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Abstract—We study the transport capacity of a Gaussian Indeed, the smaller the distance that a transmission covers,
multiple access channel (MAC), which consists of multiple the higher is the number of transmissions of a similar type

transmitters and a single receiver, and a Gaussian broadcast yn4; are needed, before the transmitted packet reaches its final
channel (BC), which consists of a single transmitter and multiple destination
| .

receivers. The transport capacity is defined as the sum, over al ) .
transmitters (for the MAC) or receivers (for the BC), of the Taking this argument a step further, we can argue that a
product of the data rate with a reward r(z) which is a function natural figure of merit for the usefulness of a transmission is
of the distancex that the data travels. neither its rate nor the distance covered, but rathepthduct

In the case of the MAC, assuming that the sum of the e fwo measured ihps x m. Indeed, if two transmissions

transmitter powers is upper bounded, we calculate in closed h th te-dist duct . ith f the t
form the optimal power allocation among the transmitters, that ave the same rate-distance product, using eitner of the two

maximizes the transport capacity, using Karush-Kuhn-Tucker repeatedly to transmit a given volume of data to a distant
(KKT) conditions. We also derive asymptotic expressions for the destination would consume the same power and bandwidth,
optimal power allocation, that hold as the number of transmitters  even if their rates and covered distances differ significantly. It
approaches infinity, using the most-rapid-approach method of 45\ that the summation of the rate-distance products over

the calculus of variations. In the case of the BC, we calculate It . that fi ¢ . i instant i
in closed form the optimal allocation of the transmitter power all transmissions that are active at a given tume Instant in a

among the signals to the different receivers, both for a finite Wireless network, termed thteansport capacity, is a natural

number of receivers and for the case of asymptotically many figure of merit about how efficiently the network operates at

receivers, using our results for the MAC together with duality that particular instant.

arguments.

Our results can be used to gain intuition and develop good

design principles in a variety of settings. For example, they apply B. Related Work

to the uplink and downlink channel of cellular networks, and

also to sensor networks which consist of multiple sensors that The importance of transmitting over large distances was

communicate with a single central station. recognized in the early 1980’s [4], [5]. However, transport
capacity was defined more recently in [6]. There, the authors
consider a wireless network af nodes, placed in a bounded

l. INTRODUCTION two-dimensional region. It is assumed that the power of
A. Transport Capacity transmitted signals decays with distance according to a power

Consider a wireless multihon network in which a particul |IaW, and that a signal is successfully received if the Signal to
nodeT scheduled to transmit r?as WO options: eitheFr) trans"’\lr%ten‘erence and Noise Ratio (SINR) at the receiver is above a

S . P j . Miked threshold. All transmissions are with a fixed global rate
to a destination nodeD; with rate R;, or transmit to a

L ) . It is shown that the transpor ity un lacemen
destination nodeD, with rate R, < R;. Assume that both W' Itis shown that the transport capacity undey placement

. . . . of nodes will have to be smaller thadn/n, wherek; is a
transmissions will require the same amount of bandwid .
. . . . constant independent of. The bound comes from the fact
and power, and will convey information of equal importanc

. . . S §hat any transmission invariably creates interference to other
In this setting, which destination should nodé prefer? y y

Traditional thinking suggests th&t should transmit to the transmissions near by. On the other hand, the authors give

node to which it can send data with the highest rate, i_eexamples of network topologies that can sustain a transport

. . . . . ¥ i r r th wher is another
D,. However, in amultihopwireless network, in which every capacity gleatg dt arké\/ﬁ, f ere ky < ki is anothe
acket will have to be transmitted multiple times to reach itcsonstant, also independent o C . .
b In [7], the usefulness of a link is described in terms of

final destination, it is not only important that a node transmihs1e product of the communication rate witireward function
with high rate but also that the signal travedslarge distance r(z), where z is the distance between the transmitter and

Work supported byK plus funding for the fw. project 10 “Signal and the receiver. In the special case whefe) = z, we get the
Information Processing.” standard rate-distance product. The authors study the Gaussian
G. A. Gupta is with the Mathematics Department of the Indian Institute @§roadcast Channel (BC) of Fig. 1, which consists of a single

Technology (lIT), New Delhi, India, 110016 (email: gupta@ftw.at). . . :

S. Toumpis and J. Sayir are with the Telecommunications Resea&!ﬁnsm|Fte@.and mUIt'pIe receivers’, _VQ’ s Vi, pIaqed at .
Center Vienna (ftw.), Donau-City-Strasse 1/3, A-1220, Austria (emaiincreasing distances from the transmitter. The capacity region
{toumpis,sayi} @ftw.at). N , of this channel, i.e., the set of simultaneously achievable rates

R. R. Miuller is with Norwegian University of Science and Technology, L . .
7491 Trondheim, Norway (email: mueller@iet.ntnu.no). of communication from the transmitter to each of the receivers,

Parts of this work have appeared, in preliminary form, in [1], [2], [3]. iS known [8]. The authors build on this knowledge to calculate



T

[ J

Xll\xzk\xgﬁ,A Xn
[ J [ ) @ -cceeeeceeceeean °
Vi Vo V3 Vi

Fig. 1. The Gaussian broadcast channel, which consists of a single transmftigr 2. The Gaussian multiple access channel, which consists of a single
T andn receiversVy, Va, ..., Vi, placed at increasing distances < zo <  receiverR andn transmittersl’, T yoe , Ty, placed at increasing distances
... < zy from the transmitter. 1 < x2 < ... < zpn from the receiver.

the point in the capacity region that maximizes the transp@ystems. We also discuss the connection of our results with
capacity of the channel, defined as the summation, over @llated works on the calculation of arbitrary points of the
receivers, of their respective rate-reward products. capacity region.

C. Contributions Il. THE MULTIPLE ACCESSCHANNEL

In this work, we study the transport capacity of the Gaussianas shown in Fig. 2, the MAC consists of a single receiver
multiple access and broadcast channels, along the informationgng » transmitters Ty, Ts, ..., T, placed at increasing
theoretic tangent initiated in [7], and using the notions qfistancesz; < 2, < ... < z, from the receiver (but
reward and transport capacity defined there. not necessarily along a straight line, or even on the same

We start in Section Il by considering the Gaussian Mupjane). The receiver is subject to additive white Gaussian noise
tiple Access Channel (MAC) of Fig. 2, that consists of @jth spectral density;. Transmitter?; can transmit with a
single receiver and n transmitte¥3, Tb,..., T, placed at maximum powet P;, and the total bandwidth available for
increasing distances from the receiver. Each transniiitean communication is equal td.
transmit with a maximum powep;. The capacity region of  \whenT; transmits with powep, R will receive the signal
this channel is known [8]. Building on this knowledge weyjth power h(z;) x p, where thegain function h(-) captures
Calculate the pOint in the Capacity region that maXimiZeS trﬂﬁe dependence of the Signa' power on distance. For com-
transport capacity, defined for this channel as the summatigictness, we use the notatién = h(z;). A gain function
over all transmitters, of their respective rate-reward producig particular interest is thenonomial gain function, defined

In Section Ill, we relax the individual constraints on thQJy h(z) = Kpz~", wherey > 0 is the gain exponentand
powers of the transmitters, and instead assume that the SHM~ ( is a constant.
of their powers is upper bounded. Under this sum-powerTpe capacity regio®™AC of the multiple access channel
constraint, we derive a closed form solution for the optimal als gefined as the set of all the combinations of raes—
location of the total power, and the resulting transport capacig;gl,RQ’ ..., R,) with which each of then transmitters can

The calculation is done in a very straightforward manner, USi%ﬂnultaneously send data to the receiver. The capacity region
the Karush-Kuhn-Tucker (KKT) conditions. We also derivgs g closed, convex polyhedron, given by [8]

asymptotic expressions for the optimal power allocation and
the transport capacity it induces, that hold as the number of.vac _ {R . ZR” <
transmitters approaches infinity. The expressions are deriveg ' = ‘e
using the most-rapid-approach method from the calculus of S hiP,
variations. In all derivations, we adopt a reasonable assumption Blog,(1 + &L "
that essentially specifies that rewards increase with distance nB
slower that the rate at which the signal strengths decay withit can be shown that the number of vertice’®fA€ whose
distance. coordinates arall positive is exactly!. Each of these vertices

In Section IV, we examine the Gaussian broadcast channgin be achieved by a successive decoding scheme, in which
We calculate, in closed form, the allocation of the transmitttie signals from the transmitters are decoded by the receiver
power among the signals to the different receivers, that maxne by one. When decoding the signal of transmitfer
mizes the transport capacity, both in the case of a finite numhkose signals that have already been decoded do not affect
of receivers, and for the asymptotic case where the numberieé decoding. On the other hand, those signals that have not
receivers goes to infinity. Although similar results have bedseen decoded yet appear as additive white Gaussian noise. In
derived in [7], our derivations are much shorter because thexrticular, consider a successive decoding scheme in which the
are based on the duality between the broadcast channel andsiggal fromT ;) is decodedj-th, andr(-) is a permutation of
multiple access channel under the sum-power constraint [He set{1,2,...,n}. (Consequentlyr—!(i) is the rank with
and on the results of the previous section (which are also mughich the signal of7; is decoded.) The components of the
shorter than the derivation of [7]). Also, the expressions we
arrive at are simpler. IMore formally, T; can transmit with any power any time it uses the

. . . . . channel, as long as the average power over time converges with probability
We conclude in Section V with a discussion of our results, 5 yajue equal or smaller thaR;. Alternative constraints have been

and their implications in the design of practical wirelessonsidered in a similar setting in [10], [11].

) vzg{l,z,...,n}}.



vertexR, = (Rir,...,R,~), achieved by the permutationThen:
m(-), are given by:

1
E [C%AAC(RﬂQ) - %YIAC(R‘M )}

h; P;
Rin = Blogy(1 + NB 42k a1 >m-1(0) hkPk)' = rplogy(1+ @) + 7y logy (1 + P )
I I+ pg
We now associate the transmission of a bit of information —7r logy (1 + pi’“) — 1y logy (1 + Q)
across a distance with a rewardr(z), where thereward I+p o
function r(-) is strictly increasing, with-(0) = 0. For com- = (r —11) [loga (I +pi) +logy (1 + p1)]
pactness, we use the notation= r(z;). A reward function of +(r; — i) [logs (I) + logy (I + pr + pr)]
particular interest is thenonomial reward function r(x) = I? + Ipi + Ip; + pipr
K,z wherep > 0 is thereward exponentand K, > 0 is = (rk —mi)log, 2+ Ipr+ Ipi
a constant. Théransport capacity associated with the point N—
R=(Ri,Ry,...,R,) € CMAC is defined as
n Therefore, the transport capacity strictly increases if we
CHAC(R) £ > iR, exchange the decoding orders of nodesnd /. Repeating
i=1 the process, we can create a finite sequence of permutations
m, T, ..., Ty, Of strictly increasing transport capacity, with

In the special case of the monomial reward function vyits
1, K, = 1, this definition coincides with the original definition
of transport capacity given in [6].

The transport capacity is a linear function of the rafgs
who in turn must belong in the convex polyhedr6AC,
Therefore, its maximization is a linear program [12], and the )
supremum is actually achieved at one of theverticesR,. A Problem Formulation
One could expect the complexity of the problem to increase
factorially with the number of nodes. However, because of the
special structure of the problem, the solution is remarkabﬁ

Slmf]le’ as th(.a ne>;]t theore.m shdws L transmitters no longer have individual constraints, but rather
T_ eorem 1. - The maximum transport capacity IS ONyat the sum of powers must be smaller than or equal to some
achieved by the successive decoding scheme under which | constant?,. For each distribution of powers whose
S|g'nal of trgnsmnteﬂ} |s.decod¢dj-th. .In ot.her words, t'he sum does not exceeffy, Theorem 1 applies. Therefore, to
unique optimal permutatiom () is the identity permutation maximize the transport capacity in this setting, we need to
7(i) = 4. Therefore, the maximum transport capacity is givelve the following optimization problem:

by: '

T, being the identity permutation. The result follows. O

IIl. THE MAC UNDER A SUM-POWER CONSTRAINT

In the previous section, it was assumed that each transmitter
has a maximum powef; with which it can transmit.
natural extension of our investigation is to assume that

- hiP; imize: no __hP
B Z” log, (1 + i . ma>f|m|ze. B . rilogy(1+ BT T TP ), 1)
Pt NB + 3 i1 hi Py subjectto: ¢ P <Py, Pi>0,i=1,...,n.

Proof: Let us assume that the transport capacity is achieved byThis problem is pertinent in a number of settings. For
using a permutatiorr (-) other than the identity permutation.example, in the deployment phase of a sensor network con-
Therefore, there is g such thatc £ 7, (jo) > m1(jo+1) £ 1. sisting of a single central node and many sensors that must
We define a new decoding order, specified by the permutatiiward information to the central node, if our power sources
ma(+): are limited, we would like to know what is their optimal
distribution over the sensors that will lead to the most efficient

A m (j. +1) !f j - j,O’ operation of the network, where we quantify efficiency with
m(j) = {mG—1) ifj=jo+1, the notion of transport capacity. As another example, consider
mi(J) otherwise. a cellular network, in which many mobile stations in a cell

want to access the base station, and the network has placed
Both orders of decoding achieve exactly the same transmégr upper bound on the total transmitted power coming from
sion rate for all transmitters other thdii and7;. Any dif- that cell, in order to bound the interference experienced in
ference in the transport capaciti€$'*“(R.,) — C}'*°(Rx,)  neighboring cells that share the same frequency band. In such
will be due to the different rates achieved By and7;. Let I g setting, we would like to determine the maximum possible
be the combined noise and interference power that the receiy@hsport capacity, because this information will suggest how
sees when decoding the signal coming frdin under the |arge the cell can be made. Finally, as we show in Section IV,
original decoding order,. Also letp;, = hy P, andp; = h P, knowing the transport capacity of the MAC with a sum-power
constraint will allow us to determine the transport capacity of
2This theorem appeared first, in a different setting, in [13]. the BC.



B. Basic Properties Assumption 1 implies a number of facts that we will need
We rewrite the optimization problem (1) as: later on, and we collect here in the form of a lemma. Their
proofs appear in Appendix I.
Lemma 1:

(i) Assumption 1 is equivalent to each of the following:

minimize:  fo(Py,..., Py,) = Brylog,(nB)
=By (ri —ric1)loge(nB 4 >4 _; hi Pr)

subjectto: Yp_ P, <P, P >0,i=1,...,n.

(2) ri — Ti—1 Titl — T . .
We note that the objective functiorfy(Py,...,P,) is T = hil“ - Vi=Ll..n=1 ()
convex. Indeed, it can be written as the composite func- ' '
tion u(ai1(Pr,..., Py),...,an(P1,..., Py)), where the func- Ticl 1y vy Titl
ton uw : (RY)" — R is defined byu(as,...,a,) = i hicn oM My n—1, (6)
Ty —Ti-1 Tit1 — T4

Brylogy(nB) — B Y. (ri —ri—1)log, a;, and the functions
a; : (RT)" — R are defined by:

for any placement of transmittefs; }, and wherery =

0 and hy = cc.

A - .
ai(Pr,.... Pn) = 0B + thp’“ i=L...,n (3 (i) Assumption 1 implies that for any placement of trans-

. =i mitters {z;}, andVi =1,...,n—1, Vk=1,...,n—1,
The functionsa, (P, ..., P,) are linear, and hence concave.
Noti_ng that the sequenc@r_i} is strictly inc_reasi_ng, we can ? — 7‘1‘:1 > Ti;rk - Til_l. @)
easily show that the Hessian of the functio() is positive TR Rir R

definite, thereforeu(:) is (strictly) convex. In additiony(-) is _ o
non-increasing in each argument. It follows that the compddii) Assumption 1 implies that, far > 0, [(z) < r(x)h(z).

sition u(a1(P1,...,Py),...,an(Py,...,P,)) is convex [12]. (iv) Assumption 1 implies that the function

As then + 1 inequality constraints of (2) are linear, it follows 1y ) ,

that (2) is a convex optimization problem. glz) & r@)() (@) 1 (r(@)h(z)
The optimization functiory, is continuous, and the domain r'(z) h(z) h2(z)r' (z)

of the problem, i.e., the set of power vectors where the
constraints are satisfied, is compact. Therefore, the infimum
of fo is actually achieved, and it makes sense to discuss about
a minimum. Furthermore, only one power distribution achievgs The Closed Form Solution
this minimum. To see why, let us assume that there are actually )
two power distributions{ P!} and{ P2} achieving it. Because It follows by the convexity of the problem [12], that, to
the mapping from the space ¢} to the space ofa;} is Prove the qptlmc’.thy of a power allocatiofP; }, it suffices to _
one-on-one, there are two distinct poifts } and{a2} where ;how tha.t it §at|sf|es the Karush-Kuhn-Tucker (KKT) condi-
the functionu(-) achieves its minimum. However, the HessiaHonS, Which in our problem become:
of u(-) is positive definite in(R™)", thereforeu(-) is strictly — », of

0

is increasing.

convex and must have a unique minimum. Therefore, we arriE P,=Py, P,>0, \i >0, =2 —X\;+v =0, \;-P, =0,
at a contradiction. = 2
C. A Basic Assumption fori=1,...,n and for some, \; € R. This set of equations
. . ) . can easily be shown to be equivalent to the following:
Assumption 1: The functiol{z) = (’ f*)) is decreasing: y q 9
h(x) n .,
/ / _ 9fo 9fo _
O<z<ym 71"(/95) > 71'(/11)' @ 2 Pe=P k>0, p tv=0 P55 +v| =0,
(7)(x) ~ ()W) k=1

Roughly speaking, the assumption states that rates increfz%ez: =1, s Th and for somev € R.AB%g%ubstit_uting the
with distance not as fast as the channel decays with distan@@rtial derivatives offo, and settingh = =5=v, this set of
It is not as restricting as it would first seem, as it is satisfiggfluations becomes

in most cases of practical interest. For example, it is clearly i

satisfied for the case of the monomial gain and reward func- Zpk =Py, P,>0, h; Z Tk —Th=1 _ <0,
tions with v > p. For all realistic propagation environment ;= [t ak

models,y > 2. In addition, as discussed in the introduction,

the most interesting case of the monomial reward function is P; -

when p = 1. Therefore, the assumption is very reasonable

assuming monomial reward and gain functions.
Assumption 1 allows us to determine the optimal pow

allocation in a straightforward manner. The optimal power al-

location without using it can also be found, but the derivations a; — i1

are significantly more complicated, as we discuss in Section V. Py = h;

: Tk — Tk—1
h; — = A| =0, 8
R

gﬁr i=1,...,n and some\ € R. Note that we have defined
ihe a;’s in (3). We also leta,,.; £ 1B, so that

t=1,...,n.



We now make the claim that the optimal power distributiofollows that the (13) are equivalent to

{P;} satisfies the following set of equations: 17 —1p .
nB>—-———=>=, i=L+1,...,n (18)
n by 1 1
>h o= R, © o
1 Because of (7), it suffices to show that (18) holdsifer L+1.
P, >0, i=1,...,L, (10) In addition, straightforward algebra shows that the following
i equivalence also holds:
k— Th—1 .
Ry =2 X =0, i=1,...,L, 11 L T
; ak (1) nB > l TL+1 —TL & < thrl fLLzl
P, = 0, i=L+1,....n, (12) A = B Ty

However, the second relation is satisfied, by the way we
have definedL. Therefore, the inequalities (13) are also
satisfied. This concludes our proof, as we have found a power
for some) € R and an indexZ, which we call thecutoff  distribution that satisfies all the requirements (9)-(13). We now
index. If (9)-(13) hold, then (8) will also hold, and thestate our result in the form of a theorem:

! Tk —Tk—1 .
[T YL S| 0, i=L+1,...,n, (13
kz_l - < i + n, (13)

{Pi} form the unique optimal power allocation. Our strategy Theorem 2: LetL be the largest index € {1,...,n} that
therefore will be to find a power distributiofP; } that satisfies satisfies the inequality
(9)-(13). ricy g

Equations (10), (11), and (12) will be satisfied if we set: Po o TR TR

. nB = ri—ri1
Ti—Ti—1 .
P R i=1...,L (14) where the sequence on the right hand side is increasing, by
’ nB i=L+1,...,n, Assumption 1. Also let

provided that this sequence is decreasing. By (5), it suffices ) ﬁ i=1,...,L,
to show thata;, > nB. But this will depend on the values of @i = 0B S 1
A and L, which we calculate next. ’

We first note that (14) implies that: where ) = 7L The maximum transport capacity is

: by —ripihin | L
kz_lpk =3 |:h7_hz+1:| ;i=1,...,L—-1. (19) C%SSX:BZ(TZ-—n—,l)logQ(ai)—BTLlogQ("r]B),
= i=1
This can be shown by straightforward induction. In additionand the unique power distribution that achieves it is given by:

A; —Qi41 -
(16) Pi:{ n, L 1,...,L, (19)

—nB
0 1=L+1,...,n.

p :aL—CLL-&-l:i lrp—rp—
L hi hy (A —

T hr—1

Combining (16) with (15) fori = L — 1, we derive the value

L : Our result is conceptually straightforward: The available
of \ that satisfies the sum-power constraint (9): P y g

power should be distributed among the fidsttransmitters,
rrhr and, the greater the available power, the larlebecomes.

- Pohp, +nB’ Therefore, the solution resembles a water filling that starts

 PohpinB o ri—ri from near the receiver and moves outwards. The precise

therefore we have that, = =77= x L We now  jjipcation of power among the first users will depend on

hp—1
simply define the cutoff indexX to be the largest for which the exact shape of the reward and gain functions.

the following inequality holds: As a numerical example, let us consider a multiple access
—_— . channel that consists of a single receiver, placed at the origin,
FPohi +nB o Fi Tl nB & B S _hi R and 200 transmitters, placed uniformly along theaxis with
rih; i nB T ri—rio a separation o25 m from each other, starting & m from

(17) the receiver. The total power available B = 400 W, the
Note that the expression on the far right side of (17) kvailable bandwidth3 = 10 MHz, the noise spectral density
increasing, as follows from (6). Therefore, (17) will hold foiis 5 = 1016 % and a monomial power gain function with
a contiguous range of indiceis and the largest is selectedy = 3 and K;, = 0.1 m? is assumed. In Fig. 3, we plot the
as L. Also, note that the set of indices is never empty, asptimal distribution of powers, assuming a monomial reward
for + = 1 we arrive at the trivial identity% > 0. With this  function with K,. = 1, and for the cases = 1, p = 1.5, and
selection ofL, a;, > nB and the sequencéu;} defined in p = 2. In Fig. 4, we plot the corresponding distributions of the
(14) is decreasing. Therefore, all the constraints (9)-(12) augte-reward products of the individual transmitters. Finally, in
satisfied. Fig. 5 we compare the optimal power allocation for the case
It remains to show that (13) is also satisfied. By using (14),= 1, with the allocation induced if all the nodes outside the
we readily have thazfz1 ThTECL — % Therefore, it easily intervals[200 m, 900 m] and [1300 m, 1600 m| are removed.

(2
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Fig. 3. The optimal power allocation in a multiple access channel consistipgy 5. (a) The optimal power distribution of the channel of Fig. 3, for the
ofa receiver placed in th_e origin, ad0 transmitters placed unn‘o_rmly along casep = 1. (b) The optimal power allocation in the channel of Fig. 3, for
the z-axis with a separation df5 m from each other, and for various valuesihe casep = 1, and if all the nodes outside the intervé20 m, 900 m] and

of the reward exponent. [1300 m, 1600 m] are removed.
161
1.4f 02 Clearly, it no longer makes sense to discuss in terms of the

powers allocated to individual nodes, since the power allocated
L2r to almost all of them will have to converge ) but rather

in terms of thepower density function p(x), with z € [a, b],
defined such that the power allocated to the transmitters lying

1t -

(Mbps x kmP)

osf in the setA C [a, b] converges tof , p(x) dz. Our sum-power
= 06 : constraint becomeﬁ’p(m) dz = P.
& L ; As the distance between any point [a,b] and its nearest
o4t -7 ! transmitter goes to zero, by the standard theory of Riemann
' integrals, we have that the transport capacity, in the form of
0'2'/" ' the finite summation of (2), will converge to the following
0 _ P Riemann integral:
0 1 5

X, (km) b

b
B | r'(z)logy[nB + / h(t)p(t) dt] dx — Br(b)logy(nB).
Fig. 4. The distribution of rate-reward products induced by the power @ v

distribution of Fig. 3. ) )
Theorem 3: The shape of the optimal power allocation

pMAC(z), a < @ < b, will depend on the ratiol%. In
As can be seen from the figure, the nodes that lie direcarticular®:
on the borders of the ‘forbidden regions’ take for themselves,. Py MAC/ N\ B
most of the power that was allocated to the nodes that weré_') I B < g(lfo)’ thenp (@) = Pyola — a).
removed. The powers allocated to the rest of the nodes als@) If g(a) < B = g(b), then
change, and in fact in the same proportion, through the change

in the value of\. pMAC(x) _
Py + nB_ ’
E. Large Number of Transmitters O(’L()w)] % {l(a)g(a)é(x “0) ey 2296; ’
Let us now consider the case where the number of trans- "\¥e r 20)

mitters is very large, ideally approaching infinity. Our aim

is to suppress the effects of the particular node placements,
and draw better intuition about the inherent capabilities of

the multiple access channel. Formally, we assume that a large
number n of transmitters are placed in the intervil, b], — = g(z,). (21)
wherea > 0 andb < oo, with n — oo. We also require
that the distance between any point [a,b] and its nearest
transmitter goes to zero. 3Note that functiong(-) was defined in Lemma 1(iv).

where thecutoff point x. satisfies the equation:



w

(iii) If g(b) < 5, then

i
pMAC(2) = l(a)g(a)m o(x —a)+ g
r(b) el
) S Kichad o RAC)
T(b)h(b) [PO g(b)ﬂB] 5( b) r(b) h(x) 0 oiz 0;4 0;6 078 1
(22) ' oo .

As expected, the water filling structure of the discrete case
is maintained. Theorem 3 can be proved in a straightforwag@. 6. The functionH (£), that represents the gains of using multiple
manner by starting from Theorem 2 and taking the appropriat@smitters over using a single transmitter, placed at the optimal distance
limits. However, in Appendix Ill, we prove it starting from “ept: in the case of monomial gain and reward functions.
scratch, using calculus of variations. There are two reasons for
this approach. Firstly, the calculus of variations proof is very
short and gives additional intuition which is obscured by th&ill arrive at receiverV; with power h(z;) x p, whereh(:)
heavily algebraic nature of the proof of the finite transmittdp the gain function. A receiver placed at distancéom the
case. Secondly, it uses the most-rapid-approach method, wHi@hsmitter is susceptible to additive white Gaussian noise of
is very powerful and might be applicable in other problem@ectral density;(z), and for simplicity we set); = 7(z;).
of the same nature, and therefore might be of independdte total bandwidth available for communicationfs
interest. The capacity regiorf®°, i.e., the set of all combinations
As an illustrative application of the theorem, let us consid®f ratesR = (R, Ry, ..., R,) with which the transmitter
the case of the monomial reward and gain functions, wita can simultaneously send data to the receivers, is known [8].
0, andb large enough so thani% < g(b). After straightforward In particular, letw(-) be a permutation function that gives

substitutions we have: an ordering ohf the riceivers in tezms of increasing channel
., e ities, i.e.,mW < @ << M) Clearly, if the &
MAG B Y- aze 2Y ,1 qualities, i.e e S e S < Y, o
pr(r) = {[an P17 (pFo) h }x JCERE are distinct there is onlilz)one such or<dering. Then:
| EnPo p >
w_[( nB>(7—p ’ 23) CBC:{R3Ri§
K,B [K,Py]" , hiP; ‘
MAC _ fir rL0 gl 1-2 Blog, (1 + -1
= -—1 . 24 og y 2 yeeey Tl
Tomax ™ 16509 { nB ] (p ) (24) ? NiB+hidjn1(jysa-1() i
It is interesting to compare the transport capacity with . .
. . P,=F, P,>0,i=1,....,n,. (25
C}fn}ax, the rate-reward product of a single transmitter- ; / 0 Fi = BT el (25)

receiver pair, separated by the distangg, that maximizes
it. Cf max is calculated in Appendix II, and is given by (36). 1o achieve a DOINR = (Ry, Ra,..., Ry) in the capacity
Combining that equation with (24) shows that the quotient region, the transmitter encodes with rafe the message
CMAC (% _1)1—% . p intended for receiverV; independently of the others, and
1 = — = H(-) transmits it with powerP;, simultaneously with the signals
Crmax [e9G0) —1]77 g(z0) " intended for all other receivers. Each receiver will start to
is only a function of 2. As shown in Fig. 6,H(2) is a successiveily decode the signals for each pf the repeivers, in the
strictly decreasing, convex function withm g+ H(%) —e orde_r specmeq byt (-), (|.e_z., in the ord_er of increasing channel
andlim. ., H(Z) = 1. It is interesting to note that the 9Uality) stopping after it decodes its own signal. When a
gains of receiving from multiple transmitters at the same timEECIVer decodes a signal, other signals that have been already

versus receiving from a single transmitter, albeit placed at tHECOded do no create any _mterference, but the. rest of t_he
optimal distance, are rather limited, for example only arourdignals appear as thermal noise. Although alternative decoding
25% when p/y — 0.5 orders are also acceptable, they will not in general attain points

on the boundary of the capacity region.

IV. THE BROADCAST CHANNEL Let the normalized gain function A" (x) be defined as

We now turn our attention to the Gaussian broadcast channel ™ (x) 2 Lh(m)
of Fig. 1, that consists of a transmitt€rwith total powerFP, n(x) ’
andn receiversVy, Vs, ..., V,, placed at increasing distances
0 <z < 29 < ... <z, from the transmitter (but not where n is arbitrary, and leth? = h"(z;). By inspecting

necessarily along a straight line, or even on the same plan@p), it is clear that the capacity region is identical to the
As with the multiple access channel of Fig. 2, we assunoapacity region of the broadcast channel with the normalized
that if the transmitter sends a signal with powerthe signal gain function, and in which all receivers are susceptible to



thermal noise of a common spectral densijty Theorem 5: Assume that the functih(z) = @) s

e = {R s satisfies the inequality
Ti—1 T
(Q)B Py > [ YO
Blog,(1 + n i ,i=1,...,n, I —
773 + ( 7;:7) Zj:ﬂ'fl(j)>ﬂ"1(i) P] Ui i i1
n and let
ZPj:Po, P >0, i:l,...,n}. (26) i
! g dnBTE im0, L1,
Similar to the MAC, we define the transport capacity of Py, i=1L,...,n.

the BC, associated with a point in the capacity reg®r= The maximum transport capacity of the BC is:
(Rl, RQ, ceey Rn) as:

L 75 + G
CEC =B rilogy | ——— | . (29)
CPYR) £ Z i, (27) 5 ; ? % + Bi-1

i=1

) ) The optimal power allocation that achieves it is:
wherer; £ r(z;), andr(-) is the reward function. To calculate

the pointR in the capacity region that maximizes the transport p_ Bi — Bi-1, i=1,...,L,
capacity, in principle we could start from scratch, for example ! 0, i=L+1,...,n.

using the KKT conditions, as in Section Ill. However, the . i )
following theorem (Theorem 1 of [9]) allows us to use thé:urthermore, each receivey; should decode first the signal

results of the previous section on the MAC: intended for V,, .therj the signal intended foV,,_,, etc.,
Theorem 4: Consider the followingual channels: eventually decoding its own signal. _ -
1) A broadcast ch i hich th ins b Proof: As discussed, the capacity region of the original
) tweer;)atk?:Stra(;ls?:i?tir 'gm\;" tlr?e re(?eisg\r,\ée;rgeims &cC, given by (25), is identical to the capacity region of
. . th ified B ith th li ing £ 1Lp,
(h1,ha,...,hy,), and the receivers are susceptible tt e modified BC with the normalized gairis s and

. _ %he common spectral power densipyfor all receivers. That
th]fémal noise V_V'th a common _spectral power Let capacity region is given by (26). In addition, by Theorem 4 the
¢ _(Po; h) be its cap_acny_ region when the IOOWerpoints in this capacity region are exactly the points that can
ava|lab_le to the transmitter "%' . . be achieved by its dual MAC under a sum power constraint.
2) A multiple access channel in which .the POWET gaiNgqrafore, maximizing the transport capacity of the BC is the
between the receiver and the transmitters are also

h— (h h h d th O tible t same as maximizing the transport capacity of the dual MAC
= (h, B n), and the receiver is S'l“\lfjfgp' © under a sum power constraint. For this problem, we can use
thermal noise, also of spectral powerLetC (P;h)

. ) . . Theorem 2.
be its capacity region assurrjng that the powers avail- To apply Theorem 2, we need to ensure that Assumption 1
able to the ransmitters ar® = (P, P, ..., Pr). holds. This translates to the requirement that the funéti¢n)
The capacity region of the BC is equal to the union of thg decreasing.
capacity regions of the dual MAC over all power distributions By Theorems 1 and 2, in the dual MAC, the set of rates that
(P1,...,P,) such thatl-P £ 30 | P = Py: maximizes the transport capacity is achieved by the decoding
CEC(Py: h) = U CMAC (P, ) order in which the signal from transmitt& is decoded-th,
0 L and the power allocation given by (19). By Theorem 4, in the
{PLP=Fo} BC, the same set of rates is achieved by the inverse decoding

o . . order, (i.e., receivers decode the signal intendedifgrthen
Furthermore, lefR be a point in the capacity region of thethe signal intended foV,,_1, etc.) and for a power allocation

MAC achieved if the receiver decodes the incoming signalstw

e s e oo s ey st (29 i) =110 o
to the transmitters ar¢ PMAC, pMAC  pMAC) The dual P P 9 y (5U), ply

BC will achieve the same point in the capacity region EUbSUFUte (.30) and (.13) in (28) (with(i) = i) and we arrive
. ) . . S at an identity, for ali = 1,...,n.
each receiver decodes the incoming signals in imeerse . . .
) . . To prove (29), we note that, since receidérdecodes sig-
order 7(n),m(n — 1),..., stopping after it decodes its own . . : .
. BC BBC BC nals intended for receivers further away first, and then its own,
signal, and the powergP;>~, P>~ ..., P>%) allocated to the ; . .
individual sianals are given by: " only the power of signals intended for receivéfs ..., V;_;
9 9 y: will affect the decoding of its own signal. Therefore, the rate

(30)

i1 oo
pBC _ pMAC NB + ha(iy 25— Pﬁ% - . R; will be
T B D iit1 by PR Y - (h;in)Pi
(28) R; = Blog,(1 + e ).

Using this result, the following theorem easily follows: Combining these with (27) and (30), (29) follows. a



The structure of the solution is straightforward: The power 2r
of the transmitterP, is divided among the first. receivers,
and the largerP, is, the largerL will be. Therefore, as in 10f R
the case of the MAC, the solution resembles a water filling p=l o p=15
from left to right. In addition, the optimal distribution of rate- gk
reward products is exactly the same as that of the dual MAC. Sy
On the other hand, as the following numerical example shows, = | ;
the optimal power allocations of the dual BC and MAC will /
in general be different.

As a numerical example, let us consider the dual BC of the T
MAC of Section lll: it consists of a single transmitter, placed
at the origin, and200 receivers, placed uniformly along the I AP
z-axis with a separation df5 m from each other, starting at
25 m from the transmitter. The total power available at the 0 ~af + 5 —
transmitter isP, = 400 W, the available bandwidtiB = X, (km)
10 MHz, the noise spectral density of all receiversnis=
1071 %' and a monomial power gain function with= 3 Fig. 7. The optimal power allocation in a broadcast channel consisting of
and K;, = 0.1 m? is assumed. In Fig. 7 we plot the optimak transmitter placed in the origin, a0 receivers placed uniformly along
distribution of powers, assuming a monomial reward functidl?e z-axis with a separation df5 m from each other, and for various values

. of the reward exponerg.
with K, = 1, and for the casep = 1, p = 1.5, andp = 2.

Note that the power allocations have a different shape from

p=2

(W)

P
<
Mmimimim s
\,
~

N

Ay

\
\

N
(&)l

those of the dual MAC. On the other hand, by duality, the 40r

rate-reward products of the BC will be in all cases the same of

the rate-reward products of the dual MAC, which are plotted i ,

in Fig. 4. Finally, in Fig. 8 we compare the optimal power 20k (),

allocation for the casep = 1, with the allocation induced ;

if the nodes lying outside the interva{§00 m,900 m) and 251 i

(1300 m,2650 m) are removed. As can be seen from Fig. 8, g ol !

and also from from Theorem 5, the nodes that lie directly on a- ' !

the borders of the ‘forbidden regions’ take for themselaks 15t : i

the power that was allocated to the nodes that were removed . '

Contrary to the multiple access case, the powers allocated tc  10f ®)! : Pt

the rest of the nodes do not change at all. o ' : T e
Similarly to the MAC, we would like to consider the case N\Ni_,,‘_w—-"’

where a large numbes of receivers is placed in the interval 0 T . -

[a,b]. The following theorem is proved in Appendix IlI: 0 ! X, (km) 2 3

Theorem 6: Assume that the functidhz) = ( Tl(w)), is
h" (x
decreasing, in which case by Lemma 1(iv) the fun(c{iOn Fig. 8. (a) The optimal power distribution of the channel of Fig. 7, for the
casep = 1. (b) The optimal power allocation in the channel of Fig. 7, for
h%(x))’r(a:) - (h%(x))r’(m) the case = 1, and if all the nodes outside the intervg®0 m, 900 m] and
[1300 m, 2650 m] are removed.
()

is increasing. The shape of the optimal power allocation
pBC(x) will depend on the ratio%. In particular:

g"(z) = (

_ - for the far-most receiver, and moving inwards, until it decodes
() If ;% < g"(a), thenpC(z) = Pyd(z — a). its own signal.
(i) If g"(a) < ;% < g"(b), then Let us consider the case of a BC with monomial reward

BC, \ _ m _ s and gain functions, wherg(z) £ 1, a = 0, andb is large
o) =970 =a) F (@) (@) BL - enough so thafly < g7 (b). By duality, it follows thatz will

where thecutoff point x. satisfies the equation: be given by (23), as in the MAC, ar(d%?nax = Cgfggx, with
Py CY8S. given by (24). The optimal power allocation, however,
WB 9" (xc). (32)  will be different. Applying Theorem 6, we have that

() If g"(b) < 7%, then

p*C(x) = g"(a)d(z—a)+[g" (b))~ Po)s(z—b)+(g") ().

(33)

Furthermore, each receiver should perform successive decddherefore, the optimal power allocation changes with the
ing of the received signals, starting from the signal intendedistancez asz”~! for the MAC, but asz”~! for the BC.

BC 775 (’y ﬁ) ) :| y—1
)= | ——— 2" g
( ) |: F(h [07 c]
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V. DISCUSSION ANDCONCLUSIONS which the uplink MAC and the downlink BC are duals, there

a very nice coupling in the sense that the maximization

. . _is
M I?_trlusxvork wecf]tudy Th?\/&%nsr)or:t. %apacny of afGau_ssnzm the transport capacities of the uplink and the downlink
utl_pe ccess Lhanne ( . ), whic conS|sts_ ot a Singlgso ensures that each user will be transmitting in the uplink
receiver and multiple transmitters, and a Gaussian Broad the same rate with which it will be receiving in the
Cha_nnel (BC.)’ which consists of a S'ngle. trans_mnter artfjownlink, but the two power allocations that must be used
multiple receivers. The transport capacity is defined as tj@, be different
summation, over all simultaneous transmissions, of the produc i

of the data rate with a reward(x) which is a function of Ll'h|rdly, as Theorems 2 and 5 show, in order to maximize

the transport capacity of the MAC (BC), a lot of power must
o thet i ity | i di €2 allocated to nodes (transmitters or receivers) that sparsely
r(x) = x, the transport capacity is measuredis xm, and is lgopulate the same distance range. For example, in the special

a natural f|gure of mgrlt of Fhe efflmency with which a networ ?se where the nodes are placed along a straight line, as Figs.
is operating at a given time instant. However, the generEI

form of r(-) allows for alternative notions of usefulness o
a transmission.

and 8 show, a lot of power must be allocated to nodes that
re neighboring areas where no other nodes are placed.
Finally, the transport capacity of both the MAC and the

hln It:ed Cas; 0‘[];1 thg MAC.:’ we flrslt STOV;{ th"’;t theﬂ:ece]veé may only be marginally better than the transport capacity
should decode the incoming signals starting from the Signg 5 simple transmitter-receiver pair, provided the distance

of the nearest transmitter and moving outwards. Under a SUBStween the two can be optimized. For example, in the case of
power constraint, we determine in closed form the optim onomial reward and gain functions wigh— 1 th,e gains by
allocation of transmitter powers that maximizes the tranquging successive decoding, in terms o?tranzs,port capacity, are
papacity. Our proof is conceptually St.rfaightforward and Shozg‘ound 25%. Given the cor{]plexity of receivers that empk,)y
in length, and is based on KKT condltlons. successive decoding, it is clear that in certain situations using
In the case of the BC, we calculate in closed form thg  cessive decoding may not be worth the investment.
optimal Q|str|but|on (?f the transmitter power to the S|gna!s It should be stressed that all our results crucially depend on
of the different receivers. The proof is very simple, and 'ﬁssumption 1, which essentially requires that, as the distance
based on our results for the MAC, and duality arguments ﬂﬁétween a transmitter and a receiver increases, the revzayd
became available only recent_ly [9]. is not increasing as fast as the channel gdin) is decreasing.
We also present asymptotic results, that only hold as thg giscussed, this is a reasonable assumption for most cases
number of transmitters (for the MAC) or receivers (for theys interest.
BC) go to infinity. The results are derived using the MOSt- \gte that, from a purely mathematical perspective, the trans-
rapid-descent method of the calculus of variations. port capacity is simply a weighted sum, over all simultaneous
We must emphasize that a closed form solution for the, smissions, of the achieved data rates. The maximization of
optimal power allocation of the BC, under an assumptiaf,ch a weighted sum is an interesting problem even outside
very similar to our assumption that the functidr’(z) is  the context of transport capacity. Indeed, the weightg can
decreasing, and .compatlble to our result, appeared firstin [gL thought of as specifying a particular direction in the
There, however, it was shown that the transmitter may allocg{gnensional Euclidean space, therefore the maximization of
power to a contiguous group of receivers, and perhaps oneys \yeighted sum corresponds to finding the boundary of the
two extra, outlying receivers. Therefore, there may be inacti®@pacity region along this particular direction. This is actually
receivers (i.e. receivers that receive no power) separating theq|q problem that has been studied by a number of different
contiguous group from the outlying receivers..Ourwork Sho%searchers. (See, for example, [14], [10], [15], [16] and the
that in fact only a much less general scenario can occur, i.@ferences therein.) As all these works predate the duality
the first L, receivers will receive all the power, for sonig  egits of [9], in all cases the authors either examine the BC
and the rest will receive no power at all. In addition, oug, the MAC. To the best of our knowledge, in all cases the
derivations are much shorter, because we are using duaiiytimal power allocation is not given in closed form, but rather
arguments and our results for the MAC (which are also shortgs 51gorithm is provided that can be used to determine it. The
than the derivations in [7]). novelty of our work is that we adopt Assumption 1, which
Our work brings forward a number of aspects of the MAGs very reasonable if the weighted sum is interpreted as the
and the BC that designers of practical systems may wantifansport capacity. This leads to very short derivations, and
take into consideration: the determination of the power allocation in closed form. An
First of all, in both the MAC and the BC the optimal poweidditional novelty of our work is that we use duality arguments

allocation resembles a water filling: Only the signals coming derive the results for the BC using the results of the MAC.
from the nearest. transmitters (in the case of the MAC) or

going to the nearesk receivers (in the case of the BC) are
allocated positive power, and the larger the available power is,
the largerL will be. The authors would like to thank Prof. S. Vishwanath, of the
Secondly, if the MAC and the BC are dual, then the transpdudniversity of Texas, for pointing to [13], which contains the
capacities and the rate-reward distributions are identical, bdéa of Theorem 1 in a different context, and Prof. N. Jindal, of
not the power allocations. For example, in a cellular systemtine University of Minnesota, for suggesting the use of duality
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arguments for the derivation of the optimal transport capacity APPENDIXII

of the BC. OPTIMAL SEPARATION OF A TRANSMITTERRECEIVER PAIR
In this appendix we calculate the optimal separation be-
APPENDIXI tween a single transmitter and a single receiver, that maximizes
PROOF OFLEMMA 1 the reward-distance product, assuming monomial reward and
(i) To prove the equivalence of (5) and (6), we cross-multiplgain functions. This optimization problem was first considered
both of them and we arrive at identical inequalities. in [7]. There, however, only an asymptotic analysis as the gain

Next, we show that (5) implies (4). If (5) holds for allexponenty — oo was offered.
transmitter placements, it will then hold for the case of four Let a transmitter]” and a receiverR be separated by a
transmitters placed at locations— ¢, z,y — €,y, wheree < distancez which is allowed to vary. The transmitter power

y — z. By applying (5) twice, we have: is Py, the bandwidth available for the communicationBs
r@) —r(@—¢) _ r(y—e) —r(@) _ r(y)—r(y—e and the receiver is susceptible to additive white Gaussian
1 i > T T 2 3 - noise of density;. We assume that the signal power changes

h(z) ~ h{z—e) h{y—e) = h(z) h(y) — h(y—€) with distance according to the gain functidriz), and the

By dividing the numerators and denominators of the left arfgansmission of a bit of information over a distangeis

right hand side by, and takinge — 0, we find that% > rewarded by a reward(r). Finally, we assume that the

' (4) () ( channel between the transmitter and receiver operates at the
Shannon capacity” = Blog,(1 + %]g”)). We define the
transport capacityC7. ' (z) of this setting as the reward-

distance product:

#)W"

hThye proof that (4) implies (5) follows similarly to Lemma
1 of [7], and so is omitted.
(ii) We use induction. In particular, we prove (7) first foe= 1
and for alli = 1,...,n — 1. For this, we note that, from (5), 0%71(@ 2 1 (2)Blogy(1 + 0 (m)>.

we have that nB
Pl —Ti T T We are interested in determining the maximum possible
ST s i=1...,n—1, value for C1 '(z), Cr1.L 2 supy., . Cr(z). Clearly,
7 1—1 hi R e ’ .
i i unless specific cases for(-) and h(-) are considered, we
Adding 1 to each size, simplifying and rearranging terms, wean not go much further. So let us limit the discussion to
arrive at (7) fork = 1 and for alli = 1,...,n — 1. We the monomial reward and gain functions. In this case,
now make the inductive hypothesis that (7) holds for some K, P,
kel,...,n—2 andforalli=1,...,n — k. We will show Clmax = Sup BK,.2”logy(1+ o)
that it then holds fotk + 1, and for alli = 1,...,n — k — 1. 0<z<o0 e
For this, we note that Let A £ £i and f(z) £ 2* logy(1 + ), so that
Ty — Ti— ri —T; Ti+k —T; . _
1Z _ z11 2 Z1+1 — 1 > +1k+1_ 17 yi=1,...,n—k-1 C%,,ilax = BK, sup f(z).
hi hi—1 hit1 hi ikt hi 0<z<o0
The first inequality comes from (5), and the second from the When~ < p, clearlylim, .o f(z) = oo, S0 thatCy .\ =
induction hypothesis. Therefore, oco. When~y = p, f(x) is monotonically increasing so that
11 its supremum is approached as — oo, and C};ﬁax =
. R TR N T ABK, log,(e). However, as in the main text, we are mostly
T = Ti-1 IR interested in the case > p. In this case,f(x) achieves a
By adding1 to each side, simplifying and rearranging termss’mglef_mdaXImum for anhopgml_Jm yalue 0f Zop. | )
we arrive at (7) fork + 1, and for alli = 1,...,n — k — 1. To find z,p,¢, we set the derivative of (z) equal to 0:
(iii) To prove the inequality, we apply (5) far,_; =0, x; = P A A
- “log(l+—) — =0
z, Ti+1 = = + ¢, and then take — 0. v 7 A+ v

(iv) If Assumption 1 holds, then (6) follows for all transmltterWe make the substitution

placements, and in particular for the case of four transmitters

placed at locations — €, z,y — €,y, Wheree < y — x: y = log(1 + %) _7 (34)
re—q) _ _r(z) r@) _ry=9  rly=9 _ _r( S _ P
h(z) h(z—¢) h(y—e) h(z) h(y) h(y—e) and after simplifying we arrive at:
r@) —r@@—¢ ~ rly—e —r@) ~ rly) —rly—e’ :
. . . ye¥ = (—1)6(7;) 2 2. (35)
Dropping the middle part, it follows that p
r(z — e)h(z — €) — r(z)h(x) This equatic_m is of the formye¥ = 20 wherez_o is g_iven
[r(z) — r(z — @)z — ¢ and we must find,. In other words, solving (35) is equivalent

to calculating the inverse of the functign— z = ye¥. This is

< r)(y —chly =) ~r(w)hly) a very old problem, actually predating Euler, who has himself
[r(y) = r(y = )lh(y)hly —¢) worked on it [17]. The inverse is known in the literature as
Taking the limite — 0, we arrive atg(z) < g(y). Lambert's W function, and it appears often in a variety of
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APPENDIX I
z PROOFS OFTHEOREMS3 AND 6

0.5¢
0.4}

The fist three subsections of this appendix present a proof
of Theorem 3, using calculus of variations. The last subsection
sketches a proof for Theorem 6.

0.3}
0.2

0.1}
W,2) w | p

y A. Problem Formulation

ye! We make the technical assumptigz) < T, whereT
e T SN can be arbitrarily large, but not a function of the number of
03 nodesn. This ensures that all terms in the summation of the
-0.4f P d objective function of (1) are very small, and the objective
05 . s s s ; . function can be approximated by a Riemann integral. The
-6 -5 -4 -3 -2 -1 0 1 ot .
optimization problem (1) becomes:

B b r(z)h(z)p(x) "
. _ log2 Ja nB+ [P p(t)n(t)dt (37)
Fig. 9. The plot of the functioneV. subject to: 0< p(fv) <T, fabp(x) dz = Py.

maximize:

o ) . To derive the above, we have used the fact thgy(1+ ) ~
situations from the enumeration of trees in graph theory o for & — 0.

the calculation of wave heights in physics [18].

In general,W(z) is defined for complex and is complex ,
and multivalued. In our context, however, bothand W (= N "(x
are real, and the situation is relatively simple. In Fig. 9 \(/vg plot Y@ =nB +/T h(t)p(t) dt = p(z) = —?;L((x))
z = yeY for real y. From the figure it is clear that for > 0 B
W (-) has a single branch, the curve on the right of pait It follows that y(b) = 7nB. The problem now becomes
For = < —e— it has no branches, and fore—! < » < o (ignoring the factor;.25):
it has two branchesiV; () and Wy(-). The branchiVy(-) is o b () (2)
the curve that lies on the left of poin®,, and the branch minimize:  ["=0ESE da,

To bring (37) to a more standard form, we set:

Wo(+) is the curve that lies between the poir® and Ps. ) —Th(x) <y'(z) <0, y(b) =nB,
; subject to:
Unfortunately, no closed-form expressions are known for the SUb) ' —f v (@) g0 — P,.
two branches. We define o hz) (38)
g(z) EWa(z) = Wi(z) (2 € [—e1,0)). To remove the second equality constraint, we modify the

o ) objective by subtracting the left hand side of the constraint,
The valuez, of (35) lies in the interva(—e™",0), so (35) muyltiplied by aLagrange multiplier\. After the optimization
has two solutions, one for each branth, () is clearly equal s performed,\ will be chosen to satisfy the equality con-
to —7 and is not acceptable, since plugging this to (34) impliegraint, but until then it will be treated as yet another parameter

it leads to the following solution:

minimize: [ [T(””) + ﬁ] Y (z) da,

A _ a |y(z) (39)
Zopt = W+ 1| subject to: —Th(z) <y'(x) <0, y(b)=nB.
Noting thati(z) + 2 = g(zo) and thatd 2 £:20 we have We wiII_caII the inte.grand of_the objective function the
that: p K Lagrangian and we will denote it byF'(z, y(z),y'(z)).
K,Py]7 1 5 The Lagrange multiplien has a very simple interpretation.
Topt = [ B } Lg(’"“) — J As shown in Theoren]X.3] of [19], it equals the rate of

change of the minimum of (38) with respect K. Therefore,
although we still need to find\, we know that it must be

B K,B [K,P,]" -2 strictly negative. Indeed, it is easy to show that if more power
1-1 _ eg(zo) 1 (Z ) (36) . . . . .
T, max 7’7 B 9(20)- is available to the transmitters, the optimal transport capacity

) i ) will strictly increase, and so the minimum of the objective of
A few interesting observations can be made from (36). Fggg) will strictly decrease.

example,p and v affect the transport capacity only through Note that we have a constraint on the valugy6f) on the
. s ) . ?
their quotient. Therefore, changing both their values Wh"‘?’ight hand side of the interval, i.ey(b) = 7B. However, no

leaving their quotient fixed does not change the value of thggiraint is placed op(a). Standard theory requires that the
transport capacity. In addition, in contrast to Shannon capacity,

the de.pendence of the tranSporF CapaCitY on the alVailabl@lzorajustification of this procedure, see any text on calculus of variations,
bandwidth and transmitter power is monomial. for example [19].

The optimal transport capacity becomes

log 2
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following natural, or Euler boundary conditior%(a) =0 be
adopted [19]: ‘

oF, _ r(a)h(a) y@
G @) =02 y(@ = -

y2(X)
y1(X)

y3(b) Y3p(X)

The next task is to formulate the Euler Differential Equation
(DE) that describes the shape of any smooth (i.e. with contin-

uous first order derivative)(z) that minimizes the objective. y2(b) y2b(%)
The Euler DE for this problem is given by [19]: )
Ys(X
d (OF\ OF v (z) I(z) \
L) = s = =2 a0
dz (8y’> Oy = ¥s(@) A(3) () A (40) y1(b) Y16(X)
B. The Most-Rapid-Approach Method a Xe b

In most problems in the calculus of variations, the Euler
DE turns out to be a second order differential equation, th%
can be uniquely determined by requiring that the optimal
function y(z) satisfies the two boundary conditions. In our

case however, the Euler DE is actually a plain algebraic \yhile moving toward the singular solution, functions

equation, which contains no derivatives, and so can not 9,?(;1:) and y;(z) meet each other first, at some poing, then
made, in general, to satisfy our boundary conditions! It followie optimal solutiony(z) is given by

that the solution can not be smooth everywhere.

This problem is actually an instance of a more general class a JYa(z), a<z<uzs,
of problems, in which the Lagrangian is linear wigh'z) (as y(w) = {

) y(x), x3<xz<bh

can readily be seen by (39)). This case is calledsingular
case and a solution to such a problem is Ca”eﬁ@ular solu- In all other cases (for examp|e When > x9, OF when
tion. Such cases are rarely discussed in introductory courses;inz) or y,(x) never intersecty,(z) or each other), the
calculus of variations [19]. For this class of problems, Theoremomem has no solution.
[XI1.5] of [19] applies: The singular solution of our problem, given by (40), is

Theorem 7: (Most-Rapid-Approach Method) Consider thgnique, therefore the first condition of Theorem 7 is satisfied.
minimization of the integralff F(z,y(z),y'(z)) dz with re- |t is also straightforward to show that the second condition is

g- 10. The singular solutiogs(x) (in thin line) and three possible forms
I the composite extremal functioy(z) (denoted by thick line).

spect toy(z), where the LagrangianF(z,y(z),y'(x)) = satisfied, by simply writing down the partial derivativesfof
Fo(z,y(x)) + Fi(z,y(x))y'(z), and under the constraints and F}. It remains to be shown that the third condition is also
y(a) = A, y(b) = B, and satisfied, i.e., that the singular solution satisfies the inequality
constraints (41), i.esTh(z) < [—A"l(‘f) ' < 0. The left
! (7)) (x)
L@y <y (@) <Uwy) (a<z<h). (41) hand side inequality will be satisfied if we tafeto be large
Assume that the following conditions hold: enough. The right hand side is also satisfied, by Assumption

. . . 1 and the fact thah < 0.
1) The Euler DE has a unique singular solutigQ(z). <

2) % — 28 >0 (< 0) if y(@) — yu(z) > 0 (< 0).

3) y.(z) satisfies the inequality constraints (41). C. The Optimal Power Allocation
Then the global minimum is achieved by the compositeAll the conditions of Theorem 7 are thus satisfied, and
function we are ready to apply it in our case. By Lemma 1(iii), it
va(), a<z < follows that r(a)h(a) > (;)‘,‘3) = y.(a) < yla), ie., the
y(z) 2 ys(z), z1 << a9, singular solutiony,(z) = —% will always pass below
w(x), <z <Db the left boundary condition. Regarding whether the singular

solution passes below or above the right boundary condition
If ys(a) < A, theny,(z) is the uniquely defined functiony(b) = nB, a complication arises from the fact that we do
that starts at the pointy(a) = A, and descendsas fast as not know the actual value of. Therefore, we can not tell
possible toward the singular solution, satisfying at all times thegeforehand the resulting form of the composite solugn).
equalityy’ (x) = L(x,y.(x)). If, on the other handy,(a) > Three different cases, all corresponding to different functional
A, theny,(z) is the uniquely defined function that starts aforms for y(«), appear in Fig. 10. Note that the horizontal
the pointy(a) = A and ascendss fast as possible toward thepotionsy, ;(x) andys ,(z) of the composite solution appear
singular solution, satisfying the equaliy;(z) = U(z,y.(x)). in intervals where no power is allocated, i.@(x) = 0.
The pointz; is wherey,(z) and ys(z) cross. The function Similarly, the steeply descending portiops(z) and y; ;(z)
yp(x) and the pointz, are defined in a similar manner. of the composite solution appear in intervals where the power
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Case 3 {(x) has the form of y3(z)): Working as in the
first two cases, we readily arrive g¥A¢(z) = Pyd(z — a).

D. Sketch of Proof for Theorem 6

The proof is very similar to the proof of Theorem 5, and
uses duality, i.e., Theorem 4, but together with ¢toatinuous
version of the MAC results, i.e., Theorem 3, instead of the
discreteversion, i.e., Theorem 2. The continuous version of
(28), with = (i) = 4, can be easily seen to be:

sacy,, 1B+ @) [l PP dt
nB + [V, h(t)pMAC(t) dt

To verify equations (31), (32), and (33), we plug each of them
in (43) together with, respectively, (20), (21), (22) and in all
cases arrive at an identity.

pPC(x) =p (43)



