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The converse to the coding theorem teaches us that reliable communication is not possible
at rates above channel capacity. At rates below capacity, it is possible to achieve any positive
probability of error by applying block coding to the source output sequence. However, block
coding is not necessarily the only way to achieve reliable transmission. For example, if our source
is a Markov source whose entropy rate lies below the capacity of the channel, what reliability can be
achieved by transmitting the output of the source uncoded over the channel? Are certain Markov
sources better than others for uncoded transmission over noisy channels? Before we proceed to
seek an answer to these questions, I will start with a short story that is vaguely related to the
subject of this paper. The reader should be warned that the story is only partially true.

One sunny afternoon in early 1998, Jim Massey called his assistants into his office at the
ETH Zurich, where he had been busy for several days packing his belongings. They were to be
shipped to his new home in Copenhagen. His office had been a marvelous treasury of books, notes,
pipes and other paraphernalia. It was now mostly empty, but for a large cardboard box in its
middle. The box, we were told, contained all the books and notes he had decided to part with.
If we found anything in it that we wanted, we were encouraged to help ourselves. I took a few
books that I would probably never use. After digging deeper into the rubble, I was puzzled to find
a file containing typewritten notes. The pages were yellowing and many of the notes had faded
with time. The title, however, was clearly legible. It read: “Stochastic Signals and Information
Theory, by James L. Massey, 1963.” There were at least 200 pages, adding up to what was clearly
a nearly completed book. Excited by this unexpected find, I asked Jim why he had decided to
throw away this early masterpiece. In his parting lecture at the ETH, he had announced that he
intended to write a book in the coming years. What better way to start writing a book than to
take this one up where he had left it 35 years earlier? Jim sighed sadly and answered that the
notes were unusable because too much of the text had been erased by the strains of time and pipe
smoke. Figure 1 reproduces a paragraph out of Jim’s book.
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Figure 1: A paragraph out of Jim’s book
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A coding expert would deplore the fact that Jim did not apply block coding to the text of his
book when he wrote it. We could use the added redundancy to recover the missing text. But
is coding really necessary? Couldn’t we use the natural redundancy of the English language to
recover the text? Is written English a good code for transmission over the erasure channel of time
and pipe smoke? Would it have been preferable if Jim had written his book in German, French,
or Japanese?

Uncoded transmission is not the only motivation for considering the properties of Markov
sources relating to the transmission over noisy channels. In [1], the use of a modified arithmetic
encoder was considered as a joint source and channel encoder for transmission over noisy chan-
nels. This encoder is closely related to Han & Hoshi’s interval algorithm [2] for random number
generation. Taking this concept further, the output of a stationary source can be encoded into
a sequence whose joint probability distribution approaches that of a Markov source with any de-
sired parameters. How should these parameters be chosen if the resulting output sequence is to
be transmitted over a noisy channel?

The third and final motivation for considering the transmission of Markov source outputs
over noisy channels is that we hope to learn something new about convolutional encoders. A
convolutional encoder can be modeled as a Markov source, albeit a non-stationary one. Although
we will restrict ourselves to stationary Markov sources, our model can be made to approach the
model of a convolutional code, while remaining stationary.

In the next section, we will derive some information-theoretic measures that can be used
to analyze the transmission of stationary sources over noisy channels. In the following section,
an algorithm to estimate one of these measures in a simulation environment is used to obtain
experimental data on the transmission of Markov source outputs over noisy channels. In the
last section, the binary erasure channel is considered as a special case. For this channel, the
information-theoretic measures of interest can be derived analytically and bounded, providing a
partial explanation of the properties observed in our experiment.

1 Equivocation and Equivocation Rate

Let the input and output sequences of a noisy channel be designated as shown in Figure 2. How
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Figure 2: Uncoded Transmission of a Markov Source

are we to assess whether a given source is suitable for a given noisy channel? We choose to
assess sources based on the equivocation En, defined as the entropy of a block of N channel input
symbols given the corresponding N output symbols, i.e., Ey = H(X; ... Xn|Y1 ... YN). Some may
object that a better criterion for our assessment would be the probability of error of a maximum
likelihood decoder applied to the channel output sequence. We claim that the equivocation is a
better criterion, because it is related not only to the probability of error, but also to the expected
number of guesses of a list decoder. Figure 3 shows the region of possible equivocation — probability
of error points, bounded on one side by Fano’s inequality and on the other side by a bound given
in [3]. The figure implies that the equivocation tends to zero if and only if the probability of error
tends to zero.

We consider only discrete stationary sources and discrete memoryless channels without feed-
back. For those, we can write

En = HXy...Xn)+HY:.. Yy|X,...Xy)—HY;...YN)
= HX;...Xn)-HMW..Yn)+ HY1| X1 ... XN) + H(Ys| X, ... XNY1) + ...
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Figure 3: Fano’s inequality and its counterpart for a decimal alphabet

= H(X)...Xy)—H(Yi...Yy)+ NH(Y{|X}). (1)

A necessary and sufficient condition for a source to achieve arbitrarily reliable communication over

a noisy channel is for the equivocation Enx to vanish as N goes to infinity.

We define the normalized equivocation € x & +En and the equivocation rate € 2 iy E.

For the equivocation rate, we can develop (1) to obtain®

Eoo = Hoo(X) = I(X13Y1) + H(Y1) — Heo(Y). (2)

A necessary (but not suf‘ﬁciellt) condition for arbitrarily reliable transmission over a noisy channel
is for the equivocation rate £, to be equal to zero. Setting £, to zero yields

I(Xl;Yl)—Hoo(X):H(Yl)—Hoo(Y) (3)
Equation 3 has interesting implications:

e H,(X) is the information rate of the sequence at the input of the channel. It is equivalent
to the rate R, commonly used when coding is applied;

e the right-hand side of (3) must necessarily be positive. Therefore, (3) cannot be satisfied
when the left-hand side is negative, i.e., when Hy(X) = R > I(X1;Y1). In particular,
when Hy (X) = R > maxp, I(X;;Y1) = C, arbitrarily reliable communication can never be
achieved, which is in line with the converse to the coding theorem;

e when H,,(X) = R = C, then the source must have a capacity-achieving marginal distribu-
tion such that I(X;;Y;) = C. We obtain the condition H (Y1) = Heo(Y'), which is equivalent
to demanding that Y71,Y5, ... be a sequence of independent and identically distributed random
variables.

2 Measuring the Equivocation Rate

Equation 2 can be used to estimate the equivocation rate. Ho(X) is easy to determine when the
source model is known. When no model is known, it can be estimated using universal source coding.

L Hs (X) denotes the entropy rate of the sequence X1, Xa, ..., defined as Hoo(X) def lmy oo vH(X1 ... XnN).
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H(Y1) and I(X1;Y1) depend only on the marginal distribution of the source and are thus easy to
determine. The difficulty in estimating the equivocation rate lies in estimating Hoo(Y"). For Markov
sources, [4] suggests the use of a simplified forward-backward algorithm to estimate the entropy
rate at the output of the channel. The algorithm works by transmitting a source sequence over
the channel and computing the probability of the channel output sequence. When the sequence
length tends to inifinity, by the asymptotic equi-partition property, the negative logarithm of
its probability will tend towards the entropy rate with probability one. We implemented this
algorithm and used it to estimate the equivocation rate for various Markov sources and various
channels.

The Markov sources in our experiment were binary finite-memory unifilar sources. Their state
can be thought of as a binary u-tuple corresponding the last pu symbols emitted by the source,
where p is called the memory of the source. Every state has at most two transitions leading out of
it, corresponding to a zero or a one being emitted. The next state is constructed by left-shifting
the old state and adding the most recent output symbol to its right (as its least significant digit.)
Let T be the transition matrix of the Markov source, whose j-th column contains the vector of
output probabilities from the j-th state of the source. The stationary state distribution Pg of
the Markov source can be determined by solving the matrix equation Ps = T'Ps. The solution
is the right eigenvector of T' corresponding to the eigenvalue 1. In our experiment, we used only
Markov sources with doubly stochastic transition matrices, i.e., where the sum of the transition
probabilities entering any state is equal to one (the sum of the transition probabilities leaving a
state are equal to one by definition, as they form a conditional probability distribution.) It is easy
to see that for a doubly stochastic matrix, the all-one vector is a right eigenvector corresponding
to the eigenvalue 1. Therefore, the stationary state distribution Ps of a Markov source with a
doubly stochastic transition matrix is the uniform distribution, where Ps(s) = 1/2* for each state
s.

We identify our Markov sources with a “transition vector” ¢ = [tg, 1, ...,t2x_1] that specifies
the probability of emitting a zero in each state. The transition matrix 7" is fully determined by
the vector ¢. The condition that 7" be doubly stochastic can be translated in a condition for the
vector ¢ that

th=1—tyu-1,p ,fork=0...20"1 -1,

where the states are numbered so that the k-th state is the binary representation of the number
k. In other words, only the first half of the vector ¢ can be chosen at will. The second half
must be equal to one minus the first half. Figure 4 shows the Markov source for t = [.8, .4, .2, .6].
The entropy rate of a Markov source is computed by averaging the output entropies of the states,
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Figure 4: A Markov source with ¢t = [.8, .4, .2, .6]



weighted by their stationary probabilities. Since our stationary probability is uniform, the entropy
rate Hoo(X) of the source becomes

P
1
Hoo(X) = o > h(t;
=0

where h(.) is the binary entropy function. We call r = [h(to),. .., h(tau—1_1)] the rate vector of
the source.

We measured the equivocation rate for a great number of sources, transmitted over binary
symmetric and binary erasure channels. All the sources measured had entropy rate 1/2. Space
constraints prevent us from including the graphs of our measurements. The experimental obser-
vations resulting from our measurements can be summarized as follows:
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e for a four-state source, the rate vector being r = [rg, 1 — ro] to achieve an entropy rate of
1/2, the equivocation rate decreases steadily when ry approaches 0 or 1. The equivocation
is maximized for ro = 1/2;

e we simulated 2*-state sources where the components of the rate vector were uniformly dis-
tributed between 0 and 1, so that their average is 1/2. The equivocation for this type of
sources does not decrease visibly with growing memory u, beyond p = 2;

e the equivocation of 2#-state sources decreases drastically when the elements of the rate vector
are chosen close to 0 and 1, so that their average remains 1/2. For this type of sources, the
equivocation also decreases with growing memory pu.

The results of our experiment can be interpreted as follows: it appears that general Markov
sources with “randomly chosen” rate vectors are badly suited for transmission over noisy channels.
Indeed, the equivocation for such sources is not improved by an increase in the order of the source,
although the complexity of a maximum likelihood decoder increases exponentially with that order.
Markov sources suitable for transmission over noisy channels appear to be those that have many
“deterministic” states (states with rates equal or close to 0), compensated by many “random”
states (states with rates equal or close to 1) to keep the average rate equal to 1/2. Since a rate
1/2 convolutional encoder can be seen as a Markov source where every odd code digit is produced
by a random state and every even code digit is produced by a deterministic state, this means that
good Markov sources for transmission over noisy channels appear to have output statistics similar
to the output statistics of a convolutional encoder.

An experiment to model English, French and German text as Markov sources to determine
which language is more suitable for transmission over erasure channels has not been completed at
the time of writing. Readers are invited to place bets on their favorite language. If the paper is
accepted, I will try to complete the experiment by the time the final paper is due.

3 Block Equivocation for the Binary Erasure Channel

For the binary erasure channel with erasure probability §, there is an analytical expression for the
entropy rate at the output of the channel. Equation 1 simplifies to

Ev = H(Xi..Xn)-(1-O)VH(X:...XN) -
5(1 - ) NH(-X1)+ H(-Xo) + ...+ H(=XN)] -
(1 - N H(-X, X,) + H(ﬂXng) A+ HXn 1 XN)] -
;SN 21 =60)’[H(X1 X)) + H(X1 X3) + ...+ H(Xn_1 XN)] —
NN A= O)H (X)) + H(X2) + ...+ H(Xy)], (4)



where H(—X;) is taken to mean the entropy of the block X ... Xy with the i-th letter missing,
H(-X;X;) means the entropy of the block with the i-th and the j-th letter missing, etc.

We now wish to simplify (4) for the case when the source sequence X ... Xy is the output
of a finite-memory Markov source. The term H(X;...Xy) simplifies easily to H(X;...X,) +
(N — u)Hoo(X). For Markov sources whose marginal distribution is uniform, this simplifies to
-+ (N —pu)Hy (X). Since we are interested in the asymptotic behavior of the equivocation for large
block sizes, we can safely assume that N >> u. The difficulty lies in evaluating entropies of blocks
with gaps, i.e., symbols missing as in H(—=X7;XgXy). We can make two extreme assumptions:

1. after a gap of any length, we have lost all knowledge of the source state. Therefore, we need
to apply the marginal state distribution to the first u symbols following a gap.

2. after a gap of any length, we still have exact knowledge of the source state. Therefore, the
entropy of the symbols following the gap is the entropy rate H., of the source.

The truth lies between these two extremes: for short gaps, we still have some knowledge of the
source state following the gap, whereas for long gaps, we loose that knowledge for most sources.

Using these extreme assumptions, it is possible to obtain a lower and an upper bound on the
equivocation. This requires a lot of juggling with combinatorial problems and we have not been
able to solve it for the general case. For the special case of a binary erasure channel with § = 1/2,
the upper and lower bounds are

N(2# —1) + p — 2#H1 N(2#FE — 1) + p — 201 NH(X) pu
- TEs +Hoo(X) ST <EN S ———+55(1-Hx) (5)

The capacity of this channel is 1/2. Note that the lower bound is positive for H (X) > (2 —
1)/(2#*t1 — 1) which lies slightly below the capacity of the channel and only approaches capacity
as the memory p goes to infinity. In other words, it is not possible to achieve arbitrarily reliable
communications at rates up to capacity for this channel using any finite memory system, even if
the block length N is allowed to grow to infinity.

Neither the lower nor the upper bound in (5) are very satisfactory in terms of giving useful
indications for the performance of real sources: the lower bound is zero for most of the interesting
region and the upper bound is roughly half the block length times the rate. However, under-
standing how they were obtained gives us an insight as to why we observed what we did in our
experiment of the previous section. If a source is quick to approach its stationary distribution, its
performance will be closer to the lower bound, since it is fairer to assume that the state informa-
tion will be lost after a gap. If, however, a source is slow to approach its stationary distribution,
its performance will be closer to the upper bound, since it is fairer to assume that the state in-
formation is kept throughout a gap. Although intuition would have it otherwise, it appears to be
good for a source to “forget” its state quickly as it progresses through an erasure gap.
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