(k−1) + ah may be found analytically to be:

a =
−hT∇wE(w(k−1))
‖HPh‖2 + hTσ2Ah

=
hTg(k)

‖HPh‖2 + hTσ2Ah
(7)

This requires no true matrix multiplications – σ2A is diagonal, PT and P are
forward and inverse CWTs, H and HT are blurring convolutions (via FFT?).



Dual Tree Complex Wavelets – 43 Nick Kingsbury

Pre-Conditioning for Better Convergence

Conjugate Gradient descent converges most rapidly if the system is preconditioned
such that its Hessian is a (scaled) identity matrix. BUT our matrices are much too
large for this to be feasible (we need to invert the original Hessian)!

Instead we use a simple scaling of w to produce a Hessian with diagonal entries of
unity, but with (hopefully small) non-zero off-diagonal terms.

This preconditioning produces scaled wavelet coefficients v = S−1w where S is
diagonal. The Hessian of the energy in (4), as a function of v, is

∇2
vE = STPTHTHPS + STσ2AS (8)

The required scaling is Sii = 1/
√

Tii, where Tii is the ith diagonal entry of the
Hessian T = ∇2

wE = (PTHTHP + σ2A) of the original unscaled system.

The gradient in v-space is given by g(k) = −∇vE = −S ∇wE.
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Conjugate Gradient Deconvolution Block Diagram
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Comparisons with other techniques

We have calculated the results of the DT-CWT and our version of standard Wiener
and have listed them with results of others below (our results are in bold type). We
see that the DT-CWT method gives the best performance. The WaRD method is
shown to be 0.5 dB better than the multiscale Kalman filter, while the DT-CWT
method is 0.7 to 1.0 dB better than the WaRD method (depending on number of
iterations N ).

Algorithm ISNR /dB

Wiener (Banham and Katsaggelos) 3.58
Multiscale Kalman filter (B & K) 6.68
Wiener (Neelamani et al) 5.37 (8.8 - 3.43)
Wiener (our version) 5.50
WaRD (Neelamani et al) 7.17 (10.6 - 3.43)
DT-CWT WaRD 7.05
DT-CWT CG, N=10 7.87
DT-CWT CG, N=20 8.13
DT-CWT CG, N=50 8.27
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Results

The 256× 256 Cameraman image with a uniform 9× 9 blur and a blurred signal
to noise ratio (BSNR) of 40dB has been used by [Banham and Katsaggelos 1996]
and [Neelamani et al 1999], so we also use this setup to allow accurate comparisons
with prior work. Deconvolving a uniform blur is difficult because of the large
number of spectral zeros.

The DT-CWT used our standard (13,19)-tap near-orthogonal linear phase filters at
level 1 and the 14-tap orthogonal Q-shift filters at levels ≥ 2.

Figure 7 shows how our iterative Conjugate Gradient algorithm converges quite
rapidly (within about 20 iterations) towards the maximum improvement in SNR of
approx 1.2 dB, while a simpler Steepest-Descent optimisation takes much longer to
provide a similar improvement.
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Convergence
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Figure 7: Convergence of the conjugate gradient algorithm and a steepest descent version of the same

algorithm.
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Figure 8: Result of under-regularised Wiener filter (left) and wavelet denoised (WaRD) version of this

(right). ISNR = 5.50 and 7.05 dB respectively.
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Figure 9: Output images after iterations 1 (left) and 4 (right) of the Conjugate Gradient algorithm.

ISNR = 7.22 and 7.57 dB respectively.
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Figure 10: Output images after iterations 10 (left) and 50 (right) of the Conjugate Gradient algorithm.

ISNR = 7.92 and 8.27 dB respectively.
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Application Examples

• Regularisation – e.g. for de-convolution, to avoid unwanted noise
amplification.

• Registration – e.g. of panoramic images or motion of non-rigid bodies, such as
medical images after time lapses.

• Object recognition – efficient searching for objects with known
characteristics, without requiring precise location of the search template.

• Watermarking – making the watermark (noise) spectrum match the local
properties of the host image.
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Key Features of Robust Registration Algorithms

• Edge-based methods are more robust than point-based ones.

• Must be automatic (no human picking of correspondence points) in order to
achieve sub-pixel accuracy in noise.

• Bandlimited multiscale (wavelet) methods will allow spatially adaptive denoising.

• Phase-based bandpass methods can give rapid convergence and immunity to
illumination changes between images.

• Displacement field should be smooth, so use of a wide-area parametric (affine)
model is preferable to local translation-only models.
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Selected Method

• Dual-tree Complex Wavelet Transform (DT CWT):

◦ provides complex coefficients whose phase shift depends approximately linearly
with displacement;

◦ allows each subband of coefficients to be interpolated independently of other
subbands (because of shift invariance).

• Parametric model of displacement field, whose solution is based on local
edge-based motion constraints (Hemmendorf et al., IEEE Trans Medical
Imaging, Dec 2002):

◦ derives straight-line contraints from directional subbands of DT CWT;
◦ solves for model parameters which minimise constraint error energy over

multiple directions and scales.
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Parametric Model: Constraint equations

Let the displacement vector at the ith location xi be v(xi); and let ṽi =
[
v(xi)

1

]
.

A straight-line constraint on v(xi) can be written

cT
i ṽi = 0 or c1,iv1,i + c2,iv2,i + c3,i = 0

For a phase-based system in which wavelet coefficients at xi in images A and B
have phases θA and θB, approximate phase linearity means that

ci = Ci

[ ∇x θ(xi)
θB(xi)− θA(xi)

]

In practise we compute this by averaging finite differences at the centre of a
2× 2× 2 block of coefficients from images A and B.

Ci is a constant which does not affect the line defined by the constraint, but which
is important later.
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Parameters of the Model

We can define an affine parametric model for v such that

v(x) =
[

a1

a2

]
+

[
a3 a5

a4 a6

] [
x1

x2

]

or in a more useful form

v(x) =
[

1 0 x1 0 x2 0
0 1 0 x1 0 x2

]
.




a1
...

a6


 = K(x) . a

Affine models can synthesise translation, rotation, constant zoom, and shear.

A quadratic model, which allows for linearly changing zoom (approx perspective),
requires up to 6 additional parameters and columns in K of the form

[
. . . x1x2 0 x2

1 0 x2
2 0

. . . 0 x1x2 0 x2
1 0 x2

2

]
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Solving for the Model Parameters

Let K̃i =
[
K(xi) 0

0 1

]
and ã =

[
a
1

]
so that ṽi = K̃i ã .

Ideally for a given image locality X , we wish to find the parametric vector ã such
that

cT
i ṽi = 0 when ṽi = K̃i ã for all i such that xi ∈ X .

In practise this is an overdetermined set of equations, so we find the LMS solution,
the value of a which minimises the squared error

EX =
∑

i∈X
||cT

i ṽi||2 =
∑

i∈X
||cT

i K̃i ã||2 = ãT Q̃X ã

where Q̃X =
∑

i∈X
(K̃T

i ci cT
i K̃i) .
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Solving for the Model Parameters (cont.)

Since ã =
[
a
1

]
and Q̃X is symmetric, we define Q̃X =

[
Q q
qT q0

]

X
so that

EX = ãT Q̃X ã = aT Q a + 2 aTq + q0

EX is minimised when ∇a EX = 2 Q a + 2 q = 0 , so aX ,min = − Q−1 q .

The choice of locality X will depend on application:

• If it is expected that the affine (or quadratic) model will apply accurately to the
whole image, then X can be the whole image and maximum robustness will be
achieved.

• If not, then X should be a smaller region, chosen to optimise the tradeoff
between robustness and model accuracy. A good way to produce a smooth field
is to make X fairly small (e.g. a 32× 32 pel region) and then to apply a
smoothing filter across all the Q̃X matrices, element by element, before solving
for aX ,min in each region.
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Constraint Weighting Factors

Returning to the equation for the constraint vectors, ci = Ci

[ ∇x θ(xi)
θB(xi)− θA(xi)

]
,

the constant gain parameter Ci will determine how much weight is given to each

constraint in Q̃X =
∑

i∈X
(K̃T

i ci cT
i K̃i) .

Hemmendorf proposes some quite complicated heuristics for computing Ci, but for
the DT CWT, we find the following works well:

Ci =
|dAB|2

4∑

k=1

|uk|3 + |vk|3
where dAB =

4∑

k=1

u∗k vk

and

[
u1 u2

u3 u4

]
and

[
v1 v2

v3 v4

]
are 2× 2 blocks of wavelet coefficients centred on xi

in images A and B respectively.
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Application Examples

• Regularisation – e.g. for de-convolution, to avoid unwanted noise
amplification.

• Registration – e.g. of panoramic images or motion of non-rigid bodies, such as
medical images after time lapses.

• Object recognition – efficient searching for objects with known
characteristics, without requiring precise location of the search template.

• Watermarking – making the watermark (noise) spectrum match the local
properties of the host image.
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Object recognition - using the Inter-Level Product (ILP)

Aim:

• To use the DT CWT to describe objects in images in ways that are relatively
immune to moderate shifts (e.g. 4 to 8 pels in any direction) and yet preserve as
much detail about the key object features as possible.

Problem:

• While CWT coef. magnitudes are immune to small shifts, their phases rotate
quite rapidly with shift.

• CWT phases convey a lot of the information about the relative locations of key
features.

Solution:

• Use the Inter-Level Product (ILP) to derotate the CWT phases at level k using
doubled phases of parent coefs. at level k + 1. (Matlab demo.)
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Application Examples

• Regularisation – e.g. for de-convolution, to avoid unwanted noise
amplification.

• Registration – e.g. of panoramic images or motion of non-rigid bodies, such as
medical images after time lapses.

• Object recognition – efficient searching for objects with known
characteristics, without requiring precise location of the search template.

• Watermarking – making the watermark (noise) spectrum match the local
properties of the host image.
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Watermarking

Aim:

• To minimise visibility of the watermark we must match the local spectrum
of the pseudo-random watermark to the local spectrum of the host image.

• This allows the energy of the watermark to be maximised for a given (low) level
of visibility and hence provides maximum resilience to attack.

Method:

• Apply the DT CWT separately to the host image and to the pseudo-random
watermark (with flat spectrum). Use the magnitudes of the host image CWT
coefs. to define the magnitudes of the watermark CWT coefs.

• Inverse CWT the scaled watermark coefs. to generate the spectrally matched
watermark. This then forms a spatially adaptive filter.

• Combine this with the host – either using addition for basic spread spectrum
modulation – or using quantisation modulation to minimise self-interference
from the host. (Matlab demo.)
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Conclusions

The Dual-Tree Complex Wavelet Transform provides:

• Approximate shift invariance

• Directionally selective filtering in 2 or more dimensions

• Low redundancy – only 2m : 1 for m-D signals

• Perfect reconstruction

• Orthonormal filters below level 1, but still giving linear phase (conjugate
symmetric) complex wavelets

• Low computation – order-N ; less than 2m times that of the fully decimated
DWT (∼ 3.3 times in 2-D, ∼ 5.1 times in 3-D)
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Conclusions (cont.)

• A general purpose multi-resolution front-end for many image analysis
and reconstruction tasks:

◦ Enhancement (deconvolution)
◦ Denoising
◦ Motion / displacement estimation and compensation
◦ Texture analysis / synthesis
◦ Segmentation and classification
◦ Object recognition
◦ Watermarking
◦ 3D data enhancement and visualisation
◦ Coding (?)

Papers on complex wavelets are available at:
http://www.eng.cam.ac.uk/˜ngk/

A Matlab DTCWT toolbox is available on request from:
ngk@eng.cam.ac.uk


