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Properties of the FT

Properties of the Fourier Transform

We recall that if we knew the Fourier coefficients for some
standard functions we were able to find the Fourier coefficients for
other functions related to the original by shifts, scalings,
differentiation, etc.. We now want to look at the corresponding
properties of the Fourier transform

See also EI Data book for a fairly complete list of properties.
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Properties of the FT

Linearity

The Fourier Transform is linear, just like the Laplace transform and
Fourier series. For a linear function the following result applies:

f (t) = af1(t) + bf2(t)
FT←→ aF1(ω) + bF2(ω) = F (ω) (1)

where a and b are scalar constants. This is really just saying that
integration is a linear operator - can check this result for yourself.
This means we can find the Fourier transform of complicated
functions by decomposing them as a sum of simpler functions
(f (t) = af1(t) + bf2(t)) and then summing the transforms of the
simpler functions (F (ω) = aF1(ω) + bF2(ω)).
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Properties of the FT

Time Scaling / Similarity Theorem
If f (t) has Fourier transform F (ω), what is the Fourier transform
of f (αt), the time-scaled version of f (t)?
Start with the definiton of the inverse FT:

f (t) =
1

2π

∫ ∞

−∞
F (ω)ejωtdω

Now simply substitute αt for t:

f (αt) =
1

2π

∫ ∞

−∞
F (ω)ejω(αt)dω

For α > 0, substitute ω′ = αω, hence dω = (1/α)dω′ and limits
are unchanged:

f (αt) =
1

2π

∫ ∞

−∞

{
1

α
F

(
ω′

α

)}
ejω

′tdω′
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Properties of the FT

Studying the form of this equation, we can see that it is precisely
in the form of an inverse Fourier transform, where the frequency

function is 1
α F
(

ω′

α

)
. Hence:

f (αt)
FT←→ 1

α F
(

ω
α

)
(2)

Thus, if we stretch in the time domain we contract in the
frequency domain and vice versa.

(This results also holds for α < 0 – you can check this is the case).
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Properties of the FT

Example
Recall the example of the rectangular pulse near the end of
Handout 3.
The formula for the pulse is given by

f (t) =

{
b for −T /2 < t < T /2
0 otherwise

and has Fourier transform:

bT sinc

(
ωT

2

)
Thus f (2t), which is a pulse of width T /2, will have FT

bT

2
sinc

(
ωT

4

)
thus producing a spectrum of double the width.
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Properties of the FT

Heisenberg-Gabor principle

We note that increasing α in the time-stretched function makes
f (αt) proportionally narrower.

However, as α increases, 1
α F
(

ω
α

)
becomes proportionally ‘wider’,

and vice versa:

In fact there is a general principle, the Heisenberg-Gabor principle,
which formalises this idea:

If any function f (t) has time duration T , and its
Fourier transform F (ω) has frequency bandwidth B,
then,

TB ≥ 1 (Time-Bandwidth product)

This can be proved quite elegantly, but we won’t go into the
details here.
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Properties of the FT

Time Shift

If f (t) has FT F (ω), what is the FT of f (t − t0) (time shifted by
+t0)? Again, start with the inverse FT formula:

f (t) =
1

2π

∫ ∞

−∞
F (ω)ejωtdω

Substitute t − t0 for t to give

f (t − t0) =
1

2π

∫ ∞

−∞
F (ω)ejω(t−t0)dω

=
1

2π

∫ ∞

−∞

{
F (ω)e−jωt0

}
ejωtdω

Again, the integral is itself in the form of an inverse FT, so that:

f (t − t0)
FT←→ F (ω)e−jωt0 (3)

You get to prove this for yourself - see examples paper 6/6
question 4.
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Properties of the FT

Frequency Shift or Modulation

If f (t) has Fourier transform F (ω), what function has Fourier
transform F (ω−ω0)?
This time, start with forward transform formula and substitute
ω−ω0 for ω:

F (ω−ω0) =
∫ ∞

−∞
f (t)e−j(ω−ω0)tdt =

∫ ∞

−∞
{f (t)ejω0t}e−jωtdt

so that

ejω0t f (t)
FT←→ F (ω−ω0) (4)

This result is fundamental to the modulation of signals (see
Communications course - 2nd half of Lent Paper 6).
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Properties of the FT

From the above modulation theorem we can deduce the FT of
f (t) cos(ω0t) in terms of the FT of f (t), since

f (t) cos(ω0t) =
1

2
{ejω0t f (t) + e−jω0t f (t)}

Hence, by linearity of the FT:

f (t) cos(ω0t)
FT←→ 1

2F (ω−ω0) +
1
2F (ω + ω0) (5)
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Properties of the FT

The main applications of this occur in mobile comms., radio and
television, where a harmonic carrier wave (cos ω0t in this case) is
multiplied (’modulated’) by an envelope (f (t) - containing the
broadcast signal).

The result is that the spectrum of the envelope is separated into
two parts, each half of its original strength, and shifted along the
ω axis by ±ω0.
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Properties of the FT

Differentiation wrt t

If f (t) has Fourier transform F (ω), what is the Fourier transform
of df

dt ?

f ′(t) =
d

dt

(
1

2π

∫ ∞

−∞
F (ω)ejωtdω

)
=

1

2π

∫ ∞

−∞
F (ω)

d

dt

{
ejωt

}
dω

=
1

2π

∫ ∞

−∞
{jωF (ω)} ejωtdω

which therefore tells us that

f ′(t)
FT←→ jωF (ω) (6)

Then, it is clear that repeated differentiation will simply bring
down further factors of (jω) – which leads to the result

f (n)(t)
FT←→ (jω)nF (ω) (7)

where f (n)(t) denotes the nth derivative of f (t)
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Properties of the FT

Duality
Suppose the Fourier transform of f (t) is g(ω). What is the
Fourier transform of g(t) (i.e. the same function g(ω) interpreted
as a function of time)?
Inverse FT gives:

f (t) =
1

2π

∫ ∞

−∞
g(ω)ejωtdω

Now, if we replace t in the above by −ω′ and rename ω with t ′

(ω is simply an integration variable), we have

f (−ω′) =
1

2π

∫ ∞

−∞
g(t ′)e−jω

′t ′dt ′

Rearranging this gives:

2πf (−ω′) =
∫ ∞

−∞
g(t ′)e−jω

′t ′dt ′

where the RHS is exactly the FT of g(t ′).
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Properties of the FT

This is a labour-saving result. If we have one Fourier transform
pair:

f (t)
FT←→ g(ω)

then we automatically have (without any integration) the dual
Fourier transform pair:

g(t)
FT←→ 2πf (−ω)

This can be difficult to understand at first read-through. See also
Example Sheet 6/6, Q4.
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Properties of the FT

Example:

Saw previously (and it is in the databook) that the Fourier
transform of the rectangular pulse centred on the origin (width T ,
height b) was

bT sinc(ωT /2).

Hence, by duality, the Fourier transform of bT sinc(tT /2) is a
rectangle pulse with height 2bπ and width T
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Properties of the FT

The Multiplication Theorem and Parseval’s Theorem

Consider two functions f1(t) and f2(t) with FTs F1(ω) and F2(ω)
and look at the integral of the product of f1 and f ∗2 :∫ ∞

−∞
f1(t)f

∗
2 (t)dt =

∫ ∞

−∞
f1(t)

{
1

2π

∫ ∞

−∞
F ∗2 (ω)e−jωtdω

}
dt

=
1

2π

∫ ∞

−∞
F ∗2 (ω)

{∫ ∞

−∞
f1(t)e

−jωtdt

}
dω

=
1

2π

∫ ∞

−∞
F1(ω)F ∗2 (ω)dω
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Properties of the FT

Putting f1(t) = f2(t) in the above leads to Parseval’s theorem

∫ ∞
−∞ |f (t)|

2dt = 1
2π

∫ ∞
−∞ |F (ω)|2dω (8)

Note the similarity between this and Parseval’s theorem for Fourier
series – here it is telling us that the amount of ‘energy’ in a system
can be found either by integrating in the time domain or
(equivalently) in the spectral domain.
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Properties of the FT

Parseval’s Theorem: Example

Here we find the energy of the sinc function, f (t) = sin(t)
t :

E =
∫ ∞

−∞

∣∣∣∣ sin(t)

t

∣∣∣∣2 dt

This is a hard integral directly in the time domain. However, we do
know the Fourier Transform of the sinc function as a rectangle
pulse:

F (ω) =

{
π, −1 < ω < +1

0, otherwise

Thus applying Parseval directly, we have:

E =
∫ ∞

−∞

∣∣∣∣ sin(t)

t

∣∣∣∣2 dt =
1

2π

∫ ∞

−∞
|F (ω)|2dω =

π2 × 2

2π
= π

A hard integral has thus been turned into a simple one over a
rectangle function in the frequency domain.
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Properties of the FT

We can apply a simple extension to work out questions like ‘How
much energy of the sinc function lies between frequencies ω1 and
ω2?’
The answer is then:

1

2π

∫ −ω1

−ω2

|F (ω)|2dω+
1

2π

∫ ω2

ω1

|F (ω)|2dω

= 2× 1

2π

∫ ω2

ω1

|F (ω)|2dω

[last equality applies only for real-valued signals].
Note that we have to include both the positive and negative
frequency ranges in the integral to get the solution here.
Note that we can express Parseval in terms of Hz frequency via the
substitution ω = 2πf , dω = 2πdf :

1

2π

∫ ∞

−∞
|F (ω)|2dω =

∫ ∞

−∞
|F (2πf )|2df

See now Examples Paper 6 qqs. 7-9
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Properties of the FT

Convolution

The convolution of two functions f (t) and g(t) is written as
h(t) = f ∗ g and defined by

h(t) = f ∗ g =
∫ ∞

−∞
f (τ)g(t − τ)dτ. (9)

The Convolution Theorem for Fourier transforms is as follows.
Suppose f (t) and g(t) have FTs F (ω) and G (ω). Then,

If h(t) = f ∗ g =⇒ H(ω) = F (ω)G (ω). (10)

cf. similar result for Laplace Transforms.
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Properties of the FT

We now show this. If h(t) = f ∗ g , taking the FT of the
convolution gives

H(ω) =
∫ ∞

t=−∞

{∫ ∞

τ=−∞
f (τ)g(t − τ) dτ

}
e−jωt dt. (11)

Change the order of integration and substitute u = t − τ, [ =⇒
dt = du and no change of limits]:

H(ω) =
∫ ∞

−∞
f (τ)

[∫ ∞

u=−∞
g(u)e−jω(u+τ)du

]
dτ

=

{∫ ∞

−∞
f (τ)e−jωτdτ

}{∫ ∞

−∞
g(u)e−jωudu

}
= F (ω)G (ω).
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Properties of the FT

Also, by duality (check this this for yourself):

2πf (t)g(t)
FT←→ F (ω) ∗ G (ω) (12)

[This result is actually quite difficult to show by duality - be careful
to use the definitions of F () and G () correctly].

Therefore we have the VERY IMPORTANT result that
convolution in one domain is equivalent to multiplication in the
other domain.
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Properties of the FT

Fourier Transforms and Linear Systems

As with Laplace transforms, the convolution result for Fourier
transforms can be used to analyse the effects of a system on an
input signal.

Have seen examples of convolution with Laplace transforms in
Linear Systems – we can do the same thing with Fourier
transforms.

Let h(t) be the response of a linear system to an impulse δ(t) (the
‘impulse response’).

23 / 95



Properties of the FT

Consider an input to this system of x(t). Since it is a linear system
the output, y(t), is the convolution x(t) ∗ h(t):

y(t) = x(t) ∗ h(t) =
∫ ∞

−∞
x(τ)h(t − τ)dτ. (13)

Therefore from the convolution theorem, the FT of the output is
the product of the FTs of x and h

Y (ω) = X (ω)H(ω) (14)

which is the analogue of the result from Laplace transforms – the
transfer function H(ω) is the FT of the impulse response and gives
the ratio of the FT of the output to the FT of the input.
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Properties of the FT

Fourier transform vs. Laplace transform

Compare the definitions:

F (ω) =
∫ +∞

−∞
f (t)e−jωt dt f (s) =

∫ +∞

0
f (t)e−st dt

Similarities: the integrand is the same if we set s = jω

Differences: the limits of integration are different (although note
that sometimes you will see a bilateral Laplace Transform defined
which has limits of (−∞,+∞)).

However, for a function f (t) that is zero for t < 0, we have that

F (ω) = f (jω)

and the two are equivalent (provided both integrals exist).
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Properties of the FT

In particular, for a causal linear time-invariant system, we can
calculate the frequency response in either way, as follows.

Suppose the system has impulse response h(t) with the following
properties:

h(t) = 0, for any t < 0 (causal system)

h(t)
LT↔ h(s) (Laplace transform)

h(t)
FT↔ H(ω) (Fourier transform)

Then the frequency response of the system can be calculated using
either Fourier transforms or Laplace transforms since

H(ω) = h(jω) = Frequency response

.
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Properties of the FT

Differential equations can often be solved using either Laplace
transforms or Fourier transforms

• Laplace is better suited to problems with boundary conditions
at t = 0,

• Fourier better suited to steady state analysis.

Note that standard 1A ac circuit theory is a simple application of
Fourier transforms and frequency response to a differential
equation system.

S. Godsill (2015), J. Lasenby (2009)
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