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• So far, we focused on the mod & demod blocks, and studied
two modulation schemes – PAM and QAM

• We also calculated the probability of symbol error for some of
these schemes

• Thus, for a fixed modulation scheme (e.g. QPSK), we can
estimate the probability that that a bit will be in error at the
output of the demodulator/detector
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Binary Channel
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• Every modulation scheme has an associated probability of bit
error, say p, that we can estimate theoretically or empirically

• For a fixed modulation scheme, the part of the system
enclosed by dashed lines can thus be considered an overall
binary channel with bit error probability p

3 / 16

Thus an equivalent representation of the communication system
for a fixed modulation scheme is
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If the modulation scheme has a bit error probability p:
• A 0 input is flipped by the binary channel to a 1 with

probability p
• A 1 input is flipped by the binary channel to a 0 with

probability p

It is important to remember that the binary channel
• Is not the actual physical channel in the communication system

• Is the overall channel assuming that the modulation scheme is
fixed and we have estimated its bit error probability p
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Binary Symmetric Channel (BSC)
As the binary channel flips each bit (0/1) with equal probability p,
it is called a Binary Symmetric Channel. Represented as:

X = 0
1 − p

Y = 0

p

X = 1
1 − p

Y = 1

p

P(Y = 0|X = 0) = 1 − p, P(Y = 1|X = 1) = 1 − p

P(Y = 1|X = 0) = p, P(Y = 0|X = 1) = p

p is the “crossover probability”; the channel is called BSC(p)
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Channel Coding

Thus the system is now:
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We will now study channel coding, which consists of

• Encoding: Adding redundancy to the source bits in a
controlled manner

• Decoding: Recovering the source bits from the noisy bits by
exploiting the redundancy
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Repetition Code
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The simplest channel code for the BSC is a (n, 1) repetition code:
• Encoding: Simply repeat each source bit n times (n is odd)
• Decoding: By “majority vote”. Declare 0 if greater than n/2

of the received bits are 0, otherwise decode 1

Example: (3, 1) Repetition Code

Source bits: 0 1 1 0 0 . . .

Encoded bits: 000 111 111 000 000 . . .

Received bits: 001 101 111 011 000 . . .

Decoded bits: 0 1 1 1 0 . . .
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Decoding Errors and Data Rate
Q: With a (3, 1) repetition code, when is a decoded bit in error ?

A: When the channel flips two or more of the three encoded bits

The probability of decoding error when this code is used over a
BSC(0.1) is

(3
2

)
(.1)2(.9) +

(3
3

)
(.1)3 = 0.028

The rate of the code is 1
3 (3 encoded bits for each source bit)

Q: With a (5, 1) repetition code, when is a decoded bit in error ?

A: When the channel flips three or more of the five encoded bits

The probability of decoding error is 0.0086 (Ex. Paper 9, Q.5)

The rate of the code is 1
5

• We’d like the rate to be as close to 1 as possible, i.e., fewer
redundant bits to transmit

• We’d also like the probability of decoding error to be as small
as possible

These two objectives are seemingly in tension . . .
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Probability of Error vs Rate
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(n, 1) Repetition Code

As we increase repetition code length n:

• A decoding error occurs only if at least (n + 1)/2 bits are
flipped ⇒ Probability of decoding error goes to 0 as n → ∞ ,

• Rate = 1
n , which also goes to 0 /

Can we have codes at strictly +ve code rate whose P(error) → 0?

In 1948, it was proved that the answer is yes! (by Clause Shannon)
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Block Codes
We’ll look at Shannon’s result shortly, but let’s first try to improve
on repetition codes using an idea known as block coding.

• In a block code, every block of K source bits is represented by
a sequence of N code bits (called the codeword)

• To add redundancy, we need N > K

• In a linear block code, the extra N − K code bits are linear
functions of the K source bits

Example: The (N = 7, K = 4) Hamming code
Each 4-bit source block s = (s1, s2, s3, s4), is encoded into 7-bit
codeword c = (c1, c2, c3, c4, c5, c6, c7) as follows:

• c1 = s1, c2 = s2, c3 = s3, c4 = s4

c5 = s1 ⊕ s2 ⊕ s3, c6 = s2 ⊕ s3 ⊕ s4, c7 = s1 ⊕ s3 ⊕ s4
where ⊕ denotes modulo-2 addition

• c5, c6, c7 are called parity check bits, and provide the
redundancy
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The (7, 4) Hamming Code
E.g.:
For s = (0, 0, 1, 1), the codeword is (0, 0, 1, 1, 1, 0, 0)
For s = (0, 0, 0, 0), the codeword is (0, 0, 0, 0, 0, 0, 0)

The encoding operation can be represented pictorially as follows:

s1

s4

s2
s3

c5

c6c7

Example:

0

1

0

1

c5 = 1

c6 = 0c7 = 0

• For any Hamming codeword, the parity of each circle is even,
i.e., there must be an even number of ones in each circle

• For encoding, first fill up s1, . . . , s4, then c5, c6, c7 are easy
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Rate and Encoding

• The rate of any (K , N) block code is K
N

• The rate of a (7, 4) Hamming code is 4
7 = 0.571

• Note that the (N, 1) repetition code is a block code with
K = 1 and rate 1/N

Q: How do you encode a long sequence of source bits with a
(K , N) block code?
A: Chop up the source sequence into blocks of K bits each;
transmit the N-bit codeword for each block over the BSC.

E.g., For the (7, 4) Hamming code, the source sequence

s = . . . 1001︸︷︷︸ 0010︸︷︷︸ 1111︸︷︷︸ 1010︸︷︷︸ 0000︸︷︷︸ . . .

is divided into blocks of 4 bits; for each 4-bit block, the 7-bit
Hamming codeword can be found using the parity circles
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Error Correction for the Hamming Code
The (7, 4) Hamming code can correct any single bit error (flip) in a
codeword.
Example: The codeword (0, 0, 1, 1, 1, 0, 0) (corresponding to source
bits (0, 0, 1, 1)) is transmitted over the BSC. Suppose the channel
flips the fourth bit so that the receiver gets r = (0, 0, 1, 0, 1, 0, 0).

r1

r4

r2
r3

r5

r6r7

0

0

0
1

1

00

Fill r = (r1, . . . , r7) into the parity circles. We see that the dashed
circles have odd parity.

Decoding Rule: If any circles have odd parity, flip exactly one bit
to make all of them have even parity
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Flipping the starred bit would make all the circles have even parity
We thus recover the transmitted codeword (0, 0, 1, 1, 1, 0, 0)

• When the channel flips a single bit, there is at least one circle
that becomes “dashed”

• This shows that there is a bit error, which we can correct by
flipping it back

Q: When does the (7, 4) Hamming code make a decoding error?
A: When the channel flips two or more bits (Ex. Paper 9, Q.5b)

Thus Hamming codes have good rate (= 4/7), but also rather
high probability of decoding error

14 / 16



It’s natural to wonder:
• How to design better block codes than repetition/Hamming?
• How many errors can the best (N, K ) block code correct?

Shannon in 1948 . . .

1. Showed that any communication channel has a capacity,
which is the maximum rate at which the probability error can
be made arbitrarily small.

2. Also gave a formula to compute the channel capacity

For example, Shannon’s result implies that for the BSC(0.1):
• There exist (N, K ) block codes with rate K

N ≈ 0.53 such that
you can almost always recover the correct codeword from the
noisy output sequence of the BSC(0.1)

• But N has to be very large — the block length has to be
several thousand bits long

• Practical codes with close-to-capacity performance have been
discovered in the last couple of decades (discussed in 3F7,
4F5)
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Channel Coding – The Key Points
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• Once we fix a modulation scheme, we have a binary-input,
binary-output channel

• Channel coding is the act of adding redundancy to the source
bits to protect against bit errors introduced by the channel

• (N, K ) block code: K source bits −→ N code bits; (N − K )
bits provide redundancy

• The rate of a block code is K/N. We want the code rate to
be high, but also correct a large number of errors

• We studied two simple block codes (repetition, Hamming)
and their encoding and decoding

16 / 16


