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Introduction

Dual-Tree Wavelets and their application to Vision Systems

Properties of Dual-Tree Complex Wavelets (DT CWT) and why we use
them

Multiscale Keypoint Detection using Complex Wavelets
(Julien Fauqueur and Pashmina Bendale)

Rotation-invariant Local Feature Matching
(an alternative to Lowe’s popular SIFT system):

Modifications to DT CWTto improve rotational symmetry
Resampling using bandpass interpolation
The Polar Matching Matrix descriptor
Efficient Fourier-based matching
Similar to log-polar mapping of Fourier domain, but much more
localised.

Enhancements for resilience to keypoint location errors and scale
estimates.
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Dual-Tree CWT

Features of the Dual Tree Complex Wavelet Transform (DT CWT)
Good shift invariance = negligible aliasing. Hence transfer
function through each subband is independent of shift and
wavelet coefs can be interpolated within each subband,
independent of all other subbands.
Good directional selectivity in 2-D, 3-D etc. – derives from
analyticity in 1-D (ability to separate positive from negative
frequencies).
Similarity to Primary (V1) Cortex filters of the human visual
system.
Perfect reconstruction with short support filters.
Limited redundancy – 2:1 in 1-D, 4:1 in 2-D etc.
Low computation – much less than the undecimated (à trous)
DWT.
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Dual-Tree CWT

Q-shift Dual Tree Complex Wavelet Transform in 1-D
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Figure: Dual tree of real filters for the Q-shift CWT, giving real and imaginary
parts of complex coefficients from tree a and tree b respectively.
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Dual-Tree CWT

Q-shift DT CWT Basis Functions – Levels 1 to 3

Basis functions for
adjacent sampling
points are shown
dotted.
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Dual-Tree CWT

Frequency Responses of 18-tap Q-shift filters
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DT CWT in 2-D

The DT CWT in 2-D
When the DT CWT is applied to 2-D signals (images), it has the following
features:

It is performed separably, using 2 trees for the rows of the image and 2
trees for the columns – yielding a Quad-Tree structure (4:1 redundancy).

The 4 quad-tree components of each coefficient are combined by simple
sum and difference operations to yield a pair of complex coefficients.
These are part of two separate subbands in adjacent quadrants of the
2-D spectrum.

This produces 6 directionally selective subbands at each level of the
2-D DT CWT. Fig 2 shows the basis functions of these subbands at level
4, and compares them with the 3 subbands of a 2-D DWT.

The DT CWT is directionally selective (see fig ??) because the complex
filters can separate positive and negative frequency components in
1-D, and hence separate adjacent quadrants of the 2-D spectrum.
Real separable filters cannot do this!
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DT CWT in 2-D

2-D Basis Functions at level 4
DT CWT real part
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Figure: Basis functions of 2-D Q-shift complex wavelets (top), and of 2-D real
wavelet filters (bottom), all illustrated at level 4 of the transforms. The
complex wavelets provide 6 directionally selective filters, while real wavelets
provide 3 filters, only two of which have a dominant direction. The 1-D bases,
from which the 2-D complex bases are derived, are shown to the right.
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DT CWT in 2-D

Test Image and Colour Palette for Complex Coefficients
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DT CWT in 2-D

2-D DT CWT Decomposition into Subbands

Figure: Four-level DT CWT decomposition of Lenna into 6 subbands per level (only
the central 128× 128 portion of the image is shown for clarity). A colour-wheel palette
is used to display the complex wavelet coefficients.
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DT CWT in 2-D

2-D Shift Invariance of DT CWT vs DWT

Input (256 x 256)

Components of reconstructed ’disc’ images
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Figure: Wavelet and scaling function components at levels 1 to 4 of an image of a
light circular disc on a dark background, using the 2-D DT CWT (upper row) and 2-D
DWT (lower row). Only half of each wavelet image is shown in order to save space.
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Keypoint detection

Multi-scale Keypoint Detection using Accumulated Maps

Basic Method:

Detect keypoint energy as locations x at scale k where complex wavelet
energy exists in multiple directions d using:

Ekp(k ,x) = min
d=1...6

|wk,d (x)|

or Ekp(k ,x) =

(
6∏

d=1

|wk,d (x)|

) 1
6

or Ekp(k ,x) =
1
3

∑3
d=1 |wk,d (x)|.|wk,d+3(x)|√

1
6

∑6
d=1 |wk,d (x)|2

Interpolate and accumulate Ekp(k ,x) across groups of relevant scales k
to create the Accumulated Map.

Pick keypoints as locations of maxima in the Accumulated Map.
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Keypoint detection

Multi-scale Keypoint Detection using Accumulated Maps
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Keypoint detection

Comparison of keypoint detectors
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Rotation-Invariant Feature Matching

Rotation-Invariant Local Feature Matching

Aims:

To derive a local feature descriptor for the region around a detected
keypoint, so that keypoints from similar objects may be matched
reliably.

Matching must be performed in a rotationally invariant way if all
rotations of an object are to be matched correctly.

The feature descriptor must have sufficient complexity to give good
detection reliability and low false-alarm rates.

The feature descriptor must be simple enough to allow rapid pairwise
comparisons of keypoints.

Raw DT CWT coefficients provide multi-resolution local feature
descriptors, but they are tied closely to a rectangular sampling system
(as are most other multi-resolution decompositions).

Hence we first need better rotational symmetry for the DT CWT.
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Rotation-Invariant Feature Matching

Frequency Responses of 2-D Q-shift filters at levels 3 and 4

Contours shown at
−1 dB and −3 dB.
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Rotation-Invariant Feature Matching

Modification of 45◦ and 135◦ subband responses for improved rotational

symmetry (shown at level 4).

(a) Dual−Tree Complex Wavelets: Real Part

Imaginary Part
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(b) Modified Complex Wavelets: Real Part
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(a) Original 2-D impulse responses;

(b) 2-D responses, modified to have lower centre

frequencies (reduced by 1/
√

1.8) in the 45◦

and 135◦ subbands, and even / odd symmetric
real / imaginary parts;

(c) Original and modified 1-D filters.

Better rotational symmetry is achieved,
but we have lost Perfect Reconstruction.
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Rotation-Invariant Feature Matching

13-point circular pattern for sampling DT CWT coefs
at each keypoint location

M is a precise keypoint location, obtained from the keypoint detector.
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Bandpass interpolation calculates the
required samples and can be performed
on each subband independently because
of the shift-invariance of the transform:
1. Shift by {−ω1,−ω2} down to zero
frequency (i.e. multiply by e−j(ω1x1+ω2x2) at
each point {x1, x2});
2. Lowpass interpolate to each new point
(spline / bi-cubic / bi-linear);
3. Shift up by {ω1, ω2} (multiply by
e j(ω1y1+ω2y2) at each new point {y1, y2}).

Nick Kingsbury (Univ. of Cambridge) Dual-Tree Wavelets & Vision UDRC 2013 (2) 18 / 30



Rotation-Invariant Feature Matching

Form the Polar Matching Matrix P

P =


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Each column of P comprises a set of rotationally symmetric samples from
the 6 subbands and their conjugates (∗), whose orientations are shown by the
arrows and locations in the 13-point pattern by the letters.

Numbers for each arrow give the row indices in P.
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Rotation-Invariant Feature Matching

Efficient Fourier-based Matching

Columns of P shift cyclically with rotation of the object about keypoint M.
Hence we perform correlation matching in the Fourier domain, as follows:

First, take 12-point FFT of each column of Pk at every keypoint k to give
Pk and normalise each Pk to unit total energy.
Then, for each pair of keypoints (k , l) to be matched:

Multiply Pk by P
∗
l element-by-element to give Sk,l .

Accumulate the 12-point columns of Sk,l into a 48-element
spectrum vector sk,l (to give a 4-fold extended frequency range and
hence finer correlation steps). Different columns of Sk,l are
bandpass signals with differing centre frequencies, so optimum
interpolation occurs if zero-padding is introduced over the part of
the spectrum which is likely to contain least energy in each case.
Take the real part of the inverse FFT of sk,l to obtain the 48-point
correlation result sk,l .
The peak in sk,l gives the rotation and value of the best match.

Extra columns can be added to P for multiple scales or colour components.
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Rotation-Invariant Feature Matching

Correlation plots for two simple images

Test image (a)
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Each set of curves shows the
output of the normalised
correlator for 48 angles in 7.5◦

increments, when the test
image is rotated in 5◦

increments from 0◦ to 90◦.

Levels 4 and 5 of the DT CWT
were used in an 8-column P
matrix format.

The diameter of the 13-point
sampling pattern is half the
width of the subimages shown.
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Rotation-Invariant Feature Matching

Correlation plots for more complicated images

Test image (c)
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Rotation-Invariant Feature Matching

Matching hand-picked keypoints across different 3D views

Matching hand-picked keypoints in heavy noise
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Improving resilience to keypoint errors

Improving resilience to errors in keypoint location and scale

The basic P-matrix normalised correlation measure is highly resilient to
changes in illumination, contrast and rotation.
BUT it is still rather sensitive to discrepancies in keypoint location and
estimated dominant scale.

To correct for small errors (typically a few pixels) in keypoint location, we
modify the algorithm as follows:

Measure derivatives of Pk with respect to shifts x in the sampling
circle.
Using the derivatives, calculate the shift vectors xi which maximise the
normalised correlation measures sk,l at each of the 48 rotations i (using
LMS methods with approximate adjustments for normalised vectors).
By regarding the 48-point IFFT as a sparse matrix multiplication, the
computation load is only 3 times that of the basic algorithm.

We do the same for small scale errors using a derivative of Pk wrt scale
dilation, ψ, increasing computation to 4 times that of the basic algorithm.
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Improving resilience to keypoint errors

A keypoint and its corresponding sampling circles over
levels 5, 4 and 3
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Background images show magnitudes of DT CWT coefs for subband 1,
oriented for edges at 15◦ above the horizontal.
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Improving resilience to keypoint errors

Mean correlation surfaces with no change of scale

Results averaged over 73 images from Caltech PP Toys 03 dataset, using the
centre of the image as the keypoint.
red – no tolerance; blue – shift tolerance; green – shift + scale tolerance.
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Left) No change of orientation;
Right) Average over rotations from 0◦ to 90◦ in steps of 7.5◦.
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Improving resilience to keypoint errors

Mean correlation surfaces with change of scale (dilation)

Results averaged over 73 images from Caltech PP Toys 03 dataset, using the
centre of the image as the keypoint.
red – no tolerance; green – shift + scale tolerance.
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Left) Average over dilations from 1.0 to 1.4, with respect to shift;
Right) Mean correlation values with respect to scale change (dilation), no
shift.
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Improving resilience to keypoint errors

Histograms of non-target correlation scores

red – no tolerance; blue – shift tolerance; green – shift + scale tolerance.
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The histograms demonstrate the increase in false positive detection rate
when shift and scale tolerances are introduced.
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Methods for handling colour and lighting changes

Methods for handling colour and lighting changes

For colour keypoint detection, we add the wavelet energies from the
DT CWT of each R, G and B component, so that we get the total wavelet
response to any changes in RGB-space; and use this to form a single
Accumulated Map. Alternatively we could do this in a perceptually more
uniform space such as Lab.
We perform contrast equalisation over local image regions to handle
variations between lighted / shaded parts of the image and between
images.
For colour feature matching, we form 3 polar-matching matrices into a
single matrix [PR PG PB] and perform matching with this.
Prior to matching, we normalise each composite P-matrix with a single
scaling factor for all 3 colours, so that relative amplitudes of colour
variations are maintained, despite lighting changes.
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Conclusions

Conclusions

New local Keypoint Detectors and Feature Descriptors have been
proposed for use when comparing the similarity of detected objects in
images. They have the following properties:

They are based on a modified form of the efficient Dual-Tree Complex Wavelet
Transform. The modifications improve the rotational symmetry of the 6
directionally selective subbands at each scale.

The 12-point circular sampling patterns and the Polar Matching Matrix P are
defined such that arbitrary rotations of an object can be accomodated efficiently
in the matching process.

Shift-tolerant and scale-tolerant extensions of the basic P-matrix method give
greater robustness at the expense of some increase in false-positive rate.

There is scope for applying non-linear pre-processing (e.g. magnitude
compression and phase adjustment) to the complex wavelet coefficients prior to
matching, to improve resilience to illumination and viewpoint changes.

Papers on complex wavelets and applications are available at:
www.eng.cam.ac.uk/~ngk/
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