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Abstract— We study a family of polar codes whose frozen set
is such that it discards the bit channels for which the mutual
information falls below a certain (fixed) threshold. We show that
if the threshold, which might depend on the code length, is
bounded appropriately, a coding theorem can be proved for the
underlying polar code. We also give accurate closed-form upper
and lower bounds to the minimum distance of the resulting code
when the design channel is the binary erasure channel.

I. INTRODUCTION

Channel polarization, introduced by Arıkan [1], is a phe-
nomenon by which, given a binary-input discrete memoryless
channel, virtual channels between the bits at the input of a
linear encoder and the channel output sequence are created,
such that the mutual information in each of these channels
converges to either zero or one as the code length tends to
infinity; the proportion of channels with mutual information
close to one converges to the original channel’s mutual in-
formation. These virtual channels are created by recursively
applying channel combining and splitting steps.

Polar codes of rate R = K
N

are linear codes whose generator
matrix is such that its rows induce the K virtual channels with
highest mutual information among all N possible channels.
The scheme behaves as if uncoded bits were sent through
these channels. This construction, together with polarization,
explicitly gives a code of rate close to the mutual information
of the channel with vanishing error probability.

We propose a different construction of polar codes. Instead
of choosing the best K virtual channels, we choose all chan-
nels whose mutual information is above a certain threshold
which might depend on the code length. This new construc-
tion is shown to preserve the capacity-achieving property of
Arıkan’s original construction as long as the threshold function
is bounded appropriately. This construction induces accurate
closed-form upper and lower bounds to the minimum distance
of the resulting codes when the design channel is the binary
erasure channel (BEC). Our results sharpen existing bounds
in the literature on the minimum distance of polar codes [2].

The paper is organized as follows. Notation and prelimi-
naries are given in Section II. Fixed-threshold polar codes are
discussed in Section III. Proofs of our main results can be
found in Section IV.
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II. NOTATION AND PRELIMINARIES

In this section, we introduce our notation. We also state
some relevant results in the literature that are needed. Consider
a binary discrete memoryless channel (B-DMC) W : {0, 1} →
Y with transition probability W (y|x), where Y is the output
alphabet. The channel input-output mutual information with
equiprobable inputs is denoted by I(W ) and the corresponding
Bhattacharyya parameter is denoted by Z(W ). Let N be the
channel block length and define x = (x1, . . . , xN ) and y =
(y1, . . . , yN ) to be the length-N input and output sequences,
respectively. The vector channel from x to y is defined as
WN (y|x). Consider the matrix

G2 =

[

1 0
1 1

]

, (1)

and denote by GN = G⊗n
2 the N ×N matrix, corresponding

to the Kronecker product by itself n = log2 N times.
The information bits are denoted by u = (u1, . . . , uN ), with

ui ∈ {0, 1} for i = 1, . . . , N . Then, we define WN (y|u) =
WN (y|uGN ) as the vector channel induced from the infor-
mation bits when applying the linear transformation GN . This
step is commonly termed channel combining. Channel splitting
is a procedure that generates N binary-input channels out of
WN (y|u) assuming a successive decoder. More precisely, the
i-th channel, for i = 1, . . . , N , is generated as follows

W
(i)
N (y, u1, . . . , ui−1|ui) =

∑

ui+1,...,uN

1

2N−i
WN (y|u) (2)

and assumes that the bits u1, . . . , ui−1 are known. Similarly,
we denote the Bhattacharyya parameter of the i-th channel, for

i = 1, . . . , N , as Z
(i)
N = Z

(

W
(i)
N (y, u1, . . . , ui−1|ui)

)

. We let

ZN denote the random variable corresponding to Z
(i)
N . For

future use, we define the channel inverse labeling functions
bj : {1, . . . , N} → {0, 1} for j = 1, . . . , n, such that bj(i)
returns the j-th bit in the binary label of channel i (natural
labeling is assumed), for j = 1, . . . , n and i = 1, . . . , N .

Lemma 1 (Channel Polarization [1]): For any B-DMC W ,

the channels {W (i)
N } for i = 1, . . . , N have the property that

lim
N→∞

∣
∣
∣i ∈ {1, . . . , N} : I

(

W
(i)
N

)

∈ (1− δ, 1]
∣
∣
∣

N
= I(W ),

lim
N→∞

∣
∣
∣i ∈ {1, . . . , N} : I

(

W
(i)
N

)

∈ [0, δ)
∣
∣
∣

N
= 1− I(W ).

(3)



In words, Lemma 1 implies that as N → ∞ the mutual

information of the channels W
(i)
N for i = 1, . . . , N tends

to either one or zero, and that the fraction of channels with
mutual information close to one is in the limit I(W ). In terms
of convergence rate, we have the following.

Lemma 2 ([3]): For any B-DMC W and constant 0 < β <
1
2 , we have

lim
N→∞

Pr
(

ZN ≤ 2−Nβ
)

= I(W ). (4)

The following is a corollary of [4, Th. 3].
Lemma 3: For any B-DMC W and constant 0 < β < 1

2 ,
we have

lim
N→∞

Pr
(

ZN < 1− 2−Nβ
)

= I(W ). (5)

A. Polar Codes

In order to construct a polar code of rate R = K
N

, exactly K
rows of G must be selected. Different methods for choosing
these rows yield different codes. In particular, Arıkan’s original
construction, first fixes the rate R, and then selects the rows of
G whose indices give highest I

(

W
(i)
N

)

over all i = 1, . . . , N .
Alternatively, polar codes can be defined through the set of

discarded rows. This is called the frozen set F ; its complement
is denoted by Fc. If the rate is fixed, the cardinality of the
frozen set is obviously |F| = N −K and the frozen set is

F =
{

i = 1, . . . , N | I
(

W
(i)
N

)

< θN
}

(6)

where θN is the mutual information threshold that makes
|F| = N − K. Arıkan’s threshold function is difficult to
characterize analytically and even to compute numerically.
Fig. 1 illustrates the evolution of the threshold of Arıkan’s
construction for R = 0.3, 0.4 in a BEC with I(W ) = 1

2 .
As shown in [2, Lemma 6.2], the minimum distance of polar

codes can be expressed as a function of the frozen set. Let
wH (b1, . . . , bn) denote the function that outputs the Hamming
weight of bits b1, . . . , bn.

Lemma 4 ([2]): For any choice of frozen set F , the mini-
mum distance dmin of polar codes is given by

dmin = min
i∈Fc

2wH(b1(i),...,bn(i)). (7)

III. FIXED-THRESHOLD CONSTRUCTION

We propose a different method for constructing polar codes.
Arıkan’s original codes, have a fixed rate, and the frozen set
is determined by all sub-channels with mutual information
smaller than a certain threshold, such that |F| = N − K
(see (6)). In the proposed construction, a mutual information
threshold function θN is fixed, and the frozen set is given as

F =
{

i = 1, . . . , N | I
(

W
(i)
N

)

< θN
}

. (8)

The threshold function θN considered here is a closed-form
function of N , thus easily computable. As a result, the number
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Fig. 1. Thresholds of Arıkan’s fixed-rate construction for R = 0.3, 0.4 and
fixed-threshold polar codes with threshold θN over the BEC with I(W ) = 1

2
.

of channels in the frozen set is in general not fixed by the rate,
and hence, the rate itself depends on N . Fig. 1 also shows the

threshold functions θN = 1− 2−Nβ

for β = 2
5 ,

1
4 .

A. Coding Theorem

For fixed-threshold polar codes, the rate R of the code is
in general a function of N . In order for these codes to have a
valid coding theorem, the threshold function θN must be such
that, as N grows, the rate R converges to I(W ) and the error
probability Pe → 0. We first show the conditions under which
R converges to I(W ).

Lemma 5 (Rate convergence): Consider a B-DMC W , and
a fixed-threshold polar code of length N and threshold func-
tion θN . Let RN denote the rate of the code. If there exists
an N0 such that for N > N0 such that the threshold function
satisfies the bounds

α12
−Nβ1 ≤ θN ≤ 1− α22

−Nβ2
, (9)

where αm > 0, 0 < βm < 1
2 , m = 1, 2, then

lim
N→∞

RN = I(W ). (10)

Lemma 5 shows that asymptotically, any threshold meeting
the bounds in (9) is such that RN → I(W ). In particular, any
constant threshold θN ∈ (0, 1) will result in RN → I(W ).
Fig. 2 illustrates the results of Lemma 5. We can see that the
speed of convergence depends on the threshold θN .

It is implicit in the figure that some threshold functions that
fulfill the bounds in Lemma 5 approach the mutual information
from above, i.e., RN = I(W )+δN for some δN > 0 such that
δN → 0. By the converse to the channel coding theorem [5],
such codes will have an error probability bounded away from
zero. The following result characterizes the set of threshold
functions that yield vanishing error probability.
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Fig. 2. Rate convergence for different threshold functions θN over a BEC
with I(W ) = 1

2
.

Theorem 1 (Coding Theorem): Consider a B-DMC W , and
a fixed-threshold polar code of length N and threshold func-
tion θN . Let Pe(N, θN ) denote the error probability of this
code. Let γ1, γ2 > 0, β1 > 2, 0 < β2 < 1

2 be fixed. If there
exists an N0 such that for N > N0, the threshold function is
such that

1− γ1N
−β1 ≤ θN ≤ 1− γ22

−Nβ2
. (11)

then,

lim
N→∞

Pe(N, θN ) = 0. (12)

Theorem 1 shows that as N → ∞, thresholds close to 1 will
yield polar codes for which both the rate converges to I(W )
and the probability of error vanishes; this rules out constant-
threshold codes.

B. Minimum Distance

In this section, we give closed-form upper and lower bounds
to the minimum distance of fixed-threshold polar codes when
the design channel is the BEC. As the results will show, the
bounds are very easy to compute and accurately characterize
the minimum distance. BEC designs perform well in mul-
tiple channels, including the binary-symmetric channel and
the additive white Gaussian noise channel (AWGN) [6]; the
performance of BEC codes over the latter channel is shown
to be very close to that of AWGN-tailored polar codes. Our
bounds, stated in Theorem 2, follow after the following results,
the first of which being an extension of [3, Lemma 1].

Lemma 6: Let A : R → R : x '→ 2x − x2 and B : R →
R : x '→ x2. Suppose a sequence of numbers x0, x1, . . . , xn

is defined by specifying x0 : 0 ≤ x0 ≤ 1 and the recursion
xi+1 = fi(xi) with fi ∈ {A,B}. Suppose |{0 ≤ i ≤ n − 1 :
fi = A}| = k and |{0 ≤ i ≤ n− 1 : fi = B}| = n− k. Then,

xn ≤ B(n−k)
(

A(k)(x0)
)

, (13)

where A(k) denotes the application of function A k times.

Proof: Observe that both A(x) and B(x) are monoton-
ically increasing functions over x ∈ [0, 1]. We first have that

A
(

B(x)
)

≤ B
(

A(x)
)

. (14)

The upper bound in (13) corresponds to choosing

f0 = . . . = fk−1 = A,

fk = . . . = fn−1 = B.

Suppose {fi} is not chosen as above. Then, there exists j ∈
{1, . . . , n−1} for which fj−1 = B and fj = A. According to
Eq. (14), we can always achieve a larger value by swapping
fj and fj−1.

Lemma 7: Consider the N channels W
(i)
N for i = 1, . . . , N

resulting from n = logN steps of channel combining
and splitting with matrix G2 over a BEC with mutual in-
formation I(W ). Consider the binary label of each chan-
nel

(

b1(i), . . . , bn(i)
)

, its corresponding Hamming weight
wH

(

b1(i), . . . , bn(i)
)

, and define

Sk =
{

i = 1, . . . , N |wH

(

b1(i), . . . , bn(i)
)

= k
}

(15)

to be the set of channel indices such that the Hamming weight
of its binary label is equal to k for i = 1, . . . , N and k =
1, . . . , n. Define

i"k ! argmax
i∈Sk

I
(

W
(i)
N

)

. (16)

Then,
(

b1(i
"
k), . . . , bn(i

"
k)
)

=
(

1, . . . , 1
︸ ︷︷ ︸

k

, 0, . . . , 0
︸ ︷︷ ︸

n−k

)

. (17)

In words, the above result states that for a fixed Hamming
weight k of the binary label of the channel indexi = 1, . . . , N ,
placing the k ones in the most significant bit positions yields
the maximum mutual information over all such channels.

Proof: We notice that A(x) = 2x − x2 and B(x) = x2

are the recursive formulas to calculate mutual information of
the bit channels for a BEC of mutual information I(W ). Then,
for i ∈ Sk Lemma 6 states that

I
(

W
(i)
N

)

≤ B(n−k)
(

A(k)
(

I(W )
)
)

. (18)

and that channel i"k achieves the bound (18) with equality.

Now, assume the minimum distance dmin is such that
dmin = 2k0 . Then, from the definition of the frozen set in
(8) and Lemma 4 k0 must be such that

I
(

W
(i"k0−1)

N

)

< θN ≤ I
(

W
(i"k0

)

N

)

. (19)

Note that, for a fixed threshold θN , k0 is the minimum (resp.
maximum) integer solution of the upper bound (resp. lower
bound) in (19).

Theorem 2: Consider a BEC with mutual information
I(W ) = 1 − ε. The minimum distance dmin = 2k0 of fixed-
threshold polar codes of length N and threshold θN is such
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that k0 can be bounded as

k0 ≤
⌈

log2
(

n− log2(c1c2)
)

− c0
⌉

, (20)

k0 ≥
⌊

log2
(

n− log2(c1)
)

− c0
⌋

, (21)

where c0 = log2 {− log2(ε)} , c1 = − ln θN , c2 = − ε
ln(1−ε) .

As opposed to the original polar codes [1], where the
minimum distance can only be computed once the frozen
set is determined, the bounds given in Theorem 2 are given
as closed-form expressions and are very simple to calculate.
In Fig. 3 we show the minimum distance bounds of fixed-
threshold polar codes with threshold function θN = 1 −
1
N
2−Nβ

with β = 1
5 in a BEC channel with I(W ) = 7

8 ,
1
2

and 1
8 . The dotted lines correspond to the actual minimum

distance. Crosses (resp. circles) correspond to points where
the upper (resp. lower) bound gives the actual dmin of the
code. As we can see from the figure, the bounds are tight in
the sense that either the upper or lower bound gives the actual
dmin of the code.

Fig. 4 compares the actual minimum distance of fixed-
threshold polar codes with that of Arıkan’s fixed-rate polar
codes. By checking the rate-convergence in Fig. 2, we observe
that for fixed-threshold polar-codes, the slower the conver-
gence to I(W ), the higher the minimum distance. We also
note that the regions where the minimum distances of fixed-
threshold and fixed-rate polar codes coincide, is the region
where their corresponding rates are close. In this case, both
constructions would give approximately the same code.

IV. PROOFS

A. Proof of Lemma 5

Consider first the upper bound in (9) and let θN = 1 −
α22−Nβ2

with 0 < β2 < 1
2 . For I

(

W
(i)
N

)

≥ θN , using [1, Eq.
(2)] and 1− x2 ≤ 2(1− x) gives

Z
(

W
(i)
N

)

≤
√
2α2 2

−2(nβ2−1)

. (22)
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Fig. 4. Minimum distance dmin for Arıkan’s fixed-rate polar codes with
R = 0.35, 0.49 and for fixed-threshold polar code with threshold function

θN = 1− 2−N
β
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5
for a BEC with I(W ) = 1
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.

There exists an N1 such that, for N > N1, we can find 0 <
β′ < 1

2 , that

√
2α2 2

−2(nβ2−1)

≤ 2−Nβ′

. (23)

The above implies that

Pr
(

I
(

W
(i)
N

)

≥ θN

)

≤ Pr
(

Z
(

W
(i)
N

)

≤ 2−Nβ′
)

. (24)

Similarly, for I
(

W
(i)
N

)

< θN , we use ln(1 + x) ≤ x and [1,
Eq. (1)] to show that

Z
(

W
(i)
N

)

>
α22−Nβ2

log2 e
. (25)

There exists an N2 such that for N > N2, we can find 0 <
β̃ < 1

2 , that

α22−Nβ2

log2 e
≥ 2−N β̃

, (26)

and hence

Pr
(

I
(

W
(i)
N

)

< θN

)

≤ Pr
(

Z
(

W
(i)
N

)

> 2−N β̃
)

. (27)

According to the fixed-threshold construction,

RN =

∣
∣
∣i ∈ {1, . . . , N} : I

(

W
(i)
N

)

∈ [θN , 1]
∣
∣
∣

N
. (28)

We also have that

RN +

∣
∣
∣i ∈ {1, . . . , N} : I

(

W
(i)
N

)

∈ [0, θN )
∣
∣
∣

N
= 1. (29)



Taking limits

lim
N→∞

RN = lim
N→∞

∣
∣
∣i ∈ {1, . . . , N} : I

(

W
(i)
N

)

∈ [θN , 1]
∣
∣
∣

N
(30)

≤ lim
N→∞

∣
∣
∣i ∈ {1, . . . , N} : Z

(

W
(i)
N

)

≤ 2−Nβ′
∣
∣
∣

N
(31)

= I(W ) (32)

where (30) follows from (24) and the last step follows from
Lemma 2. Similarly,

lim
N→∞

∣
∣
∣i ∈ {1, . . . , N} : I

(

W
(i)
N

)

∈ [0, θN )
∣
∣
∣

N
(33)

≤ lim
N→∞

∣
∣
∣i ∈ {1, . . . , N} : Z

(

W
(i)
N

)

> 2−N β̃
∣
∣
∣

N
(34)

= 1− I(W ). (35)

Therefore, we have that limN→∞ RN = I(W ) as desired.
Convergence of the lower bound is proved similarly invok-

ing Lemma 3. Given that both upper and lower bounds on θN
are such limN→∞ RN = I(W ), any threshold function that
for large enough N can be bounded as (9) will have that the
corresponding RN will converge to I(W ).

B. Proof of Theorem 1

First, we notice that for a given channel W and block length
N , the smaller θN , the higher the rate, and the larger the error
probability Pe(N, θN ). Therefore, we concentrate on the lower
bound and prove that for θN = 1− γ1N

−β1 ,β1 > 2 that

lim
N→∞

Pe(N, θN ) = 0. (36)

Using [1, Eq. (2)] and 1− x2 ≤ 2(1− x) get that

Z
(

W
(i)
N

)

≤
√

2γ1N
−

β1
2 . (37)

Thus,

Pe(N, θN ) ≤
∑

i∈Fc

Z
(

W
(i)
N

)

, (38)

≤ N max
i∈Fc

Z
(

W
(i)
N

)

, (39)

≤
√

2γ1N
1−

β1
2 , (40)

(41)

Since β1 > 2, we have that

lim
N→∞

√

2γ1N
1−

β1
2 = 0, (42)

and hence

lim
N→∞

Pe(N, θN ) = 0. (43)

C. Proof for Theorem 2

We prove the upper bound. Consider
(

b1(i
"
k), . . . , bn(i

"
k)
)

=
(

1, . . . , 1
︸ ︷︷ ︸

k

, 0, . . . , 0
︸ ︷︷ ︸

n−k

)

. (44)

To find dmin = 2k0 we need to find the smallest k such that

I
(

W
(i"k)
N

)

≥ θN . For the BEC, we have that

I
(

W
(i"k)
N

)

=
(

1− ε2
k
)2n−k

(45)

where we have defined ε = 1− I(W ). If we take logarithms
we have that k must be such that

2n−k ln
(

1− ε2
k
)

≥ ln θN . (46)

It can be shown that

ln
(

1− ε2
k
)

≥ c ε2
k

(47)

where c = ln(1−ε)
ε

, and that I
(

W
(i"k)
N

)

given in (45) non-
negative and increasing in k. This implies that the minimum
k that solves (46) is upper bounded by the minimum k that
solves

2n−kc ε2
k

≥ ln θN , (48)

which is in turn the same that solves

2k ≥
n− k

− log2 ε
+

log2 ξN
log2 ε

(49)

where ξN ! ln θN
c

. Further taking logarithms we have that

k ≥ log2(n− k − log2 ξN )− log2(− log2 ε). (50)

Observe that upper bounding the R.H.S. of (50) by log2(n−
log2 ξN ) − log2(− log2 ε) implies an upper bound to the
solution for k. Hence,

k" =
⌈

log2(n− log2 ξN )− log2(− log2 ε)
⌉

(51)

is an integer solution of (50), proving the upper bound. The
lower bound is proved similarly, using that ln(1 − x) ≤ −x
for x ≤ 0 to bound the L.H.S. of (47).
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