Complex-valued Wavelets, the Dual Tree, and Hilbert Pairs: why these lead to Shift Invariance and Directional M-D Wavelets?

NICK KINGSBURY

Signal Processing & Communications Group, Dept. of Engineering University of Cambridge, Cambridge CB2 1PZ, UK. ngk@eng.cam.ac.uk www.eng.cam.ac.uk/~ngk

Meeting on Mathematics & Information in Cambridge – February 2012

Important Continuous-time Complex-valued Wavelets

• The **Gabor** function:

$$\psi(t) = k \ e^{-t^2/2\sigma^2} \ e^{i\omega_0 t}$$
 $\hat{\psi}(\omega) = K \ e^{-\sigma^2(\omega - \omega_0)^2/2}$

• The **Morlet** wavelet:

$$\psi(t) = k \ e^{-t^2/2\sigma^2} (e^{i\omega_0 t} - \kappa_0) \qquad \hat{\psi}(\omega) = K \left(e^{-\sigma^2(\omega - \omega_0)^2/2} - \kappa_0 \ e^{-\sigma^2\omega^2/2} \right)$$

• The **Cauchy** wavelet:

$$\psi(t) = k \left(1 - i\beta t\right)^{-\alpha} \qquad \qquad \hat{\psi}(\omega) = \begin{cases} K \omega^{\alpha - 1} e^{-\omega/\beta}, & \omega \ge 0\\ 0, & \omega < 0 \end{cases}$$

Max gain is at $\omega_0 = \beta(\alpha - 1)$, and typically for one octave half-power bandwidth, $\alpha \approx 8$.

Plots of $\psi(t)$ and $|\hat{\psi}(\omega)|$ for Morlet, Cauchy (continuous) and dual-tree (discrete) complex wavelets

Note: $k = (1 + i)/\sqrt{2}$; and the dual-tree filters used here are 18-tap Q-shift filters.

COMPLEX-VALUED WAVELETS, THE DUAL TREE, AND HILBERT PAIRS How can we produce *good* discrete wavelet transforms?

- What are the problems with real-valued wavelet bases?
- Why do we need the Dual Tree?
- What is the Hilbert Pair delay condition?
- Why does this give shift invariance?
- Why do we use Q-shift filters?
- How do we extend the dual-tree to multi-dimensions?
- Why do we get good directional filters in m-D?
- What are some applications of the DT CWT?

FEATURES OF THE (REAL) DISCRETE WAVELET TRANSFORM (DWT)

- Good compression of signal energy.
- **Perfect reconstruction** with short support filters.
- No redundancy.
- Very low computation order-*N* only.

But what are the problems of the DWT?

- Severe shift dependence (due to aliasing in down-samplers).
- **Poor directional selectivity** in 2-D, 3-D etc. (due to separable real filters).

The DWT is normally implemented with a tree of highpass and lowpass filters, separated by 2:1 decimators.

REAL DISCRETE WAVELET TRANSFORM (DWT) IN 1-D

Figure 1: (a) Tree of real filters for the DWT. (b) Reconstruction filter block for 2 bands at a time, used in the inverse transform.

Shift Invariance of Complex DT $\mathbb{C}\mathrm{WT}$ vs Real DWT

Figure 2: Wavelet and scaling function components at levels 1 to 4 of 16 shifted step responses of the DT $\mathbb{C}WT$ (a) and real DWT (b). If there is good shift invariance, all components at a given level should be similar in shape, as in (a).

Figure 3: Wavelet and scaling function components at levels 1 to 4 of an image of a light circular disc on a dark background, using the 2-D DT CWT (upper row) and 2-D DWT (lower row). Only half of each wavelet image is shown in order to save space.

Why do we need the Dual Tree?

Making the wavelet responses **analytic** is a good way to halve their bandwidth and hence minimise aliasing.

BUT we cannot use complex filters in Fig 1 to obtain analyticity and perfect reconstruction together, because of conflicting requirements in Fig 1b – analytic filters must suppress negative frequencies, while perfect reconstruction requires a flat overall frequency response.

So we use the **Dual Tree**:

- to create the **real** and **imaginary** parts of the analytic wavelets separately, using 2 trees of **purely real** filters;
- to efficiently synthesise a multiscale **shift-invariant** filterbank, with perfect reconstruction and **only 2:1 redundancy** (and computation);
- to produce complex coefficients whose **amplitude varies slowly** and whose **phase shift** depends approximately **linearly** on displacement;

Figure 4: Dual tree of real filters for the Q-shift CWT, giving real and imaginary parts of complex coefficients from tree A and tree B respectively. Figures in brackets indicate the approximate delay for each filter, where $q = \frac{1}{4}$ sample period. Special level 1 filters, G^1 and H^1 , allow for the finite number of levels.

Q-shift DT CWT Basis Functions – Levels 1 to 3

Figure 5: Basis functions for adjacent sampling points are shown dotted.

WHAT IS THE HILBERT PAIR DELAY CONDITION ?

- Given two parallel orthonormal discrete wavelet transforms, what is the constraint on the lowpass filters in each transform, such that the resulting continuous wavelets from each transform form a Hilbert Pair? (This question and its answer are due to Ivan Selesnick in Signal Proc. Letters, June 2001.)
- A pair of wavelets, $\psi_g(t)$ and $\psi_h(t)$, are a **Hilbert Pair** if the complex function $\psi_g(t) + i \psi_h(t)$ is **analytic** (i.e. its Fourier transform is zero for $\omega < 0$).
- We shall show that this requires the lowpass filters, $g_0(n)$ and $h_0(n)$, of the two transforms to be related by the **half-sample delay condition**, expressed in the frequency domain as

$$H_0(\omega) = e^{-i\omega/2} G_0(\omega)$$

2-SCALE CONDITION ON THE TREE A FILTERS OF A DYADIC WAVELET TRANSFORM

Scaling function:
$$\phi_g(t) = 2\sum_n g_0(n) \phi_g(2t-n)$$
 (1)

Mother wavelet:
$$\psi_g(t) = 2\sum_n g_1(n) \phi_g(2t-n)$$
 (2)

Taking the Fourier transform of (1) gives the frequency domain relationship

$$\hat{\phi}_{g}(\omega) = \int_{-\infty}^{\infty} 2\sum_{n} g_{0}(n) \phi_{g}(2t-n) e^{-i\omega t} dt$$

$$= \int_{-\infty}^{\infty} \sum_{n} g_{0}(n) \phi_{g}(u) e^{-i\omega u/2} e^{-i\omega n/2} du \quad \text{where } u = 2t-n$$

$$= \sum_{n} g_{0}(n) e^{-in\omega/2} \cdot \int_{-\infty}^{\infty} \phi_{g}(u) e^{-iu\omega/2} du$$

$$= G_{0}(\frac{\omega}{2}) \cdot \hat{\phi}_{g}(\frac{\omega}{2}) \qquad (3)$$

Iterating on (3):

$$\hat{\phi}_g(\omega) = G_0(\frac{\omega}{2}) \ G_0(\frac{\omega}{4}) \ \hat{\phi}_g(\frac{\omega}{4}) = \dots = \left[\prod_{k=1}^{\infty} G_0(2^{-k}\omega)\right] \hat{\phi}_g(0) \tag{4}$$

Similarly, from (2) and (4):

$$\hat{\psi}_g(\omega) = G_1(\frac{\omega}{2}) \ \hat{\phi}_g(\frac{\omega}{2}) = G_1(\frac{\omega}{2}) \left[\prod_{k=2}^{\infty} G_0(2^{-k}\omega)\right] \hat{\phi}_g(0) \tag{5}$$

And similarly, for the Tree B filters:

$$\hat{\phi}_{h}(\omega) = \left[\prod_{k=1}^{\infty} H_{0}(2^{-k}\omega)\right] \hat{\phi}_{h}(0)$$

$$\hat{\psi}_{h}(\omega) = H_{1}(\frac{\omega}{2}) \left[\prod_{k=2}^{\infty} H_{0}(2^{-k}\omega)\right] \hat{\phi}_{h}(0)$$
(6)
(7)

The amplitude scaling of $\phi_g(t)$ and $\phi_h(t)$ is arbitrary, so we choose $\hat{\phi}_g(0) = \hat{\phi}_h(0) = 1$ to give them both unit area.

Conjugate Quadrature Filterbank (CQF)

In an **orthonormal** wavelet transform, G_1 and G_0 form a CQF (also known as a Quadrature Mirror Filterbank, QMF), such that

$$G_1(\omega) = e^{-im\omega} G_0^*(\omega \pm \pi)$$
(8)

where we use $\pm \pi$ to emphasise the 2π -periodic nature of G_0 and G_1 , and G_0^* means complex conjugate of G_0 . The delay shift of m samples must be an odd integer and is usually chosen to approximately equalise the group delay or the support of G_0 and G_1 .

Similarly

$$H_1(\omega) = e^{-im\omega} H_0^*(\omega \pm \pi)$$
(9)

Hence we can now express the wavelet frequency responses, $\hat{\psi}_g(\omega)$ and $\hat{\psi}_h(\omega)$, purely in terms of the two lowpass filters G_0 and H_0 .

The Hilbert Pair Condition

This condition is

$$\frac{\hat{\psi}_h(\omega)}{\hat{\psi}_g(\omega)} = \begin{cases} i & \text{if } \omega < 0\\ -i & \text{if } \omega > 0 \end{cases}$$
(10)

Note that the behaviour of the RHS at (and near) $\omega = 0$ is immaterial, because, for the wavelets to be admissible bandpass functions, $\hat{\psi}_g(0) = \hat{\psi}_h(0) = 0$.

Substituting (8) into (5) and (9) into (7), we get the following expression for this ratio

$$\frac{\hat{\psi}_{h}(\omega)}{\hat{\psi}_{g}(\omega)} = \frac{e^{-im\omega/2} H_{0}^{*}(\frac{\omega}{2} \pm \pi) \left[\prod_{k=2}^{\infty} H_{0}(2^{-k}\omega)\right] \hat{\phi}_{h}(0)}{e^{-im\omega/2} G_{0}^{*}(\frac{\omega}{2} \pm \pi) \left[\prod_{k=2}^{\infty} G_{0}(2^{-k}\omega)\right] \hat{\phi}_{g}(0)} \\
= R_{0}^{*}(\frac{\omega}{2} \pm \pi) \left[\prod_{k=2}^{\infty} R_{0}(2^{-k}\omega)\right]$$
(11)

where $R_0(\omega) = H_0(\omega)/G_0(\omega)$ and is 2π -periodic. R_0 will give the desired relation between H_0 and G_0 if (10) and (11) are both satisfied.

Solving for $R_0(\omega)$

Since the modulus of the RHS of (10) is unity everywhere, and (11) contains an infinite product of terms in R_0 , which will tend to grow or shrink if R_0 does not have unit magnitude, we deduce that $|R_0(\omega)| = 1$.

Now consider the phase $\theta(\omega)$ of R_0 , by letting

$$R_0(\omega) = e^{i\theta(\omega)} \tag{12}$$

Equating the phases of (10) and (11), we require that

$$-\theta(\frac{\omega}{2} \pm \pi) + \sum_{k=2}^{\infty} \theta(2^{-k}\omega) = \begin{cases} \frac{\pi}{2} & \text{if } \omega < 0\\ -\frac{\pi}{2} & \text{if } \omega > 0 \end{cases}$$
(13)

Deducing the form of $\theta(\omega)$

Because of the infinite sum in (13), we require $\theta(\omega) \to 0$ as $\omega \to 0$. Hence $\theta(0) = 0$.

Since $g_0(n)$ and $h_0(n)$ are purely real and lowpass, $R_0(\omega)$ must be conjugate symmetric and so $\theta(\omega)$ must be a continuous odd function about $\omega = 0$.

It can be shown (by Fourier analysis on $\theta'(\omega)$) that **any non-linear terms in** $\theta(\omega)$ would prevent (13) from being satisfied, because in (13) the gradient of the first term must cancel out the gradient of the summation terms at all $\omega \neq 0$.

Therefore we let

$$\theta(\omega) = \alpha \omega \quad \text{for } -\pi < \omega < \pi, \text{ where } \alpha \text{ is a constant.}$$
 (14)

Hence

$$\theta(\frac{\omega}{2} \pm \pi) = \begin{cases} \alpha(\frac{\omega}{2} + \pi) & \text{if } -4\pi < \omega < 0\\ \alpha(\frac{\omega}{2} - \pi) & \text{if } 0 < \omega < 4\pi \end{cases}$$
(15)

Note that, since $\theta(\omega)$ must be 2π -periodic for $|\omega| \ge \pi$, it will have discontinuities at $\omega = \pm \pi$ if α is not an integer. These become discontinuities at $\omega = 0$ in $\theta(\frac{\omega}{2} \pm \pi)$.

Typical plots of $\theta(\omega)$ and terms in Equ.(13)

Calculating α

Noting that
$$\sum_{k=2}^{\infty} \theta(2^{-k}\omega) = \alpha \omega [\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots] = \frac{\alpha \omega}{2}$$
 if $-4\pi < \omega < 4\pi$,

and substituting (15) into (13) gives

$$-\alpha(\frac{\omega}{2} + \pi) + \frac{\alpha\omega}{2} = \frac{\pi}{2} \quad \text{if } -4\pi < \omega < 0 \tag{16}$$

and
$$-\alpha(\frac{\omega}{2}-\pi) + \frac{\alpha\omega}{2} = -\frac{\pi}{2}$$
 if $0 < \omega < 4\pi$ (17)

(16) and (17) are both satisfied if $\alpha = -\frac{1}{2}$, and therefore

$$\frac{H_0(\omega)}{G_0(\omega)} = R_0(\omega) = e^{i\theta(\omega)} = e^{i\alpha\omega} = e^{-i\omega/2} \quad \text{for } -\pi < \omega < \pi$$
(18)

This is the **half-sample delay** solution that makes $\psi_h(t)$ the Hilbert transform of $\psi_g(t)$.

Ozkaramanli and Yu (Dec 2005 and June 2006) have shown this solution to be **unique** and applicable to **biorthogonal** as well as **orthonormal** wavelet transforms.

Figure 6: Dual tree of real filters for the Q-shift CWT, giving real and imaginary parts of complex coefficients from tree A and tree B respectively. Figures in brackets indicate the approximate delay for each filter, where $q = \frac{1}{4}$ sample period. Special level 1 filters, G^1 and H^1 , allow for the finite number of levels.

Why does the delay condition give shift invariance?

- The half-sample delay between the G_0 and H_0 lowpass filters means that their output samples are uniformly interleaved at all scales, and hence the sample rate is effectively doubled everywhere.
- The doubled sampling rate is sufficient to virtually **eliminate aliasing** if filters of 12 or more taps are used.
- If aliasing is eliminated in the **lowpass** branch of each 2-band reconstruction block, then it must also be eliminated in the **highpass** branch (to obtain perfect reconstruction).
- Elimination of aliasing means that each subband can be represented by a **unique** *z***-transfer function**, and hence the filtering is **LTI**, linear time-invariant (i.e. shift-invariant).

At level 1 of a finite dual tree, the delay difference must **increase to 1 sample** to compensate for the absence of delay differences at finer levels.

Why do we use Q-shift filters (below level 1)?

- Half-sample delay difference is obtained with filter delays of $\frac{1}{4}$ and $\frac{3}{4}$ of a sample period (instead of 0 and $\frac{1}{2}$ a sample for our original DT \mathbb{CWT}).
- This is achieved with an **asymmetric even-length** filter $G_0(z)$ and its time reverse $H_0(z) = z^{-1} G_0(z^{-1})$. $G_1(z)$ and $H_1(z)$ are the CQFs of these.
- Due to the asymmetry (like Daubechies filters), these may be designed to give an **orthonormal perfect reconstruction** wavelet transform in each tree.
- Tree **B** filters are the **reverse** of tree **A** filters, and reconstruction filters are the reverse of analysis filters, so **all filters** are from the **same orthonormal set**.
- Both trees have the **same frequency responses** (in magnitude).
- The combined **complex** impulse responses are **conjugate symmetric** about their mid points, even though the separate responses are asymmetric. Hence **symmetric extension** still works at image edges.

At level 1, **any DWT filters** can be used.

Q-shift DT CWT Basis Functions – Levels 1 to 3

Figure 7: Basis functions for adjacent sampling points are shown dotted.

FREQUENCY RESPONSES OF 18-TAP Q-SHIFT FILTERS

VISUALISING SHIFT INVARIANCE

- Apply a standard input (e.g. unit step) to the transform for a **range of shift positions**.
- Select the transform coefficients from **just one wavelet level** at a time.
- Inverse transform each set of selected coefficients.
- Plot the component of the reconstructed output for each shift position at each wavelet level.
- Check for **shift invariance** (similarity of waveforms).

Fig 8 shows that the DT $\mathbb{C}WT$ has near-perfect shift invariance, whereas the maximally-decimated real discrete wavelet transform (DWT) has substantial shift dependence.

Shift Invariance of Complex DT $\mathbb{C}WT$ vs Real DWT

Figure 8: Wavelet and scaling function components at levels 1 to 4 of 16 shifted step responses of the DT $\mathbb{C}WT$ (a) and real DWT (b). If there is good shift invariance, all components at a given level should be similar in shape, as in (a).

Shift Invariance of simpler DT $\mathbb{C}\mathrm{WTs}$

Figure 9: Wavelet and scaling function components at levels 1 to 4 of 16 shifted step responses of simpler forms of the DT CWT, using (a) 14-tap and (b) 6-tap Q-shift filters.

Shift Invariance – Quantitative measurement

Basic configuration of the dual tree if either wavelet or scaling-function coefficients from just level m are retained $(M = 2^m)$.

Letting $W = e^{i2\pi/M}$, **multi-rate analysis** gives:

$$Y(z) = \frac{1}{M} \sum_{k=0}^{M-1} X(W^k z) [A(W^k z) C(z) + B(W^k z) D(z)]$$

For shift invariance, aliasing terms $(k \neq 0)$ must be negligible. So we design $B(W^k z) D(z)$ to cancel $A(W^k z) C(z)$ for all non-zero k that give overlap of the passbands of filters C(z) or D(z) with those of shifted filters $A(W^k z)$ or $B(W^k z)$.

A Measure of Shift Invariance

Since

$$Y(z) = \frac{1}{M} \sum_{k=0}^{M-1} X(W^k z) [A(W^k z) C(z) + B(W^k z) D(z)]$$

we quantify the shift dependence of a transform by calculating the ratio of the total energy of the **unwanted aliasing transfer functions** (the terms with $k \neq 0$) to the energy of the **wanted transfer function** (when k = 0):

$$R_a = \frac{\sum_{k=1}^{M-1} \mathcal{E}\{A(W^k z) C(z) + B(W^k z) D(z)\}}{\mathcal{E}\{A(z) C(z) + B(z) D(z)\}}$$

where $\mathcal{E}\{U(z)\}$ calculates the energy, $\sum_{r} |u_r|^2$, of the impulse response of a *z*-transfer function, $U(z) = \sum_{r} u_r z^{-r}$.

 $\mathcal{E}{U(z)}$ may also be interpreted in the **frequency domain** as the integral of the squared magnitude of the frequency response, $\frac{1}{2\pi} \int_{-\pi}^{\pi} |U(e^{i\theta})|^2 d\theta$ from Parseval's theorem.

Types of DT CWT filters

We show results for the following combinations of filters:

- A (13,19)-tap and (12,16)-tap near-orthogonal odd/even filter sets.
- **B** (13,19)-tap near-orthogonal filters at level 1, 18-tap Q-shift filters at levels ≥ 2 .
- C (13,19)-tap near-orthogonal filters at level 1, 14-tap Q-shift filters at levels ≥ 2 .
- **D** (9,7)-tap bi-orthogonal filters at level 1, 18-tap Q-shift filters at levels ≥ 2 .
- **E** (9,7)-tap bi-orthogonal filters at level 1, 14-tap Q-shift filters at levels ≥ 2 .
- **F** (9,7)-tap bi-orthogonal filters at level 1, 6-tap Q-shift filters at levels ≥ 2 .
- **G** (5,3)-tap bi-orthogonal filters at level 1, 6-tap Q-shift filters at levels ≥ 2 .

ALIASING ENERGY RATIOS,

Values of R_a in dB, for filter types A to G over levels 1 to 5.

Filters:	A	В	C	D	Е	F	G	DWT
Complexity:	2.0	2.3	2.0	1.9	1.6	1.0	0.7	1.0
Wavelet								
Level 1	$-\infty$	-9.40						
Level 2	-28.25	-31.40	-29.06	-22.96	-21.81	-18.49	-14.11	-3.54
Level 3	-23.62	-27.93	-25.10	-20.32	-18.96	-14.60	-11.00	-3.53
Level 4	-22.96	-31.13	-24.67	-32.08	-24.85	-16.78	-15.80	-3.52
Level 5	-22.81	-31.70	-24.15	-31.88	-24.15	-18.94	-18.77	-3.52
Scaling fn.								
Level 1	$-\infty$	-9.40						
Level 2	-29.37	-32.50	-30.17	-24.32	-23.19	-19.88	-15.93	-9.38
Level 3	-28.17	-35.88	-29.21	-36.94	-29.33	-21.75	-20.63	-9.37
Level 4	-27.88	-37.14	-28.57	-37.37	-28.56	-24.37	-24.15	-9.37
Level 5	-27.75	-36.00	-28.57	-36.01	-28.57	-24.67	-24.65	-9.37

How do we extend the DT CWT to multi-dimensions?

When the DT $\mathbb{C}WT$ is applied to 2-D signals (images), it has the following features:

- It is performed separably, with 2 trees used for the rows of the image and 2 trees for the columns yielding a **Quad-Tree** structure (4:1 redundancy).
- The 4 quad-tree components of each coefficient are combined by simple sum and difference operations to yield a **pair of complex coefficients**. These are part of two separate subbands in adjacent quadrants of the 2-D spectrum.
- This produces 6 directionally selective subbands at each level of the 2-D DT CWT. Fig 10 shows the basis functions of these subbands at level 4, and compares them with the 3 subbands of a 2-D DWT.
- The DT CWT is directionally selective because the complex filters can **separate positive and negative frequency components** in 1-D, and hence **separate adjacent quadrants** of the 2-D spectrum. Real separable filters cannot do this!

Why do we get good directional filters in 2-D?

Figure 10: Basis functions of 2-D Q-shift complex wavelets (top), and of 2-D real wavelet filters (bottom), all illustrated at level 4 of the transforms. The complex wavelets provide 6 directionally selective filters, while real wavelets provide 3 filters, only two of which have a dominant direction. The 1-D bases, from which the 2-D complex bases are derived, are shown to the right.

Test Image and Colour Palette for Complex Coefficients

-1 -0.8 -0.6 -0.4 -0.4 -0.2 -0.4 -0.4 -0.4 -0.5 -0.5 -0.5 -0.5 -1 -0.5 -0.5 -1 -0.5 -0.5 -1 -0.5 -0.5 -1 -1 -0.5 -0.5 -1 -1 -0.5 -0.5 -1 -1 -0.5 -0.5 -1-1

Colour palette for complex coefs.

2-D DT CWT Decomposition into Subbands

Figure 11: Four-level DT $\mathbb{C}WT$ decomposition of *Lenna* into 6 subbands per level (only the central 128×128 portion of the image is shown for clarity). A colour-disc palette (see previous slide) is used to display the complex wavelet coefficients.

2-D DT $\mathbb{C}WT$ Reconstruction Components from Each Subband

Figure 12: Components from each subband of the reconstructed output image for a 4-level DT $\mathbb{C}WT$ decomposition of Lenna (central 128×128 portion only).

Figure 13: Wavelet and scaling function components at levels 1 to 4 of an image of a light circular disc on a dark background, using the 2-D DT CWT (upper row) and 2-D DWT (lower row). Only half of each wavelet image is shown in order to save space.

How do we use the DT $\mathbb{C}WT$ in 3-D ?

When the DT CWT is applied to 3-D signals (eg medical MRI or CT datasets), it has the following features:

- It is performed separably, with 2 trees used for the rows, 2 trees for the columns and 2 trees for the slices of the 3-D dataset yielding an **Octal-Tree** structure (8:1 redundancy).
- The 8 octal-tree components of each coefficient are combined by simple sum and difference operations to yield a **quad of complex coefficients**. These are part of 4 separate subbands in adjacent octants of the 3-D spectrum.
- This produces 28 directionally selective subbands (4 × 8 − 4) at each level of the 3-D DT CWT. The subband basis functions are now approximately planar waves of the form e^{i(ω₁x+ω₂y+ω₃z)}, modulated by a 3-D Gaussian envelope (i.e. 3-D Morlet wavelets).
- Each subband responds to approximately **flat surfaces** of a particular orientation. There are 7 orientations on each quadrant of a hemisphere.

$$h_{k1,k2,k3}(x,y,z) \simeq e^{-(x^2+y^2+z^2)/2\sigma^2} \times e^{i(\omega_{k1}x+\omega_{k2}y+\omega_{k3}z)}$$

These are **28 planar waves** (7 per quadrant of a hemisphere) whose orientation depends on $\omega_{k1} \in \{\omega_L, \omega_H\}$ and $\omega_{k2}, \omega_{k3} \in \{\pm \omega_L, \pm \omega_H\}$, where $\omega_H \simeq 3\omega_L$.

Some applications of the DT $\mathbb{C}\mathrm{WT}$

- Motion estimation [Magarey 98]
- Motion compensation and registration [Kingsbury 02, Hemmendorff 02]
- **Denoising** [Choi 00, Miller 06]
- **Deconvolution** [Jalobeanu 00, De Rivaz 01, J Ng 07]
- **Texture analysis** [Hatipoglu 99] and **synthesis** [De Rivaz 00]
- Segmentation [De Rivaz 00, Shaffrey 02], classification [Romberg 00] and image retrieval [Kam & T T Ng 00, Shaffrey 03]
- Watermarking of images [Loo 00] and video [Earl 03]
- Compression / Coding [Reeves 03]
- Seismic analysis [van Spaendonck & Fernandes 02, Miller 05]
- Diffusion Tensor MRI visualisation [Zymnis 04]
- **Object matching & recognition** [Anderson, Fauqueur & Kingsbury 06]
- Image fusion [Nikolov & Bull 07] and object tracking [Pang & Nelson 08]
- Sparse image and 3D-data reconstruction [Zhang 08 & 10]

Motion Estimation and Image Registration

Our proposed algorithm for **robust registration** effectively combines

• The Dual-Tree Complex Wavelet Transform

- Linear phase vs. shift behaviour
- Easy shiftability of subbands
- Directional filters select edge-like structures
- Good denoising of input images

• Hemmendorf's phase-based parametric method (Hemmendorff et al, IEEE Trans Medical Imaging, Dec 2002)

- Finds LMS fit of parametric model to edges in images
- Allows simple filtering of $\mathbf{Q}_{\mathcal{X}}$ to fit more complex motions
- $\circ\,$ Integrates well with multiscale DT CWT structure

DEMONSTRATIONS

- Registration of CT scans:
 - Two scans of the abdomen of the same patient, taken at different times with significant differences in position and contrast.
 - Task is to register the two images as well as possible, despite the differences.
- Enhancement of video corrupted by atmospheric turbulence, using registration and complex wavelet fusion across frames:
 - 75 frames of video of a house on a distant hillside, taken through a high-zoom lens with significant turbulence of the intervening atmosphere due to rising hot air (courtesy of ADFL, Canberra).
 - Task is to register each frame to a 'mean' image from the sequence, and then to reconstruct a high-quality still image by fusion of information from the whole registered sequence.

CONCLUSIONS

The **Dual-Tree Complex Wavelet Transform** provides:

- Approximate **shift invariance**
- **Directionally selective** filtering in 2 or more dimensions
- Low redundancy only $2^m : 1$ for *m*-D signals
- Perfect reconstruction
- **Orthonormal filters** below level 1, but still giving **linear phase** (conjugate symmetric) complex wavelets
- Low computation order-N; less than 2^m times that of the fully decimated DWT (~ 3.3 times in 2-D, ~ 5.1 times in 3-D)

CONCLUSIONS (cont.)

- A general purpose multi-resolution front-end, similar to the multi-scale Gabor-like filters of the human V1 cortex, suitable for many image analysis and reconstruction tasks:
 - Enhancement (deconvolution)
 - Denoising
 - Motion / displacement estimation and compensation
 - Texture analysis / synthesis
 - Segmentation and classification
 - Watermarking
 - 3D data enhancement and visualisation
 - Object recognition and image understanding
 - Sparsity-based image & 3D reconstruction

Papers on complex wavelets are available at: www.eng.cam.ac.uk/~ngk/

A Matlab DT CWT toolbox is available on request from: ngk10@cam.ac.uk