Why Turbo Codes cannot achieve Capacity
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Abstract: For the binary erasure channel with
erasure probability 1/2, it is shown that coding sys-
tems based on parallel concatenation can not achieve
arbitrarily reliable transmission with interleaver block
length going to infinity ot rates approaching capacity.
The same is shown for serial concatenation when the
rate of the inner code is smaller than 1. While this
effect was known from simulations, we show that it
is a simple consequence of the data processing theo-
rem. In addition, a lower bound for the rate loss with
regard to capacity is given for parallel and for serial
concatenation.
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1. Introduction

It has recently been observed (see, for example,
[1]) that the performance of iterative decoding of
serially concatenated codes is good only if the in-
ner code has rate one or more. While capacity-
achieving families of serially concatenated codes with
inner code rate at least 1 have been constructed, it
has not been possible to construct capacity-achieving
codes using parallel concatenation. This can be ex-
plained using an area property of extrinsic informa-
tion transfer (EXIT) charts [2]. We argue that this
is also a simple consequence of the data processing
theorem [3, Theorem 4.3.3]. We further quantify how
much rate is lost when finite-memory inner codes are
used for a binary erasure channel (BEC) with erasure
probability 1/2. Our approach is to bound the infor-
mation rate between the channel input blocks and
the channel output blocks as a function of the inner
code’s memory and rate for serial concatenation, and
as a function of one of the component code’s mem-
ory and rate for parallel concatenation. Our bound
thus applies to both a-posteriori probability (APP)
decoding and iterative (turbo) decoding.

2. Applying the Data Processing The-
orem

A serially concatenated coding system is illus-
trated in Figure 1 and a parallel concatenated coding

system is illustrated in Figure 2.
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Figure 1: Serially Concatenated Coding
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Figure 2: Parallel Concatenated Coding

The data processing theorem states in both cases
that .
IUf50F) < 1(x15Y), (1)

where U{ is used as a shorthand notation for U; ...Uk.

Let R = K/N be the overall rate of the coding sys-
tem. A necessary condition for arbitrarily reliable
communication in the asymptotic case for a fixed rate
R is that
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If we want the family of codes defined by our serial
or parallel concatenation of encoders with interleaver
size growing to infinity to be capacity-achieving, (2)
must hold for a rate R equal to the capacity C of the
channel.

For the special case of a binary erasure chan-
nel with erasure probability 1/2, we will show that
there exists an upper bound on I(UE; UE)/N which



is strictly less than the capacity of the channel for
parallel concatenation of any encoders and for serial
concatenation when the inner code is a finite-memory
convolutional code of rate R;, = M /N smaller than
1. Therefore, the condition (2) cannot be fulfilled for
R = C and these coding systems cannot approach
capacity for this channel.

3. Markov Model Analysis for Serial
Concatenation

We will start by treating the case of serial con-
catenation.

Let m be the memory (or maximum constraint
length) of the rate R;, = b/c inner convolutional
encoder. We assume binary convolutional encoders
throughout this paper. We define u = km/R;,. Let
us consider the entropy of a block of L output sym-
bols of the encoder when the initial state of the en-
coder is unknown. For this case, the following in-
equality holds

H(X{) < p+ (L = p)Rin. (3)

To understand why this inequality holds, consider a
feedforward systematic encoder: after observing the
first p symbols, we know the state of the encoder
and our uncertainty about the remaining L — y sym-
bols is our uncertainty about the input sequence. For
non-systematic encoders or recursive systematic en-
coders, the same inequality can be shown. In all
cases, if the initial state is known, H(X{) = LR;, <
w4+ (L — p)Rin, so (3) still holds.

Let the channel be a binary erasure channel with
erasure probability  and let FE; ... En be the era-
sure sequence of the channel, i.e., F; = 1 if the i-th
symbol is erased and E; = 0 if it isn’t. We can write

I(x(vY) = HEY) - HYYXT)

= HY|EY)+ H(E) -
H(EY|Y{Y) — Nh(9)
H(Y{MEY), (4)

where h(.) denotes the binary entropy function and
the last equation holds because H(E{) = Nh(J) and
H(EN|Y{N) = 0, since the channel output sequence
determines the erasure sequence. We can develop
H(YN|EN) to obtain

I(XY5 YY) = (1= )N H(XT) +

S1=ONTUHX)) + H(=X2) + ...+ H(-Xn)]

+62(1 =N [H(-X, X2) + H(-X1X3) + ...
+H(—|XN_1XN)]

+...

+6N72(1 - 6)[H(X1 X2) + H(X1X3) + ...
+H(XN_1XN)] +

SNTHL = 8)[H(X1) + H(X2) + ... H(XN)],

where the notation H(—-X;X;) is used to denote the
entropy of the block XV with the i-th and the j-th
symbol missing.

We now restrict our attention to the binary era-
sure channel with erasure probability § = 1/2. All
the factors 6'(1 — §)V~% in (5) simplify to 27V. The
first term in the sum can be upper bounded using
(3). The difficulty in bounding the remaining terms
lies in evaluating the entropies of blocks with gaps,
such as H(X{X). If i > p and N — j > p, we can
write

H(X(Y})

H(X}) + H(X;|X])
< H(X)+ H(X[))
< 2u+(N—j+i—-2u+1)R;,

where we have used (3) twice in the last step. From
this example, we learn that symbols that are at most
p positions from the beginning of the block or from
the end of a gap contribute 1 bit to the upper bound,
whereas symbols that are more than u positions away
from the beginning of the block and from the end of
a gap contribute R;, bits to the upper bound.

If we now write out (5) as a sum of conditional
entropies of single random variables, we obtain

N
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terms. Some of these terms, say A(N) in total, con-
tribute 1 bit to the expression in the sense described
above, while the remaining terms, say B(N) in total,
contribute R;, bits to the expression. For N = u, we
have A(N) = N2¥~! and B(N) = 0. The following
lemma, allows us to compute B(N) recursively:

Lemma 1
B(N +1)=2B(N) + 2V *#,
for N > p.

The recursive equation in the lemma results in the
equation

B(N) = (N — 2"+ ©)
and, since A(N) + B(N) = N2N-1,
A(N) = [u+ N(@2* - 1)]2N =1, (7)

We can now write

I(X{;Y{) < A(N)+RinB(N) =
N2t — N +p

= out1 + Rin

N—p
2u+1 -(8)

Equations 8 and 1 allow us to determine a lower
bound on the gap to capacity, which is specified as
follows
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Taking the limit, we obtain the following theorem:



Theorem 1 For the binary erasure channel with era-
sure probability 1/2 and capacity C = 1/2,
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(10)

In other words, it is not possible to achieve arbitrar-
ily reliable transmission with serially concatenated
encoders for rates above C — (1 — R;;,)27#71, even
using ideal interleavers and interleaver blocklengths
going to infinity.

The gap to capacity vanishes when an inner en-
coder of rate R;, = 1 is chosen, confirming the expe-
rience of many researchers who observed this effect
through simulation and convergence analysis of iter-
ative decoders. It is interesting to notice that the
gap also becomes smaller if the constraint length of
the inner encoder is increased. Unfortunately, this is
a “catch 22” situation: by increasing the constraint
length, the performance can approach capacity using
an ideal joint decoder; on the other hand, increas-
ing the constraint length will increase the complex-
ity of the decoder, which is precisely what iterative
decoding is designed to avoid. In addition, unless
the interleaver blocklength is chosen to be tremen-
dously large, cycles will appear in the associated fac-
tor graph when the constraint length of a constituent
encoder is increased and the convergence of iterative
decoding will be impaired as a result.

4. The Data Processing Theorem for
Parallel Concatenation

For parallel concatenation, the case represented
in Figure 2 is of one (possibly punctured) systematic
encoder with rate Ry = K/M in parallel with an-
other (possibly punctured) encoder with rate Ry =
K/(N — M). The overall rate of the encoder is
R = K/N. Without loss of generality, we assume
that R1 S 1.

For a BEC with erasure probability §, (4) holds.
For parallel concatenation, we can write

HYMEY) = HYMEY)+H(Y5 4 |ENYM)
HYM|EM) + H(Yiy 4| Efpya)
HYMEY) + (N = M)(1-4).

ININ

Now we can use the analysis we applied for the in-
ner encoder of serially concatenated codes to eval-
uate H(YM|EM). The only difference here is that
the output of the convolutional Encoder 1 has been
punctured to produce the codeword X{¥. Equa-
tion 3 assumed no puncturing of the convolutional
encoder outuput. Now if the encoder were a system-
atic direct-form encoder and no systematic bits had
been punctured, then it is clear that (3) still holds.

For a recursive systematic encoder with regular or
random puncturing, it is possible to show that (3)
also holds. It is not clear whether (3) holds for every
puncturing strategy and there could be “malevolent”
puncturing strategies where (3) does not hold. If we
assume regular or random puncturing, we can apply
the analysis used for the inner encoder for serially
concatenated coding to yield, for § = 1/2,

M-p
+ Ry TSR (11)

M2* — M+ p
HM|BY) < ——=

Therefore, we conclude that

M2HF — M + M-y N-M
N.yN
I(Xl 7}/1 )S 2N+1 +R1 2”“1‘1 2 )
(12)
which in turn implies that
1 K. K M-pl-—Ry
C- SIS0 > =L 20 (13)

Taking the limit, we obtain the following theorem
similar to the theorem we obtained for serially con-
catenated codes:

Theorem 2 For the binary erasure channel with era-
sure probability 1/2 and capacity C =1/2,
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In other words, it is not possible to achieve arbitrarily
reliable transmission with parallel concatenated en-
coders for rates above C — R/Ry (1— R1)27#~ 1, even
using ideal interleavers and interleaver blocklengths
going to infinity.

We see that the rate loss in the case of parallel con-
catenated encoders is positive for all B; < 1, but
since this is true by design, capacity can never be
achieved using parallel concatenation for this partic-
ular channel. Again, capacity can be approached by
increasing u, but we run into the “catch 22” situation
already described for serial concatenation: although
the encoder is improved in principle by increasing p,
the complexity and performance of iterative decod-
ing will suffer as a result.

5. Conclusion

We have shown that parallel concatenation and
serial concatenation with inner codes of rate R;, < 1
have an inherent rate loss that prevents then from
approaching capacity for the binary erasure channel
with erasure probability 1/2. We hope to generalize
this result to all binary erasure channels but we have
not been able to evaluate the combinatorial expres-
sions for ¢ # 1/2 until now.



The bounds obtained can also be used to de-
rive lower bounds on error probabilities for the en-
coders considered in the region of the gap below
capacity. These error bounds can be derived us-
ing Fano’s inequality. Furthermore, an alternative
approach to the one presented here for bounding
the mutual information consists in applying Viterbi’s
sphere-packing bound to obtain a lower bound on
the error probability, and deriving an upper bound
on the mutual information from this. This approach
is currently under investigation.
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