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On the Transport Capacity of Gaussian
Multiple Access and Broadcast Channels

G. A. Gupta, S. Toumpis, J. Sayir, R. R. Müller

Abstract— We study the transport capacity of a Gaussian
multiple access channel (MAC), which consists of multiple
transmitters and a single receiver, and a Gaussian broadcast
channel (BC), which consists of a single transmitter and multiple
receivers. The transport capacity is defined as the sum, over all
transmitters (for the MAC) or receivers (for the BC), of the
product of the data rate with a reward r(x) which is a function
of the distancex that the data travels.

In the case of the MAC, assuming that the sum of the
transmitter powers is upper bounded, we calculate in closed
form the optimal power allocation among the transmitters, that
maximizes the transport capacity, using Karush-Kuhn-Tucker
(KKT) conditions. We also derive asymptotic expressions for the
optimal power allocation, that hold as the number of transmitters
approaches infinity, using the most-rapid-approach method of
the calculus of variations. In the case of the BC, we calculate
in closed form the optimal allocation of the transmitter power
among the signals to the different receivers, both for a finite
number of receivers and for the case of asymptotically many
receivers, using our results for the MAC together with duality
arguments.

Our results can be used to gain intuition and develop good
design principles in a variety of settings. For example, they apply
to the uplink and downlink channel of cellular networks, and
also to sensor networks which consist of multiple sensors that
communicate with a single central station.

I. I NTRODUCTION

A. Transport Capacity

Consider a wireless multihop network in which a particular
nodeT scheduled to transmit has two options: either transmit
to a destination nodeD1 with rate R1, or transmit to a
destination nodeD2 with rate R2 < R1. Assume that both
transmissions will require the same amount of bandwidth
and power, and will convey information of equal importance.
In this setting, which destination should nodeT prefer?
Traditional thinking suggests thatT should transmit to the
node to which it can send data with the highest rate, i.e.,
D1. However, in amultihopwireless network, in which every
packet will have to be transmitted multiple times to reach its
final destination, it is not only important that a node transmits
with high rate, but also that the signal travelsa large distance.
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Indeed, the smaller the distance that a transmission covers,
the higher is the number of transmissions of a similar type
that are needed, before the transmitted packet reaches its final
destination.

Taking this argument a step further, we can argue that a
natural figure of merit for the usefulness of a transmission is
neither its rate nor the distance covered, but rather theproduct
of the two, measured inbps×m. Indeed, if two transmissions
have the same rate-distance product, using either of the two
repeatedly to transmit a given volume of data to a distant
destination would consume the same power and bandwidth,
even if their rates and covered distances differ significantly. It
follows that the summation of the rate-distance products over
all transmissions that are active at a given time instant in a
wireless network, termed thetransport capacity, is a natural
figure of merit about how efficiently the network operates at
that particular instant.

B. Related Work

The importance of transmitting over large distances was
recognized in the early 1980’s [4], [5]. However, transport
capacity was defined more recently in [6]. There, the authors
consider a wireless network ofn nodes, placed in a bounded
two-dimensional region. It is assumed that the power of
transmitted signals decays with distance according to a power
law, and that a signal is successfully received if the Signal to
Interference and Noise Ratio (SINR) at the receiver is above a
fixed threshold. All transmissions are with a fixed global rate
W . It is shown that the transport capacity underanyplacement
of nodes will have to be smaller thank1

√
n, wherek1 is a

constant independent ofn. The bound comes from the fact
that any transmission invariably creates interference to other
transmissions near by. On the other hand, the authors give
examples of network topologies that can sustain a transport
capacity greater thank2

√
n, where k2 < k1 is another

constant, also independent ofn.
In [7], the usefulness of a link is described in terms of

the product of the communication rate with areward function
r(x), where x is the distance between the transmitter and
the receiver. In the special case wherer(x) = x, we get the
standard rate-distance product. The authors study the Gaussian
Broadcast Channel (BC) of Fig. 1, which consists of a single
transmitterT and multiple receiversV1, V2, . . . , Vn, placed at
increasing distances from the transmitter. The capacity region
of this channel, i.e., the set of simultaneously achievable rates
of communication from the transmitter to each of the receivers,
is known [8]. The authors build on this knowledge to calculate
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Fig. 1. The Gaussian broadcast channel, which consists of a single transmitter
T andn receiversV1, V2, . . . , Vn, placed at increasing distancesx1 < x2 <
. . . < xn from the transmitter.

the point in the capacity region that maximizes the transport
capacity of the channel, defined as the summation, over all
receivers, of their respective rate-reward products.

C. Contributions

In this work, we study the transport capacity of the Gaussian
multiple access and broadcast channels, along the information
theoretic tangent initiated in [7], and using the notions of
reward and transport capacity defined there.

We start in Section II by considering the Gaussian Mul-
tiple Access Channel (MAC) of Fig. 2, that consists of a
single receiver and n transmittersT1, T2, . . . , Tn, placed at
increasing distances from the receiver. Each transmitterTi can
transmit with a maximum powerPi. The capacity region of
this channel is known [8]. Building on this knowledge we
calculate the point in the capacity region that maximizes the
transport capacity, defined for this channel as the summation,
over all transmitters, of their respective rate-reward products.

In Section III, we relax the individual constraints on the
powers of the transmitters, and instead assume that the sum
of their powers is upper bounded. Under this sum-power
constraint, we derive a closed form solution for the optimal al-
location of the total power, and the resulting transport capacity.
The calculation is done in a very straightforward manner, using
the Karush-Kuhn-Tucker (KKT) conditions. We also derive
asymptotic expressions for the optimal power allocation and
the transport capacity it induces, that hold as the number of
transmitters approaches infinity. The expressions are derived
using the most-rapid-approach method from the calculus of
variations. In all derivations, we adopt a reasonable assumption
that essentially specifies that rewards increase with distance
slower that the rate at which the signal strengths decay with
distance.

In Section IV, we examine the Gaussian broadcast channel.
We calculate, in closed form, the allocation of the transmitter
power among the signals to the different receivers, that maxi-
mizes the transport capacity, both in the case of a finite number
of receivers, and for the asymptotic case where the number of
receivers goes to infinity. Although similar results have been
derived in [7], our derivations are much shorter because they
are based on the duality between the broadcast channel and the
multiple access channel under the sum-power constraint [9],
and on the results of the previous section (which are also much
shorter than the derivation of [7]). Also, the expressions we
arrive at are simpler.

We conclude in Section V with a discussion of our results
and their implications in the design of practical wireless

T1 TnT3T2
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Fig. 2. The Gaussian multiple access channel, which consists of a single
receiverR andn transmittersT1, T2, . . . , Tn, placed at increasing distances
x1 < x2 < . . . < xn from the receiver.

systems. We also discuss the connection of our results with
related works on the calculation of arbitrary points of the
capacity region.

II. T HE MULTIPLE ACCESSCHANNEL

As shown in Fig. 2, the MAC consists of a single receiver
R and n transmittersT1, T2, . . . , Tn placed at increasing
distancesx1 < x2 < . . . < xn from the receiver (but
not necessarily along a straight line, or even on the same
plane). The receiver is subject to additive white Gaussian noise
with spectral densityη. TransmitterTi can transmit with a
maximum power1 Pi, and the total bandwidth available for
communication is equal toB.

WhenTi transmits with powerp, R will receive the signal
with powerh(xi)× p, where thegain function h(·) captures
the dependence of the signal power on distance. For com-
pactness, we use the notationhi = h(xi). A gain function
of particular interest is themonomial gain function, defined
by h(x) = Khx−γ , whereγ > 0 is the gain exponentand
Kh > 0 is a constant.

The capacity regionCMAC of the multiple access channel
is defined as the set of all the combinations of ratesR =
(R1, R2, . . . , Rn) with which each of then transmitters can
simultaneously send data to the receiver. The capacity region
is a closed, convex polyhedron, given by [8]:

CMAC =
{

R :
∑
i∈I

Ri ≤

B log2(1 +
∑

i∈I hiPi

ηB
) ∀ I ⊆ {1, 2, . . . , n}

}
.

It can be shown that the number of vertices ofCMAC whose
coordinates areall positive is exactlyn!. Each of these vertices
can be achieved by a successive decoding scheme, in which
the signals from then transmitters are decoded by the receiver
one by one. When decoding the signal of transmitterTi,
those signals that have already been decoded do not affect
the decoding. On the other hand, those signals that have not
been decoded yet appear as additive white Gaussian noise. In
particular, consider a successive decoding scheme in which the
signal fromTπ(j) is decodedj-th, andπ(·) is a permutation of
the set{1, 2, . . . , n}. (Consequently,π−1(i) is the rank with
which the signal ofTi is decoded.) The components of the

1More formally, Ti can transmit with any power any time it uses the
channel, as long as the average power over time converges with probability
1 to a value equal or smaller thanPi. Alternative constraints have been
considered in a similar setting in [10], [11].
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vertex Rπ , (R1,π, . . . , Rn,π), achieved by the permutation
π(·), are given by:

Ri,π = B log2(1 +
hiPi

ηB +
∑

k : π−1(k)>π−1(i) hkPk
).

We now associate the transmission of a bit of information
across a distancex with a rewardr(x), where thereward
function r(·) is strictly increasing, withr(0) = 0. For com-
pactness, we use the notationri , r(xi). A reward function of
particular interest is themonomial reward function r(x) =
Krx

ρ whereρ > 0 is the reward exponent and Kr > 0 is
a constant. Thetransport capacity associated with the point
R = (R1, R2, . . . , Rn) ∈ CMAC is defined as

CMAC
T (R) ,

n∑
i=1

riRi.

In the special case of the monomial reward function withρ =
1, Kr = 1, this definition coincides with the original definition
of transport capacity given in [6].

The transport capacity is a linear function of the ratesRi,
who in turn must belong in the convex polyhedronCMAC.
Therefore, its maximization is a linear program [12], and the
supremum is actually achieved at one of then! verticesRπ.
One could expect the complexity of the problem to increase
factorially with the number of nodes. However, because of the
special structure of the problem, the solution is remarkably
simple, as the next theorem shows2:

Theorem 1: The maximum transport capacity is only
achieved by the successive decoding scheme under which the
signal of transmitterTj is decodedj-th. In other words, the
unique optimal permutationπ(·) is the identity permutation
π(i) = i. Therefore, the maximum transport capacity is given
by:

B

n∑
i=1

ri log2(1 +
hiPi

ηB +
∑n

k=i+1 hkPk
).

Proof: Let us assume that the transport capacity is achieved by
using a permutationπ1(·) other than the identity permutation.
Therefore, there is aj0 such thatk , π1(j0) > π1(j0+1) , l.
We define a new decoding order, specified by the permutation
π2(·):

π2(j) ,


π1(j + 1) if j = j0,

π1(j − 1) if j = j0 + 1,

πi(j) otherwise.

Both orders of decoding achieve exactly the same transmis-
sion rate for all transmitters other thanTk and Tl. Any dif-
ference in the transport capacitiesCMAC

T (Rπ2)−CMAC
T (Rπ1)

will be due to the different rates achieved byTk andTl. Let I
be the combined noise and interference power that the receiver
sees when decoding the signal coming fromTl, under the
original decoding orderπ1. Also letpk = hkPk andpl = hlPl.

2This theorem appeared first, in a different setting, in [13].

Then:

1
B

[
CMAC

T (Rπ2)− CMAC
T (Rπ1)

]
= rk log2(1 +

pk

I
) + rl log2(1 +

pl

I + pk
)

−rk log2(1 +
pk

I + pl
)− rl log2(1 +

pl

I
)

= (rk − rl) [log2(I + pk) + log2(I + pl)]
+(rl − rk) [log2(I) + log2(I + pl + pk)]

= (rk − rl) log2

[
I2 + Ipk + Ipl + pkpl

I2 + Ipk + Ipl

]
> 0.

Therefore, the transport capacity strictly increases if we
exchange the decoding orders of nodesk and l. Repeating
the process, we can create a finite sequence of permutations
π1, π2, . . . , πm of strictly increasing transport capacity, with
πm being the identity permutation. The result follows. �

III. T HE MAC UNDER A SUM-POWER CONSTRAINT

A. Problem Formulation

In the previous section, it was assumed that each transmitter
Ti has a maximum powerPi with which it can transmit.
A natural extension of our investigation is to assume that
transmitters no longer have individual constraints, but rather
that the sum of powers must be smaller than or equal to some
global constantP0. For each distribution of powers whose
sum does not exceedP0, Theorem 1 applies. Therefore, to
maximize the transport capacity in this setting, we need to
solve the following optimization problem:

maximize: B
∑n

i=1 ri log2(1 + hiPi

ηB+
∑n

k=i+1 hkPk
),

subject to:
∑n

k=1 Pk ≤ P0, Pi ≥ 0, i = 1, . . . , n.
(1)

This problem is pertinent in a number of settings. For
example, in the deployment phase of a sensor network con-
sisting of a single central node and many sensors that must
forward information to the central node, if our power sources
are limited, we would like to know what is their optimal
distribution over the sensors that will lead to the most efficient
operation of the network, where we quantify efficiency with
the notion of transport capacity. As another example, consider
a cellular network, in which many mobile stations in a cell
want to access the base station, and the network has placed
an upper bound on the total transmitted power coming from
that cell, in order to bound the interference experienced in
neighboring cells that share the same frequency band. In such
a setting, we would like to determine the maximum possible
transport capacity, because this information will suggest how
large the cell can be made. Finally, as we show in Section IV,
knowing the transport capacity of the MAC with a sum-power
constraint will allow us to determine the transport capacity of
the BC.
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B. Basic Properties

We rewrite the optimization problem (1) as:

minimize: f0(P1, . . . , Pn) = Brn log2(ηB)
−B

∑n
i=1(ri − ri−1) log2(ηB +

∑n
k=i hkPk)

subject to:
∑n

k=1 Pk ≤ P0, Pi ≥ 0, i = 1, . . . , n.
(2)

We note that the objective functionf0(P1, . . . , Pn) is
convex. Indeed, it can be written as the composite func-
tion u(a1(P1, . . . , Pn), . . . , an(P1, . . . , Pn)), where the func-
tion u : (R+)n → R is defined by u(a1, . . . , an) =
Brn log2(ηB)−B

∑n
i=1(ri− ri−1) log2 ai, and the functions

ai : (R+)n → R+ are defined by:

ai(P1, . . . , Pn) , ηB +
n∑

k=i

hkPk, i = 1, . . . , n. (3)

The functionsai(P1, . . . , Pn) are linear, and hence concave.
Noting that the sequence{ri} is strictly increasing, we can
easily show that the Hessian of the functionu(·) is positive
definite, thereforeu(·) is (strictly) convex. In addition,u(·) is
non-increasing in each argument. It follows that the compo-
sition u(a1(P1, . . . , Pn), . . . , an(P1, . . . , Pn)) is convex [12].
As then+1 inequality constraints of (2) are linear, it follows
that (2) is a convex optimization problem.

The optimization functionf0 is continuous, and the domain
of the problem, i.e., the set of power vectors where the
constraints are satisfied, is compact. Therefore, the infimum
of f0 is actually achieved, and it makes sense to discuss about
a minimum. Furthermore, only one power distribution achieves
this minimum. To see why, let us assume that there are actually
two power distributions,{P 1

i } and{P 2
i } achieving it. Because

the mapping from the space of{Pi} to the space of{ai} is
one-on-one, there are two distinct points{a1

i } and{a2
i } where

the functionu(·) achieves its minimum. However, the Hessian
of u(·) is positive definite in(R+)n, thereforeu(·) is strictly
convex and must have a unique minimum. Therefore, we arrive
at a contradiction.

C. A Basic Assumption

Assumption 1: The functionl(x) , r′(x)

( 1
h(x) )

′ is decreasing:

0 < x < y ⇒ r′(x)
( 1

h )′(x)
≥ r′(y)

( 1
h )′(y)

. (4)

Roughly speaking, the assumption states that rates increase
with distance not as fast as the channel decays with distance.
It is not as restricting as it would first seem, as it is satisfied
in most cases of practical interest. For example, it is clearly
satisfied for the case of the monomial gain and reward func-
tions with γ ≥ ρ. For all realistic propagation environment
models,γ > 2. In addition, as discussed in the introduction,
the most interesting case of the monomial reward function is
when ρ = 1. Therefore, the assumption is very reasonable
assuming monomial reward and gain functions.

Assumption 1 allows us to determine the optimal power
allocation in a straightforward manner. The optimal power al-
location without using it can also be found, but the derivations
are significantly more complicated, as we discuss in Section V.

Assumption 1 implies a number of facts that we will need
later on, and we collect here in the form of a lemma. Their
proofs appear in Appendix I.

Lemma 1:

(i) Assumption 1 is equivalent to each of the following:

ri − ri−1
1
hi
− 1

hi−1

≥ ri+1 − ri
1

hi+1
− 1

hi

, ∀i = 1, . . . , n− 1, (5)

ri−1
hi

− ri

hi−1

ri − ri−1
≤

ri

hi+1
− ri+1

hi

ri+1 − ri
, ∀i = 1, . . . , n− 1, (6)

for any placement of transmitters{xi}, and wherer0 ,
0 and h0 , ∞.

(ii) Assumption 1 implies that for any placement of trans-
mitters{xi}, and∀i = 1, . . . , n− 1, ∀k = 1, . . . , n− i,

ri − ri−1
1
hi
− 1

hi−1

≥ ri+k − ri−1
1

hi+k
− 1

hi−1

. (7)

(iii) Assumption 1 implies that, forx > 0, l(x) ≤ r(x)h(x).
(iv) Assumption 1 implies that the function

g(x) ,
r(x)( 1

h )′(x)
r′(x)

− 1
h(x)

= − (r(x)h(x))′

h2(x)r′(x)

is increasing.

D. The Closed Form Solution

It follows by the convexity of the problem [12], that, to
prove the optimality of a power allocation{Pi}, it suffices to
show that it satisfies the Karush-Kuhn-Tucker (KKT) condi-
tions, which in our problem become:

n∑
k=1

Pk = P0, Pi ≥ 0, λi ≥ 0,
∂f0

∂Pi
−λi +ν = 0, λi ·Pi = 0,

for i = 1, . . . , n and for someν, λi ∈ R. This set of equations
can easily be shown to be equivalent to the following:

n∑
k=1

Pk = P0, Pi ≥ 0,
∂f0

∂Pi
+ ν ≥ 0, Pi ·

[
∂f0

∂Pi
+ ν

]
= 0,

for i = 1, . . . , n, and for someν ∈ R. By substituting the
partial derivatives off0, and settingλ , log 2

B ν, this set of
equations becomes

n∑
k=1

Pk = P0, Pi ≥ 0, hi

i∑
k=1

rk − rk−1

ak
− λ ≤ 0,

Pi ·

[
hi

i∑
k=1

rk − rk−1

ak
− λ

]
= 0, (8)

for i = 1, . . . , n and someλ ∈ R. Note that we have defined
the ai’s in (3). We also letan+1 , ηB, so that

Pi =
ai − ai+1

hi
, i = 1, . . . , n.
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We now make the claim that the optimal power distribution
{Pi} satisfies the following set of equations:

n∑
k=1

Pk = P0, (9)

Pi ≥ 0, i = 1, . . . , L, (10)

hi

i∑
k=1

rk − rk−1

ak
− λ = 0, i = 1, . . . , L, (11)

Pi = 0, i = L + 1, . . . , n, (12)

hi

i∑
k=1

rk − rk−1

ak
− λ < 0, i = L + 1, . . . , n, (13)

for someλ ∈ R and an indexL, which we call thecutoff
index. If (9)-(13) hold, then (8) will also hold, and the
{Pi} form the unique optimal power allocation. Our strategy
therefore will be to find a power distribution{Pi} that satisfies
(9)-(13).

Equations (10), (11), and (12) will be satisfied if we set:

ai =


1
λ

ri−ri−1
1

hi
− 1

hi−1

i = 1, . . . , L,

ηB i = L + 1, . . . , n,
(14)

provided that this sequence is decreasing. By (5), it suffices
to show thataL ≥ ηB. But this will depend on the values of
λ andL, which we calculate next.

We first note that (14) implies that:

i∑
k=1

Pk =
1
λ

[
rihi − ri+1hi+1

hi − hi+1

]
, i = 1, . . . , L− 1. (15)

This can be shown by straightforward induction. In addition,

PL =
aL − aL+1

hL
=

1
hL

[
1
λ

rL − rL−1
1

hL
− 1

hL−1

− ηB

]
. (16)

Combining (16) with (15) fori = L− 1, we derive the value
of λ that satisfies the sum-power constraint (9):

λ =
rLhL

P0hL + ηB
,

therefore we have thataL = P0hL+ηB
rLhL

× rL−rL−1
1

hL
− 1

hL−1

. We now

simply define the cutoff indexL to be the largesti for which
the following inequality holds:

P0hi + ηB

rihi
× ri − ri−1

1
hi
− 1

hi−1

≥ ηB ⇔ P0

ηB
≥

ri−1
hi

− ri

hi−1

ri − ri−1
.

(17)
Note that the expression on the far right side of (17) is
increasing, as follows from (6). Therefore, (17) will hold for
a contiguous range of indicesi, and the largest is selected
as L. Also, note that the set of indices is never empty, as
for i = 1 we arrive at the trivial identityP0

ηB ≥ 0. With this
selection ofL, aL ≥ ηB and the sequence{ai} defined in
(14) is decreasing. Therefore, all the constraints (9)-(12) are
satisfied.

It remains to show that (13) is also satisfied. By using (14),
we readily have that

∑L
k=1

rk−rk−1
ak

= λ
hL

. Therefore, it easily

follows that the (13) are equivalent to

ηB >
1
λ

ri − rL
1
hi
− 1

hL

, i = L + 1, . . . , n. (18)

Because of (7), it suffices to show that (18) holds fori = L+1.
In addition, straightforward algebra shows that the following
equivalence also holds:

ηB >
1
λ

rL+1 − rL
1

hL+1
− 1

hL

⇔ P0

ηB
<

rL

hL+1
− rL+1

hL

rL+1 − rL
.

However, the second relation is satisfied, by the way we
have definedL. Therefore, the inequalities (13) are also
satisfied. This concludes our proof, as we have found a power
distribution that satisfies all the requirements (9)-(13). We now
state our result in the form of a theorem:

Theorem 2: LetL be the largest indexi ∈ {1, . . . , n} that
satisfies the inequality

P0

ηB
≥

ri−1
hi

− ri

hi−1

ri − ri−1
,

where the sequence on the right hand side is increasing, by
Assumption 1. Also let

ai =


1
λ ·

ri−ri−1
1

hi
− 1

hi−1

i = 1, . . . , L,

ηB i = L + 1,

whereλ = rLhL

P0hL+ηB . The maximum transport capacity is

CMAC
T,max = B

L∑
i=1

(ri − ri−1) log2(ai)−BrL log2(ηB),

and the unique power distribution that achieves it is given by:

Pi =

{
ai−ai+1

hi
i = 1, . . . , L,

0 i = L + 1, . . . , n.
(19)

Our result is conceptually straightforward: The available
power should be distributed among the firstL transmitters,
and, the greater the available power, the largerL becomes.
Therefore, the solution resembles a water filling that starts
from near the receiver and moves outwards. The precise
allocation of power among the firstL users will depend on
the exact shape of the reward and gain functions.

As a numerical example, let us consider a multiple access
channel that consists of a single receiver, placed at the origin,
and200 transmitters, placed uniformly along thex-axis with
a separation of25 m from each other, starting at25 m from
the receiver. The total power available isP0 = 400 W, the
available bandwidthB = 10 MHz, the noise spectral density
is η = 10−16 W

Hz , and a monomial power gain function with
γ = 3 and Kh = 0.1 m3 is assumed. In Fig. 3, we plot the
optimal distribution of powers, assuming a monomial reward
function with Kr = 1, and for the casesρ = 1, ρ = 1.5, and
ρ = 2. In Fig. 4, we plot the corresponding distributions of the
rate-reward products of the individual transmitters. Finally, in
Fig. 5 we compare the optimal power allocation for the case
ρ = 1, with the allocation induced if all the nodes outside the
intervals[200 m, 900 m] and [1300 m, 1600 m] are removed.



6

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x
i
 (km)

P i (
W

)

ρ=1
ρ=1.5

ρ=2

Fig. 3. The optimal power allocation in a multiple access channel consisting
of a receiver placed in the origin, and200 transmitters placed uniformly along
the x-axis with a separation of25 m from each other, and for various values
of the reward exponentρ.
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Fig. 4. The distribution of rate-reward products induced by the power
distribution of Fig. 3.

As can be seen from the figure, the nodes that lie directly
on the borders of the ‘forbidden regions’ take for themselves
most of the power that was allocated to the nodes that were
removed. The powers allocated to the rest of the nodes also
change, and in fact in the same proportion, through the change
in the value ofλ.

E. Large Number of Transmitters

Let us now consider the case where the number of trans-
mitters is very large, ideally approaching infinity. Our aim
is to suppress the effects of the particular node placements,
and draw better intuition about the inherent capabilities of
the multiple access channel. Formally, we assume that a large
number n of transmitters are placed in the interval[a, b],
where a ≥ 0 and b < ∞, with n → ∞. We also require
that the distance between any pointx ∈ [a, b] and its nearest
transmitter goes to zero.
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Fig. 5. (a) The optimal power distribution of the channel of Fig. 3, for the
caseρ = 1. (b) The optimal power allocation in the channel of Fig. 3, for
the caseρ = 1, and if all the nodes outside the intervals[200 m, 900 m] and
[1300 m, 1600 m] are removed.

Clearly, it no longer makes sense to discuss in terms of the
powers allocated to individual nodes, since the power allocated
to almost all of them will have to converge to0, but rather
in terms of thepower density function p(x), with x ∈ [a, b],
defined such that the power allocated to the transmitters lying
in the setA ⊂ [a, b] converges to

∫
A

p(x) dx. Our sum-power

constraint becomes
∫ b

a
p(x) dx = P0.

As the distance between any pointx ∈ [a, b] and its nearest
transmitter goes to zero, by the standard theory of Riemann
integrals, we have that the transport capacity, in the form of
the finite summation of (2), will converge to the following
Riemann integral:

B

∫ b

a

r′(x) log2[ηB +
∫ b

x−
h(t)p(t) dt] dx−Br(b) log2(ηB).

Theorem 3: The shape of the optimal power allocation
pMAC(x), a ≤ x ≤ b, will depend on the ratioP0

ηB . In
particular3:

(i) If P0
ηB < g(a), thenpMAC(x) = P0δ(x− a).

(ii) If g(a) ≤ P0
ηB ≤ g(b), then

pMAC(x) =[
P0 + ηB

h(xc)

r(xc)

]
×
[
l(a)g(a)δ(x− a)− I [a,xc]

l′(x)
h(x)

]
,

(20)

where thecutoff point xc satisfies the equation:

P0

ηB
= g(xc). (21)

3Note that functiong(·) was defined in Lemma 1(iv).
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(iii) If g(b) < P0
ηB , then

pMAC(x) =

[
l(a)g(a)

P0 + ηB
h(b)

r(b)

]
δ(x− a)+

l(b)
r(b)h(b)

[P0 − g(b)ηB] δ(x−b)−

[
P0 + ηB

h(b)

r(b)

]
l′(x)
h(x)

.

(22)

As expected, the water filling structure of the discrete case
is maintained. Theorem 3 can be proved in a straightforward
manner by starting from Theorem 2 and taking the appropriate
limits. However, in Appendix III, we prove it starting from
scratch, using calculus of variations. There are two reasons for
this approach. Firstly, the calculus of variations proof is very
short and gives additional intuition which is obscured by the
heavily algebraic nature of the proof of the finite transmitter
case. Secondly, it uses the most-rapid-approach method, which
is very powerful and might be applicable in other problems
of the same nature, and therefore might be of independent
interest.

As an illustrative application of the theorem, let us consider
the case of the monomial reward and gain functions, witha =
0, andb large enough so thatP0

ηB < g(b). After straightforward
substitutions we have:

pMAC(x) =
{

[ηB(γ − ρ)]
ρ
γ (ρP0)

γ−ρ
γ K

− ρ
γ

h

}
xρ−1I [0,xc],

xc =
[(

KhP0

ηB

)(
ρ

γ − ρ

)] 1
γ

, (23)

CMAC
T,max =

KrB

log 2

[
KhP0

ηB

] ρ
γ

(
γ

ρ
− 1)1−

ρ
γ . (24)

It is interesting to compare the transport capacity with
C1−1

T,max, the rate-reward product of a single transmitter-
receiver pair, separated by the distancexopt that maximizes
it. C1−1

T,max is calculated in Appendix II, and is given by (36).
Combining that equation with (24) shows that the quotient

CMAC
T,max

C1−1
T,max

=
(γ

ρ − 1)1−
ρ
γ[

eg(z0) − 1
]− ρ

γ g(z0)
, H(

ρ

γ
)

is only a function of ρ
γ . As shown in Fig. 6,H( ρ

γ ) is a
strictly decreasing, convex function withlim ρ

γ→0+ H( ρ
γ ) = e

and lim ρ
γ→1− H( ρ

γ ) = 1. It is interesting to note that the
gains of receiving from multiple transmitters at the same time,
versus receiving from a single transmitter, albeit placed at the
optimal distance, are rather limited, for example only around
25% whenρ/γ = 0.5.

IV. T HE BROADCAST CHANNEL

We now turn our attention to the Gaussian broadcast channel
of Fig. 1, that consists of a transmitterT with total powerP0,
andn receiversV1, V2, . . . , Vn, placed at increasing distances
0 < x1 < x2 < . . . < xn from the transmitter (but not
necessarily along a straight line, or even on the same plane).
As with the multiple access channel of Fig. 2, we assume
that if the transmitter sends a signal with powerp, the signal

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

H
(ρ

/γ
)

ρ/γ

Fig. 6. The functionH( ρ
γ
), that represents the gains of using multiple

transmitters over using a single transmitter, placed at the optimal distance
xopt, in the case of monomial gain and reward functions.

will arrive at receiverVi with power h(xi) × p, whereh(·)
is the gain function. A receiver placed at distancex from the
transmitter is susceptible to additive white Gaussian noise of
spectral densityη(x), and for simplicity we setηi , η(xi).
The total bandwidth available for communication isB.

The capacity regionCBC, i.e., the set of all combinations
of rates R = (R1, R2, . . . , Rn) with which the transmitter
can simultaneously send data to the receivers, is known [8].
In particular, letπ(·) be a permutation function that gives
an ordering of the receivers in terms of increasing channel
qualities, i.e.,

hπ(1)

ηπ(1)
≤ hπ(2)

ηπ(2)
≤ . . . ≤ hπ(n)

ηπ(n)
. Clearly, if the hi

ηi

are distinct there is only one such ordering. Then:

CBC =
{

R : Ri ≤

B log2(1 +
hiPi

ηiB + hi

∑
j:π−1(j)>π−1(i) Pj

, i = 1, . . . , n,

n∑
j=1

Pj = P0, Pi ≥ 0, i = 1, . . . , n

}
. (25)

To achieve a pointR = (R1, R2, . . . , Rn) in the capacity
region, the transmitter encodes with rateRi the message
intended for receiverVi independently of the others, and
transmits it with powerPi, simultaneously with the signals
intended for all other receivers. Each receiver will start to
successively decode the signals for each of the receivers, in the
order specified byπ(·), (i.e., in the order of increasing channel
quality) stopping after it decodes its own signal. When a
receiver decodes a signal, other signals that have been already
decoded do no create any interference, but the rest of the
signals appear as thermal noise. Although alternative decoding
orders are also acceptable, they will not in general attain points
on the boundary of the capacity region.

Let thenormalized gain function hn(x) be defined as

hn(x) ,
η

η(x)
h(x),

where η is arbitrary, and lethn
i , hn(xi). By inspecting

(25), it is clear that the capacity region is identical to the
capacity region of the broadcast channel with the normalized
gain function, and in which all receivers are susceptible to
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thermal noise of a common spectral densityη:

CBC =
{

R : Ri ≤

B log2(1 +
(hiη

ηi
)Pi

ηB + (hiη
ηi

)
∑

j:π−1(j)>π−1(i) Pj

, i = 1, . . . , n,

n∑
j=1

Pj = P0, Pi ≥ 0, i = 1, . . . , n
}

. (26)

Similar to the MAC, we define the transport capacity of
the BC, associated with a point in the capacity regionR =
(R1, R2, . . . , Rn) as:

CBC
T (R) ,

n∑
i=1

riRi, (27)

whereri , r(xi), andr(·) is the reward function. To calculate
the pointR in the capacity region that maximizes the transport
capacity, in principle we could start from scratch, for example
using the KKT conditions, as in Section III. However, the
following theorem (Theorem 1 of [9]) allows us to use the
results of the previous section on the MAC:

Theorem 4: Consider the followingdual channels:

1) A broadcast channel in which the power gains be-
tween the transmitter and then receivers areh =
(h1, h2, . . . , hn), and the receivers are susceptible to
thermal noise with a common spectral powerη. Let
CBC(P0; h) be its capacity region when the power
available to the transmitter isP0.

2) A multiple access channel in which the power gains
between the receiver and then transmitters are also
h = (h1, h2, . . . , hn), and the receiver is susceptible to
thermal noise, also of spectral powerη. LetCMAC(P; h)
be its capacity region assuming that the powers avail-
able to the transmitters areP = (P1, P2, . . . , Pn).

The capacity region of the BC is equal to the union of the
capacity regions of the dual MAC over all power distributions
(P1, . . . , Pn) such that1 · P ,

∑n
i=1 Pi = P0:

CBC(P0; h) =
⋃

{P:1·P=P0}

CMAC(P; h).

Furthermore, letR be a point in the capacity region of the
MAC achieved if the receiver decodes the incoming signals in
the decoding orderπ(1), π(2), . . . and the powers available
to the transmitters are(PMAC

1 , PMAC
2 , . . . , PMAC

n ). The dual
BC will achieve the same point in the capacity region if
each receiver decodes the incoming signals in theinverse
order π(n), π(n − 1), . . . , stopping after it decodes its own
signal, and the powers(PBC

1 , PBC
2 , . . . , PBC

n ) allocated to the
individual signals are given by:

PBC
π(i) = PMAC

π(i)

ηB + hπ(i)

∑i−1
j=1 PBC

π(j)

ηB +
∑n

j=i+1 hπ(j)P
MAC
π(j)

, i = 1, . . . , n.

(28)

Using this result, the following theorem easily follows:

Theorem 5: Assume that the functionln(x) , r′(x)

( 1
hn(x) )

′ is

decreasing. LetL be the largest indexi ∈ {1, . . . , n} that
satisfies the inequality

P0

ηB
≥

ri−1
hn

i
− ri

hn
i−1

ri − ri−1
,

and let

βi =

ηB

ri
hn

i+1
− ri+1

hn
i

ri+1−ri
i = 0, . . . , L− 1,

P0, i = L, . . . , n.

The maximum transport capacity of the BC is:

CBC
T,max = B

L∑
i=1

ri log2

( ηB
hn

i
+ βi

ηB
hn

i
+ βi−1

)
. (29)

The optimal power allocation that achieves it is:

Pi =

{
βi − βi−1, i = 1, . . . , L,

0, i = L + 1, . . . , n.
(30)

Furthermore, each receiverVi should decode first the signal
intended for Vn, then the signal intended forVn−1, etc.,
eventually decoding its own signal.
Proof: As discussed, the capacity region of the original
BC, given by (25), is identical to the capacity region of
the modified BC with the normalized gainshn

i , η
ηi

hi and
the common spectral power densityη for all receivers. That
capacity region is given by (26). In addition, by Theorem 4 the
points in this capacity region are exactly the points that can
be achieved by its dual MAC under a sum power constraint.
Therefore, maximizing the transport capacity of the BC is the
same as maximizing the transport capacity of the dual MAC
under a sum power constraint. For this problem, we can use
Theorem 2.

To apply Theorem 2, we need to ensure that Assumption 1
holds. This translates to the requirement that the functionln(x)
is decreasing.

By Theorems 1 and 2, in the dual MAC, the set of rates that
maximizes the transport capacity is achieved by the decoding
order in which the signal from transmitterTi is decodedi-th,
and the power allocation given by (19). By Theorem 4, in the
BC, the same set of rates is achieved by the inverse decoding
order, (i.e., receivers decode the signal intended forVn, then
the signal intended forVn−1, etc.) and for a power allocation
that is uniquely specified by (28) withπ(i) = i. To prove
that the optimal power allocation is given by (30), we simply
substitute (30) and (19) in (28) (withπ(i) = i) and we arrive
at an identity, for alli = 1, . . . , n.

To prove (29), we note that, since receiverVi decodes sig-
nals intended for receivers further away first, and then its own,
only the power of signals intended for receiversV1, . . . , Vi−1

will affect the decoding of its own signal. Therefore, the rate
Ri will be

Ri = B log2(1 +
(hiη

ηi
)Pi

ηB + (hiη
ηi

)
∑i−1

j=1 Pj

).

Combining these with (27) and (30), (29) follows. �
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The structure of the solution is straightforward: The power
of the transmitterP0 is divided among the firstL receivers,
and the largerP0 is, the largerL will be. Therefore, as in
the case of the MAC, the solution resembles a water filling
from left to right. In addition, the optimal distribution of rate-
reward products is exactly the same as that of the dual MAC.
On the other hand, as the following numerical example shows,
the optimal power allocations of the dual BC and MAC will
in general be different.

As a numerical example, let us consider the dual BC of the
MAC of Section III: it consists of a single transmitter, placed
at the origin, and200 receivers, placed uniformly along the
x-axis with a separation of25 m from each other, starting at
25 m from the transmitter. The total power available at the
transmitter isP0 = 400 W, the available bandwidthB =
10 MHz, the noise spectral density of all receivers isη =
10−16 W

Hz , and a monomial power gain function withγ = 3
andKh = 0.1 m3 is assumed. In Fig. 7 we plot the optimal
distribution of powers, assuming a monomial reward function
with Kr = 1, and for the casesρ = 1, ρ = 1.5, andρ = 2.
Note that the power allocations have a different shape from
those of the dual MAC. On the other hand, by duality, the
rate-reward products of the BC will be in all cases the same of
the rate-reward products of the dual MAC, which are plotted
in Fig. 4. Finally, in Fig. 8 we compare the optimal power
allocation for the caseρ = 1, with the allocation induced
if the nodes lying outside the intervals(600 m, 900 m) and
(1300 m, 2650 m) are removed. As can be seen from Fig. 8,
and also from from Theorem 5, the nodes that lie directly on
the borders of the ‘forbidden regions’ take for themselvesall
the power that was allocated to the nodes that were removed.
Contrary to the multiple access case, the powers allocated to
the rest of the nodes do not change at all.

Similarly to the MAC, we would like to consider the case
where a large numbern of receivers is placed in the interval
[a, b]. The following theorem is proved in Appendix III:

Theorem 6: Assume that the functionln(x) , r′(x)

( 1
hn(x) )

′ is

decreasing, in which case by Lemma 1(iv) the function

gn(x) ,
( 1

hn(x) )
′r(x)− ( 1

hn(x) )r
′(x)

r′(x)

is increasing. The shape of the optimal power allocation
pBC(x) will depend on the ratioP0

ηB . In particular:

(i) If P0
ηB < gn(a), thenpBC(x) = P0δ(x− a).

(ii) If gn(a) ≤ P0
ηB ≤ gn(b), then

pBC(x) = gn(a)δ(x− a) + I [a,xc](g
n)′(x), (31)

where thecutoff point xc satisfies the equation:

P0

ηB
= gn(xc). (32)

(i) If gn(b) < P0
ηB , then

pBC(x) = gn(a)δ(x−a)+[gn(b)−P0]δ(x−b)+(gn)′(x).
(33)

Furthermore, each receiver should perform successive decod-
ing of the received signals, starting from the signal intended
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Fig. 7. The optimal power allocation in a broadcast channel consisting of
a transmitter placed in the origin, and200 receivers placed uniformly along
the x-axis with a separation of25 m from each other, and for various values
of the reward exponentρ.
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Fig. 8. (a) The optimal power distribution of the channel of Fig. 7, for the
caseρ = 1. (b) The optimal power allocation in the channel of Fig. 7, for
the caseρ = 1, and if all the nodes outside the intervals[300 m, 900 m] and
[1300 m, 2650 m] are removed.

for the far-most receiver, and moving inwards, until it decodes
its own signal.

Let us consider the case of a BC with monomial reward
and gain functions, whereη(x) , η, a = 0, and b is large
enough so thatP0

ηB < gn(b). By duality, it follows thatxc will
be given by (23), as in the MAC, andCBC

T,max = CMAC
T,max, with

CMAC
T,max given by (24). The optimal power allocation, however,

will be different. Applying Theorem 6, we have that

pBC(x) =
[
ηB(γ − ρ)γ

ρKh

]
xγ−1I [0,xc].

Therefore, the optimal power allocation changes with the
distancex asxρ−1 for the MAC, but asxγ−1 for the BC.
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V. D ISCUSSION ANDCONCLUSIONS

In this work we study the transport capacity of a Gaussian
Multiple Access Channel (MAC), which consists of a single
receiver and multiple transmitters, and a Gaussian Broadcast
Channel (BC), which consists of a single transmitter and
multiple receivers. The transport capacity is defined as the
summation, over all simultaneous transmissions, of the product
of the data rate with a rewardr(x) which is a function of
the distancex that the data covers. In the special case where
r(x) = x, the transport capacity is measured inbps×m, and is
a natural figure of merit of the efficiency with which a network
is operating at a given time instant. However, the general
form of r(·) allows for alternative notions of usefulness of
a transmission.

In the case of the MAC, we first show that the receiver
should decode the incoming signals starting from the signal
of the nearest transmitter and moving outwards. Under a sum-
power constraint, we determine in closed form the optimal
allocation of transmitter powers that maximizes the transport
capacity. Our proof is conceptually straightforward and short
in length, and is based on KKT conditions.

In the case of the BC, we calculate in closed form the
optimal distribution of the transmitter power to the signals
of the different receivers. The proof is very simple, and is
based on our results for the MAC, and duality arguments that
became available only recently [9].

We also present asymptotic results, that only hold as the
number of transmitters (for the MAC) or receivers (for the
BC) go to infinity. The results are derived using the most-
rapid-descent method of the calculus of variations.

We must emphasize that a closed form solution for the
optimal power allocation of the BC, under an assumption
very similar to our assumption that the functionhn(x) is
decreasing, and compatible to our result, appeared first in [7].
There, however, it was shown that the transmitter may allocate
power to a contiguous group of receivers, and perhaps one or
two extra, outlying receivers. Therefore, there may be inactive
receivers (i.e. receivers that receive no power) separating the
contiguous group from the outlying receivers. Our work shows
that in fact only a much less general scenario can occur, i.e.,
the first L receivers will receive all the power, for someL,
and the rest will receive no power at all. In addition, our
derivations are much shorter, because we are using duality
arguments and our results for the MAC (which are also shorter
than the derivations in [7]).

Our work brings forward a number of aspects of the MAC
and the BC that designers of practical systems may want to
take into consideration:

First of all, in both the MAC and the BC the optimal power
allocation resembles a water filling: Only the signals coming
from the nearestL transmitters (in the case of the MAC) or
going to the nearestL receivers (in the case of the BC) are
allocated positive power, and the larger the available power is,
the largerL will be.

Secondly, if the MAC and the BC are dual, then the transport
capacities and the rate-reward distributions are identical, but
not the power allocations. For example, in a cellular system in

which the uplink MAC and the downlink BC are duals, there
is a very nice coupling in the sense that the maximization
of the transport capacities of the uplink and the downlink
also ensures that each user will be transmitting in the uplink
with the same rate with which it will be receiving in the
downlink, but the two power allocations that must be used
will be different.

Thirdly, as Theorems 2 and 5 show, in order to maximize
the transport capacity of the MAC (BC), a lot of power must
be allocated to nodes (transmitters or receivers) that sparsely
populate the same distance range. For example, in the special
case where the nodes are placed along a straight line, as Figs.
5 and 8 show, a lot of power must be allocated to nodes that
are neighboring areas where no other nodes are placed.

Finally, the transport capacity of both the MAC and the
BC may only be marginally better than the transport capacity
of a simple transmitter-receiver pair, provided the distance
between the two can be optimized. For example, in the case of
monomial reward and gain functions withργ = 1

2 , the gains by
using successive decoding, in terms of transport capacity, are
around25%. Given the complexity of receivers that employ
successive decoding, it is clear that in certain situations using
successive decoding may not be worth the investment.

It should be stressed that all our results crucially depend on
Assumption 1, which essentially requires that, as the distancex
between a transmitter and a receiver increases, the rewardr(x)
is not increasing as fast as the channel gainh(x) is decreasing.
As discussed, this is a reasonable assumption for most cases
of interest.

Note that, from a purely mathematical perspective, the trans-
port capacity is simply a weighted sum, over all simultaneous
transmissions, of the achieved data rates. The maximization of
such a weighted sum is an interesting problem even outside
the context of transport capacity. Indeed, the weights{ri} can
be thought of as specifying a particular direction in then-
dimensional Euclidean space, therefore the maximization of
the weighted sum corresponds to finding the boundary of the
capacity region along this particular direction. This is actually
an old problem that has been studied by a number of different
researchers. (See, for example, [14], [10], [15], [16] and the
references therein.) As all these works predate the duality
results of [9], in all cases the authors either examine the BC
or the MAC. To the best of our knowledge, in all cases the
optimal power allocation is not given in closed form, but rather
an algorithm is provided that can be used to determine it. The
novelty of our work is that we adopt Assumption 1, which
is very reasonable if the weighted sum is interpreted as the
transport capacity. This leads to very short derivations, and
the determination of the power allocation in closed form. An
additional novelty of our work is that we use duality arguments
to derive the results for the BC using the results of the MAC.
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APPENDIX I
PROOF OFLEMMA 1

(i) To prove the equivalence of (5) and (6), we cross-multiply
both of them and we arrive at identical inequalities.

Next, we show that (5) implies (4). If (5) holds for all
transmitter placements, it will then hold for the case of four
transmitters placed at locationsx − ε, x, y − ε, y, whereε <
y − x. By applying (5) twice, we have:

r(x)− r(x− ε)
1

h(x) −
1

h(x−ε)

≥ r(y − ε)− r(x)
1

h(y−ε) −
1

h(x)

≥ r(y)− r(y − ε)
1

h(y) −
1

h(y−ε)

.

By dividing the numerators and denominators of the left and
right hand side byε, and takingε → 0, we find that r′(x)

( 1
h )′(x)

≥
r′(y)

( 1
h )′(y)

.
The proof that (4) implies (5) follows similarly to Lemma

1 of [7], and so is omitted.
(ii) We use induction. In particular, we prove (7) first fork = 1
and for all i = 1, . . . , n− 1. For this, we note that, from (5),
we have that

ri+1 − ri

ri − ri−1
≤

1
hi+1

− 1
hi

1
hi
− 1

hi−1

, i = 1, . . . , n− 1,

Adding 1 to each size, simplifying and rearranging terms, we
arrive at (7) fork = 1 and for all i = 1, . . . , n − 1. We
now make the inductive hypothesis that (7) holds for some
k ∈ 1, . . . , n− 2, and for alli = 1, . . . , n− k. We will show
that it then holds fork + 1, and for alli = 1, . . . , n− k − 1.
For this, we note that
ri − ri−1
1
hi
− 1

hi−1

≥ ri+1 − ri
1

hi+1
− 1

hi

≥ ri+k+1 − ri
1

hi+k+1
− 1

hi

, i = 1, . . . , n−k−1.

The first inequality comes from (5), and the second from the
induction hypothesis. Therefore,

ri+k+1 − ri

ri − ri−1
≤

1
hi+k+1

− 1
hi

1
hi
− 1

hi−1

, i = 1, . . . , n− k − 1.

By adding1 to each side, simplifying and rearranging terms,
we arrive at (7) fork + 1, and for alli = 1, . . . , n− k − 1.
(iii) To prove the inequality, we apply (5) forxi−1 = 0, xi =
x, xi+1 = x + ε, and then takeε → 0.
(iv) If Assumption 1 holds, then (6) follows for all transmitter
placements, and in particular for the case of four transmitters
placed at locationsx− ε, x, y − ε, y, whereε < y − x:

r(x−ε)
h(x) − r(x)

h(x−ε)

r(x)− r(x− ε)
≤

r(x)
h(y−ε) −

r(y−ε)
h(x)

r(y − ε)− r(x)
≤

r(y−ε)
h(y) − r(y)

h(y−ε)

r(y)− r(y − ε)
.

Dropping the middle part, it follows that

r(x− ε)h(x− ε)− r(x)h(x)
[r(x)− r(x− ε)]h(x)h(x− ε)

≤ r(y − ε)h(y − ε)− r(y)h(y)
[r(y)− r(y − ε)]h(y)h(y − ε)

.

Taking the limit ε → 0, we arrive atg(x) ≤ g(y).

APPENDIX II
OPTIMAL SEPARATION OF A TRANSMITTER-RECEIVER PAIR

In this appendix we calculate the optimal separation be-
tween a single transmitter and a single receiver, that maximizes
the reward-distance product, assuming monomial reward and
gain functions. This optimization problem was first considered
in [7]. There, however, only an asymptotic analysis as the gain
exponentγ →∞ was offered.

Let a transmitterT and a receiverR be separated by a
distancex which is allowed to vary. The transmitter power
is P0, the bandwidth available for the communication isB,
and the receiver is susceptible to additive white Gaussian
noise of densityη. We assume that the signal power changes
with distance according to the gain functionh(x), and the
transmission of a bit of information over a distancex is
rewarded by a rewardr(x). Finally, we assume that the
channel between the transmitter and receiver operates at the
Shannon capacityC = B log2(1 + P0h(x)

ηB ). We define the
transport capacityC1−1

T (x) of this setting as the reward-
distance product:

C1−1
T (x) , r(x)B log2(1 +

P0h(x)
ηB

).

We are interested in determining the maximum possible
value for C1−1

T (x), C1−1
T,max , sup0<x<∞ CT (x). Clearly,

unless specific cases forr(·) and h(·) are considered, we
can not go much further. So let us limit the discussion to
the monomial reward and gain functions. In this case,

C1−1
T,max = sup

0<x<∞
BKrx

ρ log2(1 +
KhP0

ηBxγ
).

Let A , KhP0
ηB andf(x) , xρ log2(1 + A

xγ ), so that

C1−1
T,,max = BKr sup

0<x<∞
f(x).

Whenγ < ρ, clearly limx→∞ f(x) = ∞, so thatC1−1
T,max =

∞. When γ = ρ, f(x) is monotonically increasing so that
its supremum is approached asx → ∞, and C1−1

T,max =
ABKr log2(e). However, as in the main text, we are mostly
interested in the caseγ > ρ. In this case,f(x) achieves a
single maximum for an optimum value ofx, xopt.

To find xopt, we set the derivative off(x) equal to 0:

ρ

γ
log(1 +

A

xγ
)− A

A + xγ
= 0.

We make the substitution

y = log(1 +
A

xγ
)− γ

ρ
(34)

and after simplifying we arrive at:

yey = (−γ

ρ
)e(− γ

ρ ) , z0. (35)

This equation is of the formyey = z0 wherez0 is given
and we must findy. In other words, solving (35) is equivalent
to calculating the inverse of the functiony 7→ z = yey. This is
a very old problem, actually predating Euler, who has himself
worked on it [17]. The inverse is known in the literature as
Lambert’s W function, and it appears often in a variety of
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Fig. 9. The plot of the functionyey .

situations from the enumeration of trees in graph theory to
the calculation of wave heights in physics [18].

In general,W (z) is defined for complexz and is complex
and multivalued. In our context, however, bothz and W (z)
are real, and the situation is relatively simple. In Fig. 9 we plot
z = yey for real y. From the figure it is clear that forz ≥ 0
W (·) has a single branch, the curve on the right of pointP2.
For z < −e−1 it has no branches, and for−e−1 ≤ z < 0
it has two branches,W1(·) and W2(·). The branchW1(·) is
the curve that lies on the left of pointP1, and the branch
W2(·) is the curve that lies between the pointsP1 and P2.
Unfortunately, no closed-form expressions are known for the
two branches. We define

g(z) , W2(z)−W1(z) (z ∈ [−e−1, 0)).

The valuez0 of (35) lies in the interval(−e−1, 0), so (35)
has two solutions, one for each branch.W1(z0) is clearly equal
to−γ

ρ and is not acceptable, since plugging this to (34) implies
that x = +∞. HoweverW2(z0) is acceptable, and using (34)
it leads to the following solution:

xopt =
[

A

eW2(z0)+
γ
ρ − 1

] 1
γ

.

Noting thatW2(z0)+ γ
ρ = g(z0) and thatA , KhP0

ηB , we have
that:

xopt =
[
KhP0

ηB

] 1
γ
[

1
eg(z0) − 1

] 1
γ

.

The optimal transport capacity becomes

C1−1
T,max =

KrB

log 2

[
KhP0

ηB

] ρ
γ [

eg(z0) − 1
]− ρ

γ

g(z0). (36)

A few interesting observations can be made from (36). For
example,ρ and γ affect the transport capacity only through
their quotientρ

γ . Therefore, changing both their values while
leaving their quotient fixed does not change the value of the
transport capacity. In addition, in contrast to Shannon capacity,
the dependence of the transport capacity on the available
bandwidth and transmitter power is monomial.

APPENDIX III
PROOFS OFTHEOREMS3 AND 6

The fist three subsections of this appendix present a proof
of Theorem 3, using calculus of variations. The last subsection
sketches a proof for Theorem 6.

A. Problem Formulation

We make the technical assumptionp(x) ≤ T , where T
can be arbitrarily large, but not a function of the number of
nodesn. This ensures that all terms in the summation of the
objective function of (1) are very small, and the objective
function can be approximated by a Riemann integral. The
optimization problem (1) becomes:

maximize: B
log 2

∫ b

a
r(x)h(x)p(x)

ηB+
∫ b

x
p(t)h(t) dt

dx,

subject to: 0 ≤ p(x) ≤ T,
∫ b

a
p(x) dx = P0.

(37)

To derive the above, we have used the fact thatlog2(1+x) '
x

log 2 for x → 0.
To bring (37) to a more standard form, we set:

y(x) , ηB +
∫ b

x

h(t)p(t) dt ⇒ p(x) = −y′(x)
h(x)

.

It follows that y(b) = ηB. The problem now becomes
(ignoring the factor B

log 2 ):

minimize:
∫ b

a
r(x)y′(x)

y(x) dx,

subject to:

{
−Th(x) ≤ y′(x) ≤ 0, y(b) = ηB,

−
∫ b

a
y′(x)
h(x) dx = P0.

(38)
To remove the second equality constraint, we modify the

objective by subtracting the left hand side of the constraint,
multiplied by aLagrange multiplierλ. After the optimization
is performed,λ will be chosen to satisfy the equality con-
straint, but until then it will be treated as yet another parameter
of the problem4. The problem now becomes:

minimize:
∫ b

a

[
r(x)
y(x) + λ

h(x)

]
y′(x) dx,

subject to: −Th(x) ≤ y′(x) ≤ 0, y(b) = ηB.
(39)

We will call the integrand of the objective function the
Lagrangian, and we will denote it byF (x, y(x), y′(x)).

The Lagrange multiplierλ has a very simple interpretation.
As shown in Theorem[X.3] of [19], it equals the rate of
change of the minimum of (38) with respect toP0. Therefore,
although we still need to findλ, we know that it must be
strictly negative. Indeed, it is easy to show that if more power
is available to the transmitters, the optimal transport capacity
will strictly increase, and so the minimum of the objective of
(38) will strictly decrease.

Note that we have a constraint on the value ofy(x) on the
right hand side of the interval, i.e.,y(b) = ηB. However, no
constraint is placed ony(a). Standard theory requires that the

4For a justification of this procedure, see any text on calculus of variations,
for example [19].
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following natural, or Euler boundary condition∂F
∂y′ (a) = 0 be

adopted [19]:

∂F

∂y′
(a) = 0 ⇒ y(a) = −r(a)h(a)

λ
.

The next task is to formulate the Euler Differential Equation
(DE) that describes the shape of any smooth (i.e. with contin-
uous first order derivative)y(x) that minimizes the objective.
The Euler DE for this problem is given by [19]:

d

dx

(
∂F

∂y′

)
=

∂F

∂y
⇒ ys(x) = − r′(x)

λ( 1
h )′(x)

= − l(x)
λ

. (40)

B. The Most-Rapid-Approach Method

In most problems in the calculus of variations, the Euler
DE turns out to be a second order differential equation, that
can be uniquely determined by requiring that the optimal
function y(x) satisfies the two boundary conditions. In our
case however, the Euler DE is actually a plain algebraic
equation, which contains no derivatives, and so can not be
made, in general, to satisfy our boundary conditions! It follows
that the solution can not be smooth everywhere.

This problem is actually an instance of a more general class
of problems, in which the Lagrangian is linear withy′(x) (as
can readily be seen by (39)). This case is called thesingular
case, and a solution to such a problem is called asingular solu-
tion. Such cases are rarely discussed in introductory courses in
calculus of variations [19]. For this class of problems, Theorem
[XII.5] of [19] applies:

Theorem 7: (Most-Rapid-Approach Method) Consider the
minimization of the integral

∫ b

a
F (x, y(x), y′(x)) dx with re-

spect to y(x), where the LagrangianF (x, y(x), y′(x)) =
F0(x, y(x)) + F1(x, y(x))y′(x), and under the constraints
y(a) = A, y(b) = B, and

L(x, y) ≤ y′(x) ≤ U(x, y) (a ≤ x ≤ b). (41)

Assume that the following conditions hold:

1) The Euler DE has a unique singular solutionys(x).
2) ∂F0

∂y − ∂F1
∂x > 0 (< 0) if y(x)− ys(x) > 0 (< 0).

3) ys(x) satisfies the inequality constraints (41).

Then the global minimum is achieved by the composite
function

y(x) ,


ya(x), a ≤ x ≤ x1,

ys(x), x1 ≤ x ≤ x2,

yb(x), x2 ≤ x ≤ b.

If ys(a) ≤ A, then ya(x) is the uniquely defined function
that starts at the pointy(a) = A, and descendsas fast as
possible toward the singular solution, satisfying at all times the
equalityy′a(x) = L(x, ya(x)). If, on the other hand,ys(a) ≥
A, then ya(x) is the uniquely defined function that starts at
the pointy(a) = A and ascendsas fast as possible toward the
singular solution, satisfying the equalityy′a(x) = U(x, ya(x)).
The pointx1 is whereya(x) and ys(x) cross. The function
yb(x) and the pointx2 are defined in a similar manner.

a b

y s(x)

ya(x)

y1,b(x)y1(b)

y(a)
y1(x)

y3,b(x)

y2,b(x)y2(b)

y3(b)

y s(x)

y2(x)

y3(x)

x c

Fig. 10. The singular solutionys(x) (in thin line) and three possible forms
for the composite extremal functiony(x) (denoted by thick line).

If, while moving toward the singular solution, functions
ya(x) and yb(x) meet each other first, at some pointx3, then
the optimal solutiony(x) is given by

y(x) ,

{
ya(x), a ≤ x ≤ x3,

yb(x), x3 ≤ x ≤ b.

In all other cases (for example whenx1 > x2, or when
ya(x) or yb(x) never intersectys(x) or each other), the
problem has no solution.

The singular solution of our problem, given by (40), is
unique, therefore the first condition of Theorem 7 is satisfied.
It is also straightforward to show that the second condition is
satisfied, by simply writing down the partial derivatives ofF0

andF1. It remains to be shown that the third condition is also
satisfied, i.e., that the singular solution satisfies the inequality
constraints (41), i.e.,−Th(x) ≤ [− r′(x)

λ( 1
h )′(x)

]′ ≤ 0. The left
hand side inequality will be satisfied if we takeT to be large
enough. The right hand side is also satisfied, by Assumption
1 and the fact thatλ < 0.

C. The Optimal Power Allocation

All the conditions of Theorem 7 are thus satisfied, and
we are ready to apply it in our case. By Lemma 1(iii), it
follows that r(a)h(a) ≥ r′(a)

( 1
h )′(a)

⇒ ys(a) ≤ y(a), i.e., the

singular solutionys(x) = − r′(x)

λ( 1
h )′(x)

will always pass below
the left boundary condition. Regarding whether the singular
solution passes below or above the right boundary condition
y(b) = ηB, a complication arises from the fact that we do
not know the actual value ofλ. Therefore, we can not tell
beforehand the resulting form of the composite solutiony(x).
Three different cases, all corresponding to different functional
forms for y(x), appear in Fig. 10. Note that the horizontal
potionsy2,b(x) and y3,b(x) of the composite solution appear
in intervals where no power is allocated, i.e.,p(x) = 0.
Similarly, the steeply descending portionsya(x) and y1,b(x)
of the composite solution appear in intervals where the power
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allocated is the maximum possible, i.e.,p(x) = T . As T
increases, these portions become steeper. Intuitively, which
case is active will depend on how much powerP0 we have
available.

To simplify things, let us assume thatT → ∞. This is
equivalent to allowingya(x) and y1,b(x) to be vertical, thus
causing delta functions to appear in the power distribution.
Note that we have already required thatT be finite. Therefore,
our solution will not be the power distribution forT = ∞,
but rather the limit of the power distribution asT →∞.

Next, we assume that we are in each of the three cases, and
then develop conditions on the total available powerP0:

Case 1 (y(x) has the form of y1(x)): The power of the
delta function atx = a will be

y(a)− ys(a) = − 1
λ

[
r(a)− r′(a)

h(a)( 1
h )′(a)

]
= − 1

λ
l(a)g(a),

and the power of the delta function atx = b will be

ys(b)− y(b) =
1

h(b)

[
− 1

λ

r′(b)
( 1

h )′(b)
− ηB

]
.

In the interval(a, b), the power distribution will be given by

p(x) = −y′s(x)
h(x)

=
1
λ

l′(x)
h(x)

.

Requiring that the total power isP0 readily gives thatλ =
− r(b)

P0+
ηB

h(b)
. The power allocated to the delta function atx =

b must be positive, and this readily gives thatP0
ηB > g(b).

Combining our findings, we arrive at (22).
Case 2 (y(x) has the form of y2(x)): In this case, the

distribution of power consists of a delta function atx = a with
amplitude− 1

λ l(a)g(a), and a finite densityp(x) = 1
λ

l′(x)
h(x) in

the interval(a, xc), where thecutoff point xc is given by the
equation

ys(xc) = y(b) ⇒ − 1
λ

l(xc) = ηB. (42)

Requiring the total power to beP0 givesλ = − r(xc)

P0+
ηB

h(xc)
and,

combining this with (42), we have thatxc is given by (32).
As g(x) is increasing (by Lemma 1(iv)), and we need to have
a ≤ xc ≤ b, we must haveg(a) ≤ P0

ηB ≤ g(b). Combining our
findings, we arrive at (20).

Case 3 (y(x) has the form of y3(x)): Working as in the
first two cases, we readily arrive atpMAC(x) = P0δ(x− a).

D. Sketch of Proof for Theorem 6

The proof is very similar to the proof of Theorem 5, and
uses duality, i.e., Theorem 4, but together with thecontinuous
version of the MAC results, i.e., Theorem 3, instead of the
discreteversion, i.e., Theorem 2. The continuous version of
(28), with π(i) = i, can be easily seen to be:

pBC(x) = pMAC(x)
ηB + h(x)

∫ x−

a
pBC(t) dt

ηB +
∫ b

x+ h(t)pMAC(t) dt
. (43)

To verify equations (31), (32), and (33), we plug each of them
in (43) together with, respectively, (20), (21), (22) and in all
cases arrive at an identity.
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