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Important Continuous-time Complex-valued Wavelets

• The Gabor function:

ψ(t) = k e−t
2/2σ2 eiω0t ψ̂(ω) = K e−σ

2(ω−ω0)
2/2

• The Morlet wavelet:

ψ(t) = k e−t
2/2σ2(eiω0t−κ0) ψ̂(ω) = K

(
e−σ

2(ω−ω0)
2/2 − κ0 e

−σ2ω2/2
)

• The Cauchy wavelet:

ψ(t) = k (1− iβt)−α ψ̂(ω) =

{
K ωα−1e−ω/β, ω ≥ 0

0 , ω < 0

Max gain is at ω0 = β(α− 1), and typically for one octave half-power
bandwidth, α ≈ 8.
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Plots of ψ(t) and |ψ̂(ω)| for Morlet, Cauchy (continuous) and
dual-tree (discrete) complex wavelets
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Note: k = (1 + i)/
√
2; and the dual-tree filters used here are 18-tap Q-shift filters.
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Complex-valued Wavelets, the Dual Tree, and Hilbert Pairs

How can we produce good discrete wavelet transforms?

• What are the problems with real-valued wavelet bases?

• Why do we need the Dual Tree?

• What is the Hilbert Pair delay condition?

• Why does this give shift invariance?

• Why do we use Q-shift filters?

• How do we extend the dual-tree to multi-dimensions?

• Why do we get good directional filters in m-D?

• What are some applications of the DT CWT?
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Features of the (Real) Discrete Wavelet Transform (DWT)

• Good compression of signal energy.

• Perfect reconstruction with short support filters.

• No redundancy.

• Very low computation – order-N only.

But what are the problems of the DWT?

• Severe shift dependence (due to aliasing in down-samplers).

• Poor directional selectivity in 2-D, 3-D etc. (due to separable real filters).

The DWT is normally implemented with a tree of highpass and lowpass filters,
separated by 2 : 1 decimators.
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Real Discrete Wavelet Transform (DWT) in 1-D

1-D
Input
Signal

x
-H1(z) -"!

# 
↓2 -

-H0(z) -"!
# 
↓2

Level 1

x1

x0

-H1(z) -"!
# 
↓2 -

-H0(z) -"!
# 
↓2

Level 2

x01

x00

-H1(z) -"!
# 
↓2 -

-H0(z) -"!
# 
↓2

Level 3

x001

x000

-H1(z) -"!
# 
↓2 -

-H0(z) -"!
# 
↓2

Level 4

-

x0001

x0000

(a)

(b)

X(z)

-H1(z) -"!
# 
↓2 -

-H0(z) -"!
# 
↓2

"!
# 
↑2 -G1(z)

6

-"!
# 
↑2 -G0(z)

?

��
��
+ -Y (z)2-band reconstruction block

X0(z)

?

X1(z)

6

1
2{X0(z)+X0(−z)}

?

1
2{X1(z)+X1(−z)}

6

Figure 1: (a) Tree of real filters for the DWT. (b) Reconstruction filter block for 2 bands at a time,

used in the inverse transform.
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Shift Invariance of Complex DT CWT vs Real DWT
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Figure 2: Wavelet and scaling function components at levels 1 to 4 of 16 shifted step responses of the

DT CWT (a) and real DWT (b). If there is good shift invariance, all components at a given level

should be similar in shape, as in (a).
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2-D Shift Invariance of Complex DT CWT vs Real DWT
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Components of reconstructed ’disc’ images
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Figure 3: Wavelet and scaling function components at levels 1 to 4 of an image of a light circular disc

on a dark background, using the 2-D DT CWT (upper row) and 2-D DWT (lower row). Only half of

each wavelet image is shown in order to save space.
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Why do we need the Dual Tree?

Making the wavelet responses analytic is a good way to halve their bandwidth and
hence minimise aliasing.

BUT we cannot use complex filters in Fig 1 to obtain analyticity and perfect
reconstruction together, because of conflicting requirements in Fig 1b – analytic
filters must suppress negative frequencies, while perfect reconstruction requires a flat
overall frequency response.

So we use the Dual Tree:

• to create the real and imaginary parts of the analytic wavelets separately,
using 2 trees of purely real filters;

• to efficiently synthesise a multiscale shift-invariant filterbank, with perfect
reconstruction and only 2:1 redundancy (and computation);

• to produce complex coefficients whose amplitude varies slowly and whose
phase shift depends approximately linearly on displacement;
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Q-shift Dual Tree Complex Wavelet Transform in 1-D
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Figure 4: Dual tree of real filters for the Q-shift CWT, giving real and imaginary parts of complex

coefficients from tree A and tree B respectively. Figures in brackets indicate the approximate delay

for each filter, where q = 1
4 sample period. Special level 1 filters, G1 and H1, allow for the finite

number of levels.
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Q-shift DT CWT Basis Functions – Levels 1 to 3
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Figure 5: Basis functions for adjacent sampling points are shown dotted.
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What is the Hilbert Pair Delay Condition ?

• Given two parallel orthonormal discrete wavelet transforms, what
is the constraint on the lowpass filters in each transform, such
that the resulting continuous wavelets from each transform form a
Hilbert Pair? (This question and its answer are due to Ivan Selesnick in
Signal Proc. Letters, June 2001.)

• A pair of wavelets, ψg(t) and ψh(t), are a Hilbert Pair if the complex function
ψg(t) + i ψh(t) is analytic (i.e. its Fourier transform is zero for ω < 0).

• We shall show that this requires the lowpass filters, g0(n) and h0(n), of the two
transforms to be related by the half-sample delay condition, expressed in
the frequency domain as

H0(ω) = e−iω/2G0(ω)



Dual-Tree Complex Wavelets – 12 Nick Kingsbury

2-scale condition on the Tree A filters
of a dyadic wavelet transform

Scaling function: ϕg(t) = 2
∑
n

g0(n) ϕg(2t− n) (1)

Mother wavelet: ψg(t) = 2
∑
n

g1(n) ϕg(2t− n) (2)

Taking the Fourier transform of (1) gives the frequency domain relationship

ϕ̂g(ω) =

∫ ∞

−∞
2
∑
n

g0(n) ϕg(2t− n) e−iωt dt

=

∫ ∞

−∞

∑
n

g0(n) ϕg(u) e
−iωu/2 e−iωn/2 du where u = 2t− n

=
∑
n

g0(n) e
−inω/2 .

∫ ∞

−∞
ϕg(u) e

−iuω/2 du

= G0(
ω
2 ) . ϕ̂g(

ω
2 ) (3)
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Infinite Product formulae

Iterating on (3):

ϕ̂g(ω) = G0(
ω
2 ) G0(

ω
4 ) ϕ̂g(

ω
4 ) = · · · =

[ ∞∏
k=1

G0(2
−kω)

]
ϕ̂g(0) (4)

Similarly, from (2) and (4):

ψ̂g(ω) = G1(
ω
2 ) ϕ̂g(

ω
2 ) = G1(

ω
2 )

[ ∞∏
k=2

G0(2
−kω)

]
ϕ̂g(0) (5)

And similarly, for the Tree B filters:

ϕ̂h(ω) =

[ ∞∏
k=1

H0(2
−kω)

]
ϕ̂h(0) (6)

ψ̂h(ω) = H1(
ω
2 )

[ ∞∏
k=2

H0(2
−kω)

]
ϕ̂h(0) (7)

The amplitude scaling of ϕg(t) and ϕh(t) is arbitrary, so we choose

ϕ̂g(0) = ϕ̂h(0) = 1 to give them both unit area.
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Conjugate Quadrature Filterbank (CQF)

In an orthonormal wavelet transform, G1 and G0 form a CQF (also known as
a Quadrature Mirror Filterbank, QMF), such that

G1(ω) = e−imω G∗
0(ω ± π) (8)

where we use ±π to emphasise the 2π-periodic nature of G0 and G1, and G
∗
0 means

complex conjugate of G0. The delay shift of m samples must be an odd integer and
is usually chosen to approximately equalise the group delay or the support of G0

and G1.

Similarly
H1(ω) = e−imω H∗

0(ω ± π) (9)

Hence we can now express the wavelet frequency responses, ψ̂g(ω) and ψ̂h(ω),
purely in terms of the two lowpass filters G0 and H0.



Dual-Tree Complex Wavelets – 15 Nick Kingsbury

The Hilbert Pair Condition

This condition is
ψ̂h(ω)

ψ̂g(ω)
=

{
i if ω < 0
−i if ω > 0

(10)

Note that the behaviour of the RHS at (and near) ω = 0 is immaterial, because, for

the wavelets to be admissible bandpass functions, ψ̂g(0) = ψ̂h(0) = 0.

Substituting (8) into (5) and (9) into (7), we get the following expression for this
ratio

ψ̂h(ω)

ψ̂g(ω)
=

e−imω/2 H∗
0 (
ω
2 ± π)

[∏∞
k=2H0(2

−kω)
]
ϕ̂h(0)

e−imω/2 G∗
0(
ω
2 ± π) [

∏∞
k=2G0(2−kω)] ϕ̂g(0)

= R∗
0(
ω
2 ± π)

[ ∞∏
k=2

R0(2
−kω)

]
(11)

where R0(ω) = H0(ω)/G0(ω) and is 2π-periodic. R0 will give the desired
relation between H0 and G0 if (10) and (11) are both satisfied.
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Solving for R0(ω)

Since the modulus of the RHS of (10) is unity everywhere, and (11) contains an
infinite product of terms in R0, which will tend to grow or shrink if R0 does not
have unit magnitude, we deduce that |R0(ω)| = 1.

Now consider the phase θ(ω) of R0, by letting

R0(ω) = eiθ(ω) (12)

Equating the phases of (10) and (11), we require that

−θ(ω2 ± π) +
∞∑
k=2

θ(2−kω) =

{
π
2 if ω < 0

−π
2 if ω > 0

(13)
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Deducing the form of θ(ω)

Because of the infinite sum in (13), we require θ(ω) → 0 as ω → 0. Hence θ(0) = 0.

Since g0(n) and h0(n) are purely real and lowpass, R0(ω) must be conjugate
symmetric and so θ(ω) must be a continuous odd function about ω = 0.

It can be shown (by Fourier analysis on θ′(ω)) that any non-linear terms in
θ(ω) would prevent (13) from being satisfied, because in (13) the gradient
of the first term must cancel out the gradient of the summation terms at all ω ̸= 0.

Therefore we let

θ(ω) = αω for −π < ω < π, where α is a constant. (14)

Hence
θ(ω2 ± π) =

{
α(ω2 + π) if −4π < ω < 0

α(ω2 − π) if 0 < ω < 4π
(15)

Note that, since θ(ω) must be 2π-periodic for |ω| ≥ π, it will have discontinuities at
ω = ±π if α is not an integer. These become discontinuities at ω = 0 in θ(ω2 ± π).
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Typical plots of θ(ω) and terms in equ.(13)
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Calculating α

Noting that

∞∑
k=2

θ(2−kω) = αω[14 +
1
8 +

1
16 + . . .] = αω

2 if −4π < ω < 4π,

and substituting (15) into (13) gives

−α(ω2 + π) + αω
2 = π

2 if −4π < ω < 0 (16)

and − α(ω2 − π) + αω
2 = −π

2 if 0 < ω < 4π (17)

(16) and (17) are both satisfied if α = −1
2, and therefore

H0(ω)

G0(ω)
= R0(ω) = eiθ(ω) = eiαω = e−iω/2 for −π < ω < π (18)

This is the half-sample delay solution that makes ψh(t) the Hilbert transform of
ψg(t).

Ozkaramanli and Yu (Dec 2005 and June 2006) have shown this solution to be
unique and applicable to biorthogonal as well as orthonormal wavelet
transforms.
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Q-shift Dual Tree Complex Wavelet Transform in 1-D
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Figure 6: Dual tree of real filters for the Q-shift CWT, giving real and imaginary parts of complex

coefficients from tree A and tree B respectively. Figures in brackets indicate the approximate delay

for each filter, where q = 1
4 sample period. Special level 1 filters, G1 and H1, allow for the finite

number of levels.
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Why does the delay condition give shift invariance?

• The half-sample delay between the G0 and H0 lowpass filters means that
their output samples are uniformly interleaved at all scales, and hence the
sample rate is effectively doubled everywhere.

• The doubled sampling rate is sufficient to virtually eliminate aliasing if filters
of 12 or more taps are used.

• If aliasing is eliminated in the lowpass branch of each 2-band reconstruction
block, then it must also be eliminated in the highpass branch (to obtain perfect
reconstruction).

• Elimination of aliasing means that each subband can be represented by a
unique z-transfer function, and hence the filtering is LTI, linear
time-invariant (i.e. shift-invariant).

At level 1 of a finite dual tree, the delay difference must increase to 1 sample
to compensate for the absence of delay differences at finer levels.
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Why do we use Q-shift filters (below level 1)?

• Half-sample delay difference is obtained with filter delays of 1
4 and 3

4 of a sample
period (instead of 0 and 1

2 a sample for our original DT CWT).

• This is achieved with an asymmetric even-length filter G0(z) and its time
reverse H0(z) = z−1G0(z

−1). G1(z) and H1(z) are the CQFs of these.

• Due to the asymmetry (like Daubechies filters), these may be designed to give an
orthonormal perfect reconstruction wavelet transform in each tree.

• Tree B filters are the reverse of tree A filters, and reconstruction filters are the
reverse of analysis filters, so all filters are from the same orthonormal set.

• Both trees have the same frequency responses (in magnitude).

• The combined complex impulse responses are conjugate symmetric about
their mid points, even though the separate responses are asymmetric. Hence
symmetric extension still works at image edges.

At level 1, any DWT filters can be used.
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Q-shift DT CWT Basis Functions – Levels 1 to 3
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Figure 7: Basis functions for adjacent sampling points are shown dotted.
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Frequency Responses of 18-tap Q-shift filters
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Visualising Shift Invariance

• Apply a standard input (e.g. unit step) to the transform for a range of shift
positions.

• Select the transform coefficients from just one wavelet level at a time.

• Inverse transform each set of selected coefficients.

• Plot the component of the reconstructed output for each shift position at each
wavelet level.

• Check for shift invariance (similarity of waveforms).

Fig 8 shows that the DT CWT has near-perfect shift invariance, whereas the
maximally-decimated real discrete wavelet transform (DWT) has substantial shift
dependence.
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Shift Invariance of Complex DT CWT vs Real DWT
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Figure 8: Wavelet and scaling function components at levels 1 to 4 of 16 shifted step responses of the

DT CWT (a) and real DWT (b). If there is good shift invariance, all components at a given level

should be similar in shape, as in (a).
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Shift Invariance of simpler DT CWTs
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Figure 9: Wavelet and scaling function components at levels 1 to 4 of 16 shifted step responses of

simpler forms of the DT CWT, using (a) 14-tap and (b) 6-tap Q-shift filters.
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Shift Invariance – Quantitative measurement
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coefficients from just level m are retained (M = 2m).

Letting W = ei2π/M , multi-rate analysis gives:

Y (z) =
1

M

M−1∑
k=0

X(W kz)[A(W kz)C(z) +B(W kz)D(z)]

For shift invariance, aliasing terms (k ̸= 0) must be negligible. So we design
B(W kz)D(z) to cancel A(W kz)C(z) for all non-zero k that give overlap of the
passbands of filters C(z) or D(z) with those of shifted filters A(W kz) or B(W kz).
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A Measure of Shift Invariance

Since

Y (z) =
1

M

M−1∑
k=0

X(W kz)[A(W kz)C(z) +B(W kz)D(z)]

we quantify the shift dependence of a transform by calculating the ratio of the total
energy of the unwanted aliasing transfer functions (the terms with k ̸= 0)
to the energy of the wanted transfer function (when k = 0):

Ra =

∑M−1
k=1 E{A(W kz)C(z) +B(W kz)D(z)}

E{A(z)C(z) +B(z)D(z)}

where E{U(z)} calculates the energy,
∑
r |ur|2, of the impulse response of a

z-transfer function, U(z) =
∑
r urz

−r.

E{U(z)} may also be interpreted in the frequency domain as the integral of the
squared magnitude of the frequency response, 1

2π

∫ π
−π |U(eiθ)|2 dθ from Parseval’s

theorem.
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Types of DT CWT filters

We show results for the following combinations of filters:

A (13,19)-tap and (12,16)-tap near-orthogonal odd/even filter sets.

B (13,19)-tap near-orthogonal filters at level 1, 18-tap Q-shift filters at levels
≥ 2.

C (13,19)-tap near-orthogonal filters at level 1, 14-tap Q-shift filters at levels
≥ 2.

D (9,7)-tap bi-orthogonal filters at level 1, 18-tap Q-shift filters at levels ≥ 2.

E (9,7)-tap bi-orthogonal filters at level 1, 14-tap Q-shift filters at levels ≥ 2.

F (9,7)-tap bi-orthogonal filters at level 1, 6-tap Q-shift filters at levels ≥ 2.

G (5,3)-tap bi-orthogonal filters at level 1, 6-tap Q-shift filters at levels ≥ 2.
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Aliasing Energy Ratios,

Values of Ra in dB, for filter types A to G over levels 1 to 5.

Filters: A B C D E F G DWT
Complexity: 2.0 2.3 2.0 1.9 1.6 1.0 0.7 1.0
Wavelet
Level 1 -∞ -∞ -∞ -∞ -∞ -∞ -∞ -9.40
Level 2 -28.25 -31.40 -29.06 -22.96 -21.81 -18.49 -14.11 -3.54
Level 3 -23.62 -27.93 -25.10 -20.32 -18.96 -14.60 -11.00 -3.53
Level 4 -22.96 -31.13 -24.67 -32.08 -24.85 -16.78 -15.80 -3.52
Level 5 -22.81 -31.70 -24.15 -31.88 -24.15 -18.94 -18.77 -3.52
Scaling fn.
Level 1 -∞ -∞ -∞ -∞ -∞ -∞ -∞ -9.40
Level 2 -29.37 -32.50 -30.17 -24.32 -23.19 -19.88 -15.93 -9.38
Level 3 -28.17 -35.88 -29.21 -36.94 -29.33 -21.75 -20.63 -9.37
Level 4 -27.88 -37.14 -28.57 -37.37 -28.56 -24.37 -24.15 -9.37
Level 5 -27.75 -36.00 -28.57 -36.01 -28.57 -24.67 -24.65 -9.37
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How do we extend the DT CWT to multi-dimensions?

When the DT CWT is applied to 2-D signals (images), it has the following features:

• It is performed separably, with 2 trees used for the rows of the image and 2 trees
for the columns – yielding a Quad-Tree structure (4:1 redundancy).

• The 4 quad-tree components of each coefficient are combined by simple sum and
difference operations to yield a pair of complex coefficients. These are part
of two separate subbands in adjacent quadrants of the 2-D spectrum.

• This produces 6 directionally selective subbands at each level of the 2-D
DT CWT. Fig 10 shows the basis functions of these subbands at level 4, and
compares them with the 3 subbands of a 2-D DWT.

• The DT CWT is directionally selective because the complex filters can
separate positive and negative frequency components in 1-D, and
hence separate adjacent quadrants of the 2-D spectrum. Real separable
filters cannot do this!
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Why do we get good directional filters in 2-D?
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Figure 10: Basis functions of 2-D Q-shift complex wavelets (top), and of 2-D real wavelet filters

(bottom), all illustrated at level 4 of the transforms. The complex wavelets provide 6 directionally

selective filters, while real wavelets provide 3 filters, only two of which have a dominant direction. The

1-D bases, from which the 2-D complex bases are derived, are shown to the right.
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Test Image and Colour Palette for Complex Coefficients
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2-D DT CWT Decomposition into Subbands

Figure 11: Four-level DT CWT decomposition of Lenna into 6 subbands per level (only the central

128 × 128 portion of the image is shown for clarity). A colour-disc palette (see previous slide) is

used to display the complex wavelet coefficients.
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2-D DT CWT Reconstruction Components from Each Subband

Figure 12: Components from each subband of the reconstructed output image for a 4-level DT

CWT decomposition of Lenna (central 128 × 128 portion only).
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2-D Shift Invariance of Complex DT CWT vs Real DWT

Input (256 x 256)

Components of reconstructed ’disc’ images

DT CWT

wavelets:

DWT

level 1 level 2 level 3 level 4 level 4 scaling fn.

Figure 13: Wavelet and scaling function components at levels 1 to 4 of an image of a light circular disc

on a dark background, using the 2-D DT CWT (upper row) and 2-D DWT (lower row). Only half of

each wavelet image is shown in order to save space.
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How do we use the DT CWT in 3-D ?

When the DT CWT is applied to 3-D signals (eg medical MRI or CT datasets), it
has the following features:

• It is performed separably, with 2 trees used for the rows, 2 trees for the columns
and 2 trees for the slices of the 3-D dataset – yielding an Octal-Tree structure
(8:1 redundancy).

• The 8 octal-tree components of each coefficient are combined by simple sum and
difference operations to yield a quad of complex coefficients. These are
part of 4 separate subbands in adjacent octants of the 3-D spectrum.

• This produces 28 directionally selective subbands (4× 8− 4) at each
level of the 3-D DT CWT. The subband basis functions are now approximately
planar waves of the form ei(ω1x+ω2y+ω3z) , modulated by a 3-D Gaussian
envelope (i.e. 3-D Morlet wavelets).

• Each subband responds to approximately flat surfaces of a particular
orientation. There are 7 orientations on each quadrant of a hemisphere.
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3D subband orientations on
one quadrant of a hemisphere

3D frequency
domain:

X
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3D Morlet-like basis functions:

hk1,k2,k3(x, y, z) ≃ e−(x2 + y2 + z2)/2σ2 × ei(ωk1 x+ωk2 y+ωk3 z)

These are 28 planar waves (7 per quadrant of a hemisphere) whose orientation
depends on ωk1 ∈ {ωL, ωH} and ωk2, ωk3 ∈ {±ωL,±ωH}, where ωH ≃ 3ωL.
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Some applications of the DT CWT

• Motion estimation [Magarey 98]

• Motion compensation and registration [Kingsbury 02, Hemmendorff 02]

• Denoising [Choi 00, Miller 06]

• Deconvolution [Jalobeanu 00, De Rivaz 01, J Ng 07]

• Texture analysis [Hatipoglu 99] and synthesis [De Rivaz 00]

• Segmentation [De Rivaz 00, Shaffrey 02], classification [Romberg 00] and
image retrieval [Kam & T T Ng 00, Shaffrey 03]

• Watermarking of images [Loo 00] and video [Earl 03]

• Compression / Coding [Reeves 03]

• Seismic analysis [van Spaendonck & Fernandes 02, Miller 05]

• Diffusion Tensor MRI visualisation [Zymnis 04]

• Object matching & recognition [Anderson, Fauqueur & Kingsbury 06]

• Image fusion [Nikolov & Bull 07] and object tracking [Pang & Nelson 08]

• Sparse image and 3D-data reconstruction [Zhang 08 & 10]
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Motion Estimation and Image Registration

Our proposed algorithm for robust registration effectively combines

• The Dual-Tree Complex Wavelet Transform

◦ Linear phase vs. shift behaviour
◦ Easy shiftability of subbands
◦ Directional filters select edge-like structures
◦ Good denoising of input images

• Hemmendorf’s phase-based parametric method
(Hemmendorff et al, IEEE Trans Medical Imaging, Dec 2002)

◦ Finds LMS fit of parametric model to edges in images
◦ Allows simple filtering of QX to fit more complex motions
◦ Integrates well with multiscale DT CWT structure
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Registration
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Demonstrations

• Registration of CT scans:

◦ Two scans of the abdomen of the same patient, taken at different times with
significant differences in position and contrast.

◦ Task is to register the two images as well as possible, despite the differences.

• Enhancement of video corrupted by atmospheric turbulence, using registration
and complex wavelet fusion across frames:

◦ 75 frames of video of a house on a distant hillside, taken through a high-zoom
lens with significant turbulence of the intervening atmosphere due to rising hot
air (courtesy of ADFL, Canberra).

◦ Task is to register each frame to a ‘mean’ image from the sequence, and then
to reconstruct a high-quality still image by fusion of information from the
whole registered sequence.
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Conclusions

The Dual-Tree Complex Wavelet Transform provides:

• Approximate shift invariance

• Directionally selective filtering in 2 or more dimensions

• Low redundancy – only 2m : 1 for m-D signals

• Perfect reconstruction

• Orthonormal filters below level 1, but still giving linear phase (conjugate
symmetric) complex wavelets

• Low computation – order-N ; less than 2m times that of the fully decimated
DWT (∼ 3.3 times in 2-D, ∼ 5.1 times in 3-D)
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Conclusions (cont.)

• A general purpose multi-resolution front-end, similar to the multi-scale
Gabor-like filters of the human V1 cortex, suitable for many image analysis
and reconstruction tasks:

◦ Enhancement (deconvolution)
◦ Denoising
◦ Motion / displacement estimation and compensation
◦ Texture analysis / synthesis
◦ Segmentation and classification
◦ Watermarking
◦ 3D data enhancement and visualisation
◦ Object recognition and image understanding
◦ Sparsity-based image & 3D reconstruction

Papers on complex wavelets are available at: www.eng.cam.ac.uk/˜ngk/

A Matlab DT CWT toolbox is available on request from: ngk10@cam.ac.uk


