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Abstract

EXIT charts are used to provide a bound for the per-
formance of the Sum-Min algorithm for decoding of
Low-Density Parity-Check codes. We present an op-
timal non-linear post-processing function of the check
node outputs that achieves this bound. This function
can be well approximated by a linear function, resulting
in a simple normalization of the check node outputs, as
proposed in [1] and [2]. A systematic approach for de-
termining the optimal normalization factor using EXIT
charts is presented.

1. INTRODUCTION

Decoding of Low-Density Parity-Check (LDPC) [3]
codes using the Sum-Product Algorithm (SPA) can be
too complex for hardware implementation. The algo-
rithm can be simplified by approximating the calcula-
tion at the check nodes by a simple minimum operation,
resulting in the well-known Sum-Min algorithm (SMA).
While the Sum-Min algorithm is less complex to im-
plement, it requires approximately additional 0.5dB of
signal-to-noise ratio Eb/N0 to achieve the same bit er-
ror rate when used for transmission over an additive
white Gaussian noise (AWGN) channel with binary in-
put.

It was observed in [1] and [2] that the performance
of the Sum-Min algorithm can be improved by linear

post-processing of the messages emitted by the check
nodes. Simulations show that linear post-processing,
i.e., a simple normalization of the messages, is suffi-
cient to achieve good performance. The optimal nor-
malization factor was determined in [2] using density
evolution to search for the factor that yields the lowest
threshold.

This paper uses Extrinsic-Information Transfer
(EXIT) charts to calculate a lower bound on the thresh-
old that can be achieved using the Sum-Min algo-
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rithm with any post-processing of the check node mes-
sages. We derive a function for optimal non-linear post-

processing. It is obtained by deriving the a-posteriori
Log-Likelihood Ratio (LLR) given the message emitted
by a check node. Simulations show that a linear ap-
proximation of this function leads to a threshold close
to the bound, sheding new light on the results in [1]
and [2]. Finally, we present a systematic way to find
the optimal linear approximation using EXIT charts
which are less computationaly complex than density
evolution.

It is interesting to note the complementary in-
sights obtained by analysing the Sum-Min algorithm
with density evolution and with EXIT charts. Density
evolution gives an exact measure of the performance
achieved by the algorithm but gives no indication that
this performance can be improved by post-processing
the messages. EXIT charts, on the other hand, give
a bound on the performance achievable by any post-
processing. This bound can be approached or attained
by seeking for the optimal post-processing function us-
ing density evolution (as in [1] and [2]) or EXIT charts
(as in this paper).

2. EXIT CHARTS

We use EXIT charts [4] to compare the performance
of the Sum-Product algorithm and the Sum-Min algo-
rithm. This implies that all results assume a Gaussian
distribution and independence of the messages passed
in the factor graph. Without loss of generality, our
simulations are for a regular LDPC code with variable
degree dv , check node degree dc and rate 0.5. The re-
sults obtained apply just as well to irregular codes.

The EXIT function of the variable nodes remains
unchanged, since the operations at the variable nodes
are the same for both algorithms. For the check nodes,
we simulated the transfer function for both algorithms
and found the difference to be on the order of 5× 10−3

bits at most, i.e., very small.



Unlike the Sum-Product algorithm, in the Sum-Min
algorithm the messages emitted by the check nodes are
not true log-likelihood ratios as assumed in the compu-
tation performed at the variable nodes. Therefore, the
decoding trajectory of the Sum-Min decoder in Figure 1
is below the prediction of the EXIT charts. In a sense,
the EXIT chart shows that there is a strong correlation
between the message emitted by the check nodes and
the transmitted bits, but the algorithm fails to reap the
full benefits of this strong correlation. This indicates
that we need to apply a function to the output of the
check nodes that preserves the strong correlation but
transforms the message into the log-likelihood domain,
so that the subsequent operations at the variable nodes
can reap the full benefit of the strong correlation. This
is what we call post-processing.
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Figure 1: EXIT chart and decoding trajectory for SMA
and Eb/N0 = 1.72dB (dv = 3, dc = 6).

The simulated EXIT functions give us a bound
for the performance of the Sum-Min algorithm. This
bound can be achieved if optimal post-processing is ap-
plied so that the variable node decoder receives true
log-likelihood ratios from the check nodes. The bounds
obtained for ensembles of LPDC codes are shown in the
table below and compared with the thresholds for the
Sum-Product algorithm.

(dv , dc) (3,6) (4,8) (5,10)
SPA threshold [dB] 1.13 1.57 2.02
SMA bound [dB] 1.19 1.65 2.11

These results show that the bounds for the Sum-
Min algorithm are very close to the thresholds for the

Sum-Product algorithm. This motivates us to post-
process the messages generated by the Sum-Min algo-
rithm in order to improve its performance.

3. POSTPROCESSING OF CHECK NODE

MESSAGES

In order to get true log-likelihood ratios from the
minimum computed in the check nodes of the Sum-Min
algorithm, we have to calculate

Lmn = log
p

(

Xn = 0|LSMA
mn

)

p (Xn = 1|LSMA
mn )

, (1)

where LSMA
mn is the original messages from check node m

to variable node n using the Sum-Min approximation
and Lmn is the message after postprocessing. We write
this post-processing function as

Lmn = f
(

LSMA
mn ; dc, extrinsic channel parameters

)

,
(2)

where dc is the check node degree.
Using the expression for the probability density

function of the check node output derived in [5], we
can determine the general expression for the optimal
post-processing function. If ζ = LSMA

mn is the message
emitted by the check node of the Sum-Min algorithm,
then the true log-likelihood ratio is

Lmn = f(ζ, dc, σ) = log
Ψ+(ζ, dc, σ)

Ψ−(ζ, dc, σ)
(3)

where

Ψ+(ζ, dc, σ) = [p(ζ) + p(−ζ)] [φ+(ζ) + φ−(ζ)]dc−2

+ [p(ζ) − p(−ζ)] [φ+(ζ) − φ−(ζ)]dc−2

Ψ−(ζ, dc, σ) = [p(ζ) + p(−ζ)] [φ+(ζ) + φ−(ζ)]
dc−2

− [p(ζ) − p(−ζ)] [φ+(ζ) − φ−(ζ)]
dc−2

,

p(ζ) is the probability density function of the messages
at the inputs of the check nodes and φ+(ζ) and φ−(ζ)
are defined as

φ+(ζ) =

∫ +∞

+|ζ|

p(y)dy

φ−(ζ) =

∫ −|ζ|

−∞

p(y)dy.

Under the Gaussian assumption, p(ζ) is given by

p(ζ) =
1√
2πσ

· e−
(ζ−µ)2

σ2 ,



where σ and µ depend only IAc as1

σ = J−1(IAc) and µ =
σ2

2

and the integrals can be written as

φ+(ζ) =
1

2
erfc

( |ζ| − µ√
2σ

)

φ−(ζ) =
1

2
erfc

( |ζ| + µ√
2σ

)

.

Since the a-priori information IAc is a bijective func-
tion of σ, we can also express the log-likelihood in func-
tion of ζ, dc and IAc, relating it clearly to the trajectory
in the EXIT chart. For dc = 6, Figure 2 and Figure 3
show this function for IAc = 0.5 and IAc = 0.9 respec-
tively. For high values of IAc this function becomes a
linear function with slope 1, i.e. the Sum-Min algo-
rithm approximation delivers true LLR values for high
a-priori information.
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Figure 2: Postprocessing function L = f(LSMA; dc =
6, IAc = 0.5) (solid) and linear approximation (dashed).

It would be too complex to implement this pa-
rameterized function. Remember that the aim of the
Sum-Min algorithm approximation is to simplify the
decoder. However, we can approximate f(·) by a lin-
ear function which results in a normalization of the

1The J-function is defined as

J(σ) = 1 −

R ∞
−∞

e
−

(θ−σ2/2)2

2σ2
√

2πσ
log2

`

1 + e−θ
´

dθ.
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Figure 3: Postprocessing function L = f(LSMA; dc =
6, IAc = 0.9) (solid) and linear approximation (dashed).

check node outputs. The approximation of f(·) has
to be done considering the probability density function
p(LSMA; IAc) of LSMA parameterized by IAc.

We define α(dc, IAc) as the normalization factor
which minimizes the expected squared error as

α(dc, IAc) = argmin
α′

∫ ∞

−∞

[

f(LSMA; dc, IAc) −

1

α′
LSMA

]2

· p(LSMA; IAc)dLSMA.

Using this linear approximation, Equation 2 becomes

Lmn =
LSMA

mn

α(dc, IAc)
. (4)

The approximation of the nonlinear function is
shown as a dashed line in Figure 2 and Figure 3.

4. OPTIMAL NORMALIZATION FACTOR

Our derivation so far requires the normalization fac-
tor to be adapted throughout the iteration process as
a function of the a-priori mutual information between
the check node inputs and the transmitted code dig-
its. This may be inconvenient for practical implemen-
tations.

If, on the other hand, we require a fixed normal-
ization factor for post-processing at the check nodes
during the whole decoding process, there are several
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Figure 4: EXIT chart and decoding trajectory for
Sum-Min algorithm with normalization α = 1.25 and
Eb/N0 = 1.72dB (dv = 3, dc = 6).

approaches to finding the optimal value of this normal-
ization factor. One approach is to optimize α for the
first iteration as in [1]2. This attempt does not provide
the best value, as shown in [2], where α was determined
by performing density evolution.

Our approach is to find the most critical point in
the EXIT chart, i.e. the point where the gap between
the extrinsic information transfer functions is narrow-
est and goes to zero for decreasing SNR. For the exam-
ple of a regular LDPC code with dv = 3 and dc = 6,
we find that the EXIT functions have their narrowest
gap at IAc = 0.75. In the context of our computation,
we obtain α = 1.25. This is the same value as found
with density evolution.

Using the optimal normalization factor for this
code, we obtain a decoding trajectory that complies
with the EXIT chart prediction as shown in Figure 4.

5. CONCLUSION

We used EXIT charts to analyze the performance
of the SMA decoder. This analysis showed that SMA
decoding can get very close to SPA decoding if the mes-
sages from check nodes to variable nodes are postpro-
cessed to get true LLR values. We derived an analyti-
cal expression for the optimal nonlinear postprocessing

2We note that the authors defined α = E(|LSMA|)
E(|LSPA|) heuristi-

cally, which yields similar results.

function. We showed that this function can be lin-
early approximated and that further simplification can
be done, by using a constant approximation indepen-
dent of the channel parameter and iteration. Finally,
we presented a systematic approach to determine this
optimal linear approximation.

References

[1] Jinghu Chen and Marc P. C. Fossorier, “Near op-
timum universal belief propagation based decoding
of low-density parity check codes,” IEEE Transac-

tions on Communications, vol. 50, no. 3, pp. 406–
414, March 2002.

[2] Jinghu Chen and Marc P. C. Fossorier, “Density
evolution for two improved BP-based decoding al-
gorithms of LDPC codes,” IEEE Communications

Letters, vol. 6, no. 5, pp. 208–210, May 2002.

[3] R.G. Gallager, “Low density parity check codes,”
IRE Transactions on Information Theory, vol. IT-
8, pp. 21–28, Jan 1962.

[4] A. Ashikhmin, G. Kramer, and Stephan ten Brink,
“Extrinsic information transfer functions: model
and erasure channel properties,” To appear in IEEE
Transactions on Information Theory, 2004.

[5] X. Wei and A.N. Akansu, “Density evolution for
low-density parity-check codes under max-log-map
decoding,” Electronics Letters, vol. 37, no. 18, pp.
1125–1126, 2001.


