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Chapter 1

Paving A Wider Way for Multimedia

Over Cognitive Radios: An Overview

of Wideband Spectrum Sensing

Algorithms

Bashar I. Ahmad, Hongjian Sun, Cong Ling and Arumugam Nallanathan

With the proliferation of mobile Internet services, multimedia applications are becoming
an essential part of the modern human life. This brings persistent demand for high data
rates and superior Quality of Service (QoS) over wireless links, leading to mounting pressure
on the radio frequency (RF) spectrum; a natural resource which is becoming increasingly
scarce. Cognitive Radio (CR) presents a paradigm shift aiming to alleviate the spectrum cri-
sis by promoting dynamic spectrum access, cooperation among heterogeneous devices, and
spectral resources sharing. Spectrum sensing is a key cognitive radio functionality, which en-
tails scanning the RF spectrum to unveil underutilised spectral bands for opportunistic use.
To achieve higher data rates while meeting stringent QoS requirements, effective wideband
spectrum sensing routines are crucial due to their capability of achieving spectral awareness
over wide frequency range(s) and efficiently harnessing the available opportunities. However,
implementing wideband sensing in portable devices brings formidable design challenges such
as prohibitively high complexity and data acquisition rates. This chapter gives an overview
of various wideband spectrum sensing techniques outlining their advantages and limitations;
special attention is paid to sub-Nyquist algorithms.
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In Section 1.1, the fundamentals of spectrum sensing in cognitive radio networks are high-
lighted and the wideband sensing problem is formulated. The remainder of the chapter
discusses a range of common wideband spectrum sensing algorithms. They are categorised
according to their data acquisition approach. Algorithms that abide by the Nyquist sampling
criterion are succinctly addressed in Section 1.2. Sub-Nyquist wideband spectrum sensing
methods that are based on the compressed sensing and alias-free sampling methodologies
are discussed in Sections 1.3 and 1.4 respectively. In Section 1.5, the various sub-Nyquist
approaches are compared and numerical examples are presented to demonstrate their ef-
fectiveness. Finally, an objective outlook on the future research directions is provided and
conclusions are drawn in Section 1.6.

1.1 An Introduction to Spectrum Sensing for Cognitive Radio

With conventional static spectrum allocation policies, a licensee, i.e. Primary User (PU),
is permitted to use a particular spectrum band over relatively long periods of time. Such
inflexible allocation regimes have resulted in a remarkable spectrum under-utilisation in
space or time as reported in several empirical studies conducted in densely populated urban
environments [1,2]. By enabling an unlicensed transmitter, i.e. Secondary User (SU), to op-
portunistically access or share these fully or partially unused licensed spectrum gap(s), the
cognitive radio paradigm (a term attributed to Mitola [3]) has emerged as a prominent solu-
tion to the persistent spectrum scarcity problem [4]. It fundamentally relies on a dependable
spectrum awareness routine to identify vacant spectrum band(s) and limit any introduced
interference, possibly below a level agreed a priori with the network PUs. Therefore, spec-
trum sensing, which involves scanning the RF spectrum in search of a spectrum opportunity,
is considered to be one of the most critical components of a CR [3–8].
There are several approaches to spectrum sharing and PU/SU coexistence in cognitive radio
networks (see [6–9] for an overview). In this chapter, we predominantly focus on the inter-
weaving systems, where a secondary user is not permitted to access a spectrum band when
a primary user transmission is present, i.e. maintaining minimal interference. With alter-
native methods, i.e. underlay and overlay systems, the PU and SU(s) can simultaneously
access a spectral subband. They utilise multi-access techniques such as spread spectrum
and/or assume the availability of a considerable amount of information on the network PUs
(e.g. codebooks, operation patterns, propagation channel information, etc.) to restrain the
resulting coexistence interference. These two paradigms still however rely to an extent on
the spectrum awareness to establish the spectrum status.
In essence, the spectrum sensing problem entails the SU(s) reliably determining whether a
particular spectral subband, e.g. Bl, is vacant or the PU is present. This corresponds to
the classical binary hypothesis testing problem that aims to distinguish between the two
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hypothesises

H0 : y = w

H1 : y = x + w (1.1)

such that H0 and H1 signify the absence and presence of a transmission in Bl, i.e. x =
[x(t1), x(t2), ..., x(tM )]T , respectively. Whereas, y = [y(t1), y(t2), ..., y(tM)]T is the vector
encompassing the M collected samples of the received signal at the secondary user. a In
classical Digital Signal Processing (DSP), the sampling instants {tm}

M
m=1 are uniformly dis-

tributed where tm = mTUS and fUS = 1/TUS is the data acquisition rate. To shorten
the notation, let x[m] = x(mTUS) and y[m] = y(mTUS). For simplicity, w ∼ N (0, σ2

w)
is zero mean Additive White Gaussian Noise (AWGN) with covariance σ2

w; more general
noise models can be considered. The probability of successfully detecting the PU presence is
PD = Pr {H1|H1} and the probability of false alarm, i.e. missing a spectral opportunity, is
PFA = Pr {H1|H0}. To decide between H0 and H1 is a classical detection problem with long
established solutions [10, 11]. This is customarily accomplished by comparing the outcome
of a test statistic T(y) with a predetermined threshold value γ according to

T(y)
H0

Q
H1

γ. (1.2)

Thus, the sensing problem boils down to formulating an effective test statistic and appropri-
ately setting the comparison threshold value to unveil the available spectral opportunities
without introducing harmful interference. As noted in [8], whether the detection problem
is tackled within a deterministic or Bayesian statistical framework, the resultant T(y) is
a form of the likelihood-ratio Pr (y |H1 ) /Pr (y |H0 ) [10, 11]. Next, we consider a number
of traditional spectrum sensing techniques aimed at a single monitored RF band Bl, hence
Narrowband Spectrum Sensing (NBSS).

1.1.1 Conventional Narrowband Techniques

Coherent, energy and cyclostationary detectors are among the most commonly used NBSS
algorithms in cognitive radio networks [4–6, 8]. They have different operational and imple-
mentation requirements as discussed below.

A. Coherent Detector : Otherwise known as matched filter and it utilises the optimal test
statistic that maximises the Signal to Noise Ratio (SNR) in the presence of additive
noise [10,11]. Its test statistic simply involves correlating the suspected PU transmission
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x with the received signal according to

T(y) , xHy
H0

Q
H1

γ (1.3)

where (.)H is the conjugate transpose operate. The PU signal structure is assumed to
be perfectly known at the receiver, e.g. signal variance, modulation type, packet format,
channel coefficients, etc. One of the main advantages of the coherent detector is that
it requires a small number of data measurements to achieve predefined probabilities of
detection PD and false alarm PFA where O (1/SNR) samples suffices even in low SNR
regions (i.e. when SNR � 1). The signal to noise ratio is defined as SNR = Ps,l/σ

2
w,l such

that Ps,l and σ2
w,l are the powers of a present transmission in Bl and AWGN variance,

respectively. However, in low SNR conditions, the detector’s performance drastically de-
grades due to the difficulty in maintaining synchronisation between the transmitter and
the receiver. Accurate synchronisation is a fundamental requirement the coherent detec-
tor. Additionally, the complexity of match filter grows with the diversity of potential
primary users since a distinct detector per signal structure is imperative. The coherent
detector is inflexible and can be unsuitable for CR networks, which often include several
PUs using different transmission technologies and dynamically adapting their transmis-
sion characteristics.

B. Energy Detector : The energy detector, also known as radiometer, is a non-coherent
detector widely regarded as one of the simplest approaches for deciding between H0 and
H1. Its test statistic is given by

T(y) ,
M∑

m=1

|y[m]|2
H0

Q
H1

γ. (1.4)

This detector does not assume any knowledge of the PU signal structure or synchroni-
sation with the transmitter. It demands O (1/SNR) signal measurements in high SNR
cases (i.e. when SNR � 1) and O

(
1/SNR2

)
samples in low SNR regions to deliver the

desired PFA and PD [5]. It is noted that if the present AWGN noise power/variance is
known a priori, the energy detector is the optimal detector according to the Neyman-
Pearson criterion [10]. Whilst in (1.4) the time domain samples can be used to deter-
mine the energy level in the monitored frequency band Bl, the energy detector can be
implemented in the frequency domain by taking the Fast Fourier Transform (FFT) of
{y[m]}M

m=1 and summing the squared magnitude of the resultant FFT bins that belong to
Bl , i.e. T(y) ,

∑
fk∈Bl

|Y (fk)|
2. The FFT is an optimised version of the Discrete Fourier

Transform (DFT) given by: Y (fk) =
∑M

m=1 y[m]e−i2πkm/M such that k = 0, 1, ...,M − 1,
fk = kfUS/M and fUS is the uniform sampling rate.

C. Feature Detection : Communication signals inherently incorporate distinct features such
as symbol periods, training sequences and cyclic prefixes to facilitate their detection at
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the intended receiver. Feature detectors exploit such unique structures to unveil the
presence of a transmission in Bl by formulating its test statistics as a function of the
incoming signal second order statistics

T(y) , F
{
E
[
yyH

]} H0

Q
H1

γ (1.5)

where E [.] is the expectation operator and F(.) is a generic function. A detailed discussion
of such detectors is presented in [8] with the relevant references. Here, we focus on a
particular feature detector known as the cyclostationary feature detector.
Most transmissions are modulated sinusoidal carriers with particular symbol periods.
Their means and autocorrelation functions exhibit periodicity, i.e. they are Wide Sense
Cyclostationary (WSCS) signals. The cyclostationary detector capitalises on these built-
in periodicities and uses the Cyclic Spectral Density (CSD) function of the incoming
WSCS signal [12, 13]. Let Tp be the underlying cyclostationarity period, the sampled
transmission {x[m]}M

m=1 Cyclic Autocorrelation Function (CAF) is defined by: Rc̃
x[m] ,

E
[
x[n]x∗[n + m]e−2πc̃n

]
where Rc̃

x[m] 6= 0 if c̃ = i/Tp (i is a non-zero integer) and Rc̃
x[m] =

0 if c̃ 6= i/Tp. The cyclic frequency is c̃ 6= 0. The CSD is the discrete-time Fourier
Transform (DTFT) of the CAF, i.e. Sx(c̃, fk) =

∑+∞
m=−∞ Rc̃

x[m]e−j2πfkm and an FFT-
type implementations can be used. Unlike a PU transmission, the present noise is not
WSCS. It is typically assumed to be Wide Sense Stationary (WSS) and the DTFT of
Rc̃

w[m] is Sw(c̃, fk) = 0 for c̃ 6= 0. The cyclic detector test statistics can be expressed by

T(y) =
∑

c̃

∑

fk

Ŝy(c̃, fk) [Sx(c̃, fk)]
∗

H0

Q
H1

γ

assuming a known transmission Sx(c̃, fk) with multiple periods; x∗ is the conjugate of
x [5]. The estimated CSD of the received signal is denoted by Ŝy(c̃, fk) and it is attained
from y. Whilst the cyclostationary detector can reliably differentiate between various
PU modulated signals and the present noise, its complexity and computationally cost
is relatively high as it involves calculating the 2D cyclic spectral density function. Its
performance and sampling requirements in terms of delivering desired PFA and PD values
are generally intractable [5].
Alternative feature detection techniques use the properties of the covariance matrix in
(1.5) to identify the presence a PU signal; namely the fact that the signal and noise
covariance matrices are distinguishable. An example is the covariance detectors in [14]
where the test statistic is expressed in terms of a sample covariance matrix maximum and
minimum eigenvalues, i.e. T(y) = υmax/υmin, and no information on the transmitter sig-
nal is required. Other methods promote particular structures of the PU signal covariance
matrix and usually demand knowledge of certain signal characteristics, e.g. [15].
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The above narrowband spectrum sensing algorithms are compared in Table 1.1 outlining
their advantages and disadvantages. Main features such as the amount of prior information
the CR needs to unveil the presence of the PU(s) are outlined. If a single PU is utilising
Bl and its transmissions structure is fully known by the SU, then the coherent detector is
the best candidate for the spectrum sensing task with the highest performance, lowest com-
plexity and shortest sensing time. It presumes accurate synchronisation between the PU
and the SU. Since this scenario is rarely faced in CR networks where other transmitters
can opportunistically access a vacant Bl, other detectors become more viable candidates.
For example, feature detectors could be deployed when partial knowledge of the PU trans-
missions is available, e.g. cyclic prefixes, modulation scheme, preambles, etc. They are
robust against noise uncertainties, interference and can distinguish between different types
of signals. Nevertheless, the feature detectors, e.g. cyclostationary detector, require more
complex processing, sensing time and power resources. On the other hand, the energy de-
tector is a simple and low complexity option, which does not levy any prior knowledge of the
PU signal or synchronisation. Its sensing time is also notably low for relatively high SNR
regions. However, the radiometer does not differentiate between PU(s), SU(s) and potential
interferers. Its performance is highly dependent on accurate estimation of the present noise
power/variance to decide on the threshold values to restrain PFA. Inaccurate estimation of
the noise power can cap the attained detection quality when the signal to noise ratio is lower
than a particular level, i.e. the SNR wall reported in [16].

1.1.2 Cooperative Sensing

One of the key challenges of realising a spectrum sensing routine is the well known hidden
terminal problem faced in wireless communications. It pertains to the scenario where the
PU transmission is undermined by channel shadowing or multi-path fading and a SU is lo-
cated in the PU deep fading region. This can lead to the SU reaching a decision that the
sensed spectrum band is vacant; any subsequent utilising can cause severe interference to
the PU. To enhance the CR network sensitivity, the network can fuse the sensing results of a
few of its spatially distributed CRs to exploit their inherent spatial diversity. Each of these
CRs experience different channel conditions and their cooperation can alleviate the hidden
terminal problem [4–6, 8, 17, 18]. For example in Figure 1.1, three SUs are overseeing the

Table 1.1: Comparison between common narrowband spectrum sensing techniques.

Detector Prior Knowledge Advantages Limitations

Coherent
PU full signal
structure

Optimal performance PU signal dependent
Low computational complexity Demands synchronisation

Energy Noise power
No signal knowledge Does not distinguish between users
Low computational complexity Limited by noise power estimation

Feature
Partial knowledge of
the PU structure

Distinguishes PUs and SUs High computational complexity
Robust to noise and interference Long sensing times
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Figure 1.1: Cooperation among SUs to circumvent SU 2 interfering with the PU; SU 2 and
SU 3 are in PU deep fading region.

spectral subband used by the PU transmitter. The two secondary users, i.e. SU 2 and SU
3, are located in the PU deep fading region. Whilst SU 2 cooperates with SU 1 to establish
the presence of a PU transmission, SU 2 fails to detect the PU and subsequently transmits
over the monitored spectral subband causing detrimental interference. This simple example
illustrates the basic idea behind cooperative spectrum sensing.
A key aspect of collaborative sensing is efficient cooperation schemes that substantially im-
prove the network reliability. They should minimise the bandwidth and power requirements
that are associated with the control channel over which information is exchanged among the
network SUs. Below, we briefly address the three common information fusing schemes to
combine the sensing results of I collaborating SUs in a CR network.

A. Hard Decision Fusion : With hard combining each of the SUs makes a decision on the
presence of the PU and shares a single bit to represent its binary decision di = {0, 1};
i.e. ”0” and ”1” signify H0 and H1 respectively. The final decision on the spectrum band
status is based on a voting metric that can be expressed by

VHF =
∑

i∈I

di

H0

Q
H1

ν (1.6)

where ν is the voting threshold. The final decision based on (1.6) is simply a combining
logic that takes the following forms: 1) AND logic where ν = I and all the collaborating
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SUs should decide that the subband is not in use to deem it vacant , 2) OR logic where
ν = 1 and a PU transmission is considered to be present if one of the SUs reached the
decision di = 1 and 3) majority vote where ν = dI/2e ensuring that at least half of the SUs
detected an active PU before deciding H1. The ceiling function dxe yields the smallest
integer greater than or equal to x. Each of the above voting strategies reflect a different
view on opportunistic access, e.g. the OR logic guarantees minimum network interference
at the excess of missed spectral opportunities. On the contrary, the AND logic prioritises
increasing the opportunistic throughput without restraining the possible interference. It
is noted that the overheads of the hard combining in terms of the information exchange
is minimal as 1-bit is shared by each SU.

B. Soft Decision Fusion : In this approach the I SUs share their sensing statistics , i.e.
Ti(y), i = 1, 2, ..., I . A weighted sum of the sensing statistics is used as the decision
metric according to

VSF =
∑

i∈I

$iTi(y) (1.7)

where $i is the weight allocated to the ith SU. A simple choice of the weights is a
uniform prior without considering the quality of the channel between the SU and the
PU, i.e. $i = 1. The weights {$i}

I
i=1 can be proportional to the ith link quality, e.g.

SNR of the channel between the PU and the ith participating SU [19]. Although soft
combining in (1.7) necessitates the exchange of large quantities of data compared with
the hard fusion, it can lead to optimal cooperative spectrum sensing [8].

C. Hybrid Decision Fusion : This approach combines both soft and hard combining tech-
niques seeking to harness the hard fusion low transmission overhead and soft fusion
superior performance. Generally, sharing more statistical information among the SUs
results in a better fusion outcome and vice versa. An example is the hybrid technique
proposed in [20] where each SU sends two bits of information related to the monitored
subband, i.e. softened hard combining, to enhance the network sensing dependability.

In practice, several other cooperative sensing design challenges should be taken into account,
such as feasibility issues of the control channel, optimising the overheads associated with
information exchange, collaborative network implementation or clustering (e.g. centralised or
distributed or ad-hoc fusion centre), cooperative sequential detection, censoring or sleeping,
etc. Whilst the objective of this subsection is to briefly introduce cooperative spectrum
sensing in CR networks, several comprehensive overviews on this topic exist and the reader
is referred to [4–8,17,18] with extensive references lists therein.Most importantly, cooperative
sensing is typically implemented at a network level higher than the considered physical layer.
We are predominantly interested in determining the status of a given monitored subband
(or a number of them) at a single CR and the cooperative sensing concept can leverage
the obtained statistic at each of the these CRs. Nonetheless, in Sections 1.2 and 1.3 we
address certain wideband spectrum sensing techniques that are particularly amenable to
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Figure 1.2: Wide monitored bandwidth divided into L non-overlapping contiguous subbands.
used by various transmitters. The cognitive radio scans B in search of a spectral opportunity.

collaborative multiband detection.

1.1.3 Wideband Spectrum Sensing and Nyquist Sampling

In CR networks supporting multimedia applications over wireless links, high opportunistic
throughput is sought to fulfill stringent QoS requirements. Secondary users are also ought
to strive to minimise interruptions to the data transmission/exchange with the targeted
receiver. This often arises when the PU returns to using the opportunistically accessed
spectrum band. Wideband spectrum sensing enables a cognitive radio to meet the afore-
mentioned demands by achieving spectrum awareness over wide frequency range(s) typically
consisting of a number of spectrum bands with different licensed users. If a PU reappears,
the availability of several other possible vacant subbands facilitates the seamless hand-off
from one spectral channel to another.
A natural approach to a wideband spectrum sensing system model is to divide the total
monitored bandwidth into L non-overlapping subbands/channels since licensed RF spectrum
inherently possesses such a structure. For simplicity and without the loss of generality, we as-
sume that these subbands are contiguous and are of equal width denoted by BC . Hence, the
overseen wide bandwidth has a total width of LBC and is given by B = [fmin, fmin + LBC ];
normally the initial frequency point is fmin = 0. This model, which support heterogeneous
wireless devices that may adopt different wireless technologies for their transmissions, is de-
picted in Figure 1.2. At any point in time or geographic location, the maximum number of
concurrently active channels is expected to be LA and the received signal at the secondary
user is given by: y(t) =

∑K
k=1 yk(t) such that K ≤ LA. In accordance with the low spectrum

utilisation premise that motivated the cognitive radio paradigm from the outset, we reason-
ably assume LA � L and the single-sided joint bandwidth of the active channels does not
exceed BA = LABA.
The primary objective of the CR is to scan B =

⋃L
l=1 Bl and determine which of the mon-
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itored subbands are vacant; this is also known as Multiband Spectrum Sensing (MSS).
Assuming that the network transmissions are uncorrelated, the MSS problem reduces to the
following binary hypothesis testing for each subband

T(yl)
H0,l

Q
H1,l

γl, l = 1, 2, ..., L (1.8)

and the aim is to discriminate between

H0,l : yl = wl

H1,l : yl = xl + wl (1.9)

such that H0,l and H1,l indicate that the lth channel is vacant and occupied respectively.
Digitally performing the simultaneous sensing of the L spectral channels levies a wide
RF front-end and sampling the incoming signal y(t) at rates exceeding the Nyquist rate
fNyq = 2B (no prior knowledge of the activity of the system subbands is presumed). This
prevents the adverse effects of the the aliasing phenomenon that can hinder accomplishing
virtually any digital signal processing task as per the Nyquist sampling criterion [21]. For
considerably wide bandwidths (e.g. several GHz), fNyq can be prohibitively high (tens of
GHz) demanding specialised data acquisition hardware and high speed processing modules
with high memory and power consumption requirements. Such solutions can be very chal-
lenging and inviable for portable devices supporting multimedia communications. It is noted
that whilst newly designed wideband compact selective antennas are continuously emerging,
e.g. [22], the development of Analogue to Digital Converters (ADCs) with high resolution
and reasonable power consumption is relatively behind [23, 24]. Therefore, the sampling
rate can be the bottleneck in realising efficient wideband spectrum sensing routines. This
triggered an immense interest in novel sampling techniques that can mitigate the Nyquist
criterion and permit sampling at remarkably low rates without compromising the sensing
quality, i.e. sub-Nyquist data acquisition. Instead of concurrently processing the L sub-
bands, the SU can sweep across B and filter out data relating to each individual system
subband. A narrowband detector is then utilised to affirm the status of the filtered spectral
channel. In this case, fNyq = 2BC � 2B and this approach is dubbed sequential wideband
Nyquist spectrum sensing discussed in Section 1.2.

1.1.4 Sensing Performance and Trade-offs

Before introducing several MSS algorithms, here we highlight the performance measures
frequently adopted to assess the sensing quality along a few of the associated trade-offs.
As will be apparent below, there is no unified performance metric for wideband spectrum
sensing and the selected measure is dependent on the tackled scenario and its parameters.
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Probabilities of Detection and False Alarm

The Receiver Operating Characteristics (ROC) is one of the most commonly used detection
performance metrics. For a particular spectral subband, e.g. Bl, it captures the relation
between the probability of false alarm and detection given by

PFA,l = Pr {T(yl) > γl|H0,l} and PD,l = Pr {T(yl) > γl|H1,l} , (1.10)

respectively. They are interrelated via the detection threshold γl whose value trades PD,l for
the probabilities of unveiling a spectrum opportunity 1 − PFA,l and vice versa. In certain
instances, the probability of missed detection PM,l = 1−PD,l is examined in lieu of PD,l and
the ROC probabilities are plotted against the SNR. The reliability of a spectrum sensing
routine can be reflected in its ability to fulfill certain probabilities of detection, i.e. PD,l ≥ ηl,
and false alarm, i.e. PFA,l 6 ρl. To illustrate the relationship between PFA,l, PD,l and the
number of collected transmission measurements M , next we consider the narrowband match
filter and energy detectors.
From the coherent detector in (1.3), we have T(yl) ∼ N

(
0,MPS,lσ

2
w,l|H0,l

)
and T(yl) ∼

N
(
MPS,l,MPS,lσ

2
w,l|H1,l

)
where the a priori known xl is deterministic [5]. We recall that

PS,l and σ2
w,l are the signal power and AWGN variance respectively. It follows that

PD,l = Q
(
Q−1 (PFA,l) + MPs,l/σw,lPS,l

)

M̂ =
[
Q−1 (PFA,l) − Q−1 (PD,l)

]2
SNR−1. (1.11)

The number of data samples required to achieve a desired operating point (PFA,l, PD,l)
is denoted by M̂ ; Q(x) is the tail probability of a zero-mean Gaussian random variable.
Whereas, for the energy detector in (1.4), we have T(yl) ∼ N

(
Mσ2

w,l, 2Mσ2
w,l|H0,l

)
and

T(yl) ∼ N
(
Mσ2

w,l + MPS,l, 2Mσ2
w,l + 4Mσ2

w,lPS,l|H1,l

)
. It is noted that the Central Limit

Theorem (CLT) is employed to approximate the chi-squared distribution of the energy detec-
tor by a normal distribution N (m̄, σ2) of mean and variance equal to m̄ and σ2 respectively.
Subsequently, we can write

PD,l = Q
([

σw,l

√
2MQ−1 (PFA,l) − Mσw,lPs,l

]
/
[
σw,l

√
2Mσ2

w,l + 4MPs,l

])

M̂ = 2
[
Q−1 (PFA,l) −

√
1 + 2SNRQ−1 (PD,l)

]2
SNR−2. (1.12)

It can be noticed from (1.11) and (1.12) that the number of data samples M̂ is a design
parameter that can be manipulated to achieve the sought PD,l ≥ ηl and PFA,l 6 ρl at the
expense of increasing the sensing time since classically TST = M/fUS and fUS > fNyq is the
uniform sampling rate. This has implication on the delivered opportunistic throughput dis-
cussed below. Deciding a subband’s status intrinsically relies on the test statistics threshold,
i.e. γl in (1.8). It dictates the detector operational point/region and the complete ROC plot



12CHAPTER 1. PAVING A WIDER WAY FOR MULTIMEDIA OVER COGNITIVE RADIOS: AN OVERVIEW OF WIDEBAND SPECTRUM SENSING ALGORITHMS

is generated from testing all the possible threshold values. The explicit dependency of PFA,l

and PD,l on γl is discarded to simplify the notation.
For the studied wideband spectrum sensing problem, the ROC can be defined by the two
vectors PFA = [PFA,1, PFA,2, ..., PFA,L]T and PD = [PD,1, PD,2, ..., PD,L]T encompassing the
probabilities of the L system subbands. The aforestated reliability measure can be extended
to the multiband environment via

PFA � ρ and PD � η (1.13)

where ρ = [ρ1, ρ2, ..., ρL]T and η = [η1, η2, ..., ηL]T . Each of � and � refers to an element by
element vectors comparison. The monitored channels can have different sensing requirements
and the available design parameters, e.g. M , is selected such that (1.13) is met for all the
system subbands. Alternatively, the SU can combine the probabilities of the spectrum bands
via

P̄FA =
L∑

l=1

alPFA,l and P̄D =
L∑

l=1

blPD,l (1.14)

where {al}
L
l=1 and {bl}

L
l=1 are the weighting parameters. They reflect the importance, in-

terference provisions and the confidence level of the test statistics per channel. The sensing
reliability can take the form of P̄FA 6 ρ̄l and P̄D ≥ η̄l. Using bl = 1 leads to a simple
averaging approach P̄D = 1

L

∑L
l=1 PD,l. This creates the risk of a low detection rate for one

particular subband (e.g. due to PU low transmission power) drastically affecting the SU
overall multiband detection across B. On the other hand, if a particular subband, e.g. Bl,
has low interference constraints, a marginal bl value can be assigned.
Recalling that the objective of the wideband spectrum sensing is to unveil a sufficient amount
of spectrum opportunities at a SU without causing harmful interference to the PUs, the prob-
ability of missing a spectral opportunity can be defined as

P̃MSO = Pr
{
∩L

l=1H1,l

∣
∣∪L

l=1H0,l

}
. (1.15)

Entries ∩L
l=1H1,l and ∪L

l=1H0,l stipulate that the hypothesis testing outcome for all the sur-
veyed subbands are ”1” and at least one channel hypothesis testing results in ”0”, re-
spectively. This implies that a missed spectrum opportunity occurred, since at least one
of the monitored spectral channels was vacant. Whilst in (1.15) one unoccupied sub-
band is sought by the CR, a more generic formulation can incorporate multiple oppor-
tunities [25]. In [26], multiband detection performance measures that are independent of
the sensing algorithm are proposed. Let NSO be the number of correctly identified in-
active channels, NDSO is the pursued number of vacant subbands (i.e. spectral opportu-
nities), NI is the number of occupied channels declared vacant and Nd is the maximum
permitted number of falsely identified vacant subbands (i.e. interference limit). The sens-
ing quality can be empirically examined in terms of the probability of insufficient spec-
trum opportunities PISO(NSO) = Pr {NSO < NDSO} and probability of excessive interference
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Figure 1.3: Opportunistic throughput for a varying number of surveyed subbands (5 MHz
each) and SU transmitted power such that PD,l = 1 and SNR > 0 dB.

PEI(NI) = Pr {NI > NPI}.

Opportunistic Throughput and Sensing Time

The main advantage of wideband spectrum sensing is its ability to provide superior oppor-
tunistic throughput RO to meet onerous QoS requirements for the network secondary users.
The RO values is the sum of the possible achieved data transmission rates leveraged by
exploiting the network vacant spectral subbands as per

RO ,
L∑

l=1

rO,l (1 − PFA,l) + rI,l (1 − PD,l). (1.16)

We have rO,l = BC log2

(
1 − P SU

S,l /σ2
w,l

)
is furnished correctly unveiling a spectral opportunity,

i.e. {H0,l|H0,l}, and rI,l = BC log2

(
1 − P SU

s,l /
{
P PU

s,l + σ2
w,l

})
is obtained when inadvertently

interfering with an active PU transmission, i.e. {H0,l|H1,l}. P SU
S,l and P PU

S,l are the trans-
missions power over Bl pertaining to a SU and PU respectively. For an interference free
network, rI,l = 0. It is clear from (1.16) that effective wideband spectrum sensing routine
can substantially enhance RO. This is depicted in Figure 1.3, which displays the opportunis-
tic throughput RO for a varying number of subbands, PFA,l and SU transmission power.
The opportunistic spectrum access operation at a CR involves spectrum sensing followed
by transmitting over the identified vacant system subband(s). Let TTotal = TST + TOT be
the total access time consisting of the sensing functionality slot TST and the opportunistic
transmission time slot TOT . It is noted that throughout this chapter, the sensing time TST
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is assumed to incorporate the associated processing time affected by the detectors complex-
ity, computational cost and the available processing resources at the SU. Thereby, the total
leveraged throughput according to (1.16) is RT (TST ) = TTotal−TST

TTotal
RO and optimising TST

can be formulated as

T̂ST = arg max
0<TST6TTotal

RT (TST )

s.t. PFA � ρ and PD � η. (1.17)

Variations of (1.17) with different constraint(s) can be adopted, e.g. optimising the number
of captured samples M that maximises RT in lieu of TST as in [27]. Moreover, network
Medium Access Control (MAC) and frame structuring techniques other than the sequen-
tial sensing and transmission regime can be applied. This includes a range of TST or TTotal

partitioning strategies into sub-slots [28] and administering concurrent sensing-transmission
during TTotal via parallel decoding and sensing [29]. A number of alternative opportunistic
throughput boosting techniques are proposed in the literature, e.g. utilising a dual radio
architecture with parallel sensing and transmission modules [30], detection with adaptive
sensing time algorithms that take the SNR value into account [31] and many others.
Finally, there are several practical network considerations that should be weighed when per-
forming wideband spectrum sensing. For examples, transmission power control and interfer-
ence trade-offs, vacant single or multiple subbands allocation, number of collaborating SUs
simultaneously overseeing B, etc. They are typically decided based on an sought detection
quality and the gained opportunistic throughput; see [4, 6–8] for further details.

1.2 Nyquist Multiband Spectrum Sensing

In this section, we described two wide spectrum sensing approaches that use the classical
Nyquist data acquisition paradigm where y[m] = y(tm) = y(m/fUS) and fUS > fNyq is
the uniform sampling rate. They are: 1) Sequential Multiband Nyquist Spectrum Sensing
(SMNSS) and 2) Parallel Multiband Nyquist Spectrum Sensing (PMNSS).

1.2.1 Sequential Multiband Spectrum Sensing Using Narrowband Techniques

In SMNSS, a narrowband detector (see Section 1.1.1) is applied to one of the system subbands
at a time. This circumvents the need to digitise the wide monitored frequency range B, and
instead processes each channel Bl separately where fNyq = 2BC . Below, two common SMNSS
methods are outlined and their block diagrams are depicted in Figure 1.4.

1. Demodulation: a Local Oscillator (LO) is used at the SU. It down-converts the signal
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(a) Demodulation using a local oscillator.

(b) Utilising a tunable bandpass filter.

Figure 1.4: Two common approaches to sequential Nyquist multiband spectrum sensing.

in each subband to the origin (or any intermediate frequency) by multiplying y(t) by
the channel’s carrier frequency followed by filtering and low rate sampling. This is a
widely used technique in wireless communications (i.e. superheterodyne receiver archi-
tecture) and intrinsically relies on prior knowledge of the location/carrier-frequency of
the present transmission. When the positions of the active subbands and their carrier
frequencies are not known as in multiband spectrum sensing, the standard demodulation
technique cannot be implemented efficiently. Furthermore, the accurate generation of
the carrier frequencies can demand bulky energy hungry phased locked loop circuit(s).

2. Tunable bandpass filter: a tunable analogue bandpass filter is used to filter out the
data belonging to each of the monitored subbands prior to sampling. Implementing a
tunable power-efficient analogue bandpass filter with a sharp cut-off frequency and high
out-of-band attenuation poses serious design challenges, especially for portable devices.

A critical limitation of the demodulation and tunable bandpass filtering methods is the delay
introduced by sweeping the spectrum where one subband is inspected at a time. This severely
increases the aggregate sensing time TST necessary to scan the system L channels, hinders fast
processing and degrades the network opportunistic throughput. Sequential techniques are
also inflexible, requiring fine tuning of analogue components to a particular channels’ layout.
The concept of initially performing coarse wideband sensing, i.e. low quality detection, to
minimise the number of subbands ought to be searched is proposed in [32]. It is a two stage
sequential spectrum sensing where a robust narrowband detector, e.g. a cyclostationary
detector, can be employed in the second stage for high quality results. Other sequential
methods, e.g. sequential probability ratio tests, exist and a good overview is given in [8].
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1.2.2 Parallel Multiband Detection at Nyquist Rates

Few detection algorithms that simultaneously sense all the monitored subbands are discussed
here. A trivial solution to the parallel sensing problem is to use a bank of L sequential multi-
band sensing modules, e.g. those in Figure 1.4. Each uses a sampling rate of fUS > 2BC and
is dedicated to a particular system channel. Different narrowband detectors can be assigned
to scan B based on the subbands’ requirements, i.e. heterogeneous architectures. This
analogue-based solution requires a bulky inflexible power-hungry analogue front-end filter
bank with high complexity, especially if different detectors are used. On the contrary, we are
predominantly interested in digitally performing the wideband sensing task, i.e. ”software-
based” solution with minimal analogue front-end infrastructure and acclaimed flexibility.
This can be realised by estimating the spectrum of the incoming multiband signal from its
samples collected at sufficiently high rates, i.e. fUS > fNyq and fNyq = 2LBC . Next, three
spectrum-estimation-based PMNSS techniques are addressed.

Multiband Energy Detector

The Multiband Energy Detector (MBED) is an extension of the classical narrowband energy
detector; its block diagram is shown in Figure 1.5. It one of the most widely used multiband
detection methods and relies on estimating the energy in each subband using the simplest
Power Spectral Density (PSD) estimator, i.e. periodogram. The periodogram can be viewed
as a simple estimate of the PSD formed using a digital filter bank of bandpass filters and it
involves the scaled squared magnitude of the signal’s DFT/FFT [33]. The test statistic is
given by

T(y) ,
∑

fn∈Bl

|X̂W (fn) |2
H0,l

Q
H1,l

γl, l = 1, 2, ..., L (1.18)

where X̂W (fn) is the windowed DFT/FFT of the received signal and only the frequency-
bins that fall in Bl are considered. A windowing function wi(t) can be introduced, X̂(fn) =∑M

m=1 y[m]wi[m]e−j2πmn/M , to minimise the experienced spectral leakage. The windowing
function is defined within a signal time analysis window Ti = [τi, τi + TW ] starting at the
initial time instant τi and is of width TW = M/fUS such that wi(t) = w(t) if t ∈ Ti

and wi(t) = 0 if t /∈ Ti. The fixed tapering template w(t) is chosen from a wide variety
of available windowing functions, each with distinct characteristics. An extensive seminal
overview of windowing/tapering functions is given in [34]. Clearly, if no tapering is applied
then wi(t) = 1 if t ∈ Ti and zero otherwise. A number of estimates over overlapping or non-
overlapping time windows are often averaged to improve the periodogram PSD estimation
accuracy, e.g. Bartlett and Welch periodograms [33]. This results in adding an averaging
block to Figure 1.5 preceding the thresholding operation where TST =

∣
∣∪J

j=1Tj

∣
∣ and J is the

number of averaged spectrum estimates.
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Figure 1.5: Block diagram of the multiband energy detector.

It can be noticed from (1.18) and Figure 1.5 that the test statistic for each subband has
its own threshold value. Quan et. al proposed jointly choosing the threshold values across
all the system subbands, i.e. γ = [γ1, γ2, ..., γL]T , to optimise the network opportunistic
throughput constrained by satisfying (1.13) and keeping the overall network interference
below a certain level [5]. This is known by Multiple Joint Detection (MJD), which is a
benchmark multiband spectrum sensing algorithm. Several extensions of MJD emerged,
e.g. MJD with dynamically changing sensing time is proposed in [31]. A weighted version
of (1.18), i.e. T(yl) ,

∑
fn∈Bl

an|X̂W (fn) |2, is investigated in [35] to reflect correlated
concurrent transmissions over the system subbands. It brings notable improvements over
the original MJD when the level of correlation among the present transmissions is known in
advance. Earlier joint detection in [36] utilised a bank of feature detectors.

Multitaper Spectrum Estimation

The Multitaper Power Spectral Density Estimator (MT-PSDE) achieves superior estimation
results by using carefully designed tapering functions, unlike the periodogram where a fixed
windowing function w(t) is deployed [7, 37, 38]. It utilises multiple orthogonal prototype
filters with Slepian sequences or discrete prolate spherical wave function as coefficients to
improve the variance of estimated spectrum without compromising the level of incurred
spectral leakage. The general discrete-time multitaper PSD estimator is expressed by

X̂MT (fn) =
1

λ̄

NMT∑

k=1

λk

∣
∣XES

k (fn)
∣
∣2 (1.19)
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such that the eigenspectrum XES
k (fn), which deploys the kth discrete orthogonal taper func-

tion νk = [νk[1], νk[2], ..., νk[M ]]T , is defined by

XES
k (fn) =

M∑

m=1

y[m]νk[m]e−j2πmfn , k = 1, 2, ..., NT . (1.20)

The average of the eigenspectra scaling factors {λk}
NMT

k=1 is given by λ̄ =
∑NMT

k=1 λk where
λk is the eigenvalue of the eigenvector νk such that Mνk = λkνk and (k,m)th entry of the
M × M matrix M is sin (2πBC(k − m)) /π(k − m). Frequently, λk = 1 is assumed since
the dominant eigenvalues are typically close to unity and/or λ̄ is discarded since it does not
influence the detector success rate. In [38], an adaptive multitaper estimator is introduced
where {λk}

NMT

k=1 scaling entries are replaced with weights that are optimised for a particular
processed signal and its PSD characteristics. It is noted that the number of employed tapers
can be bound by NMT 6 bMBCc representing the number of degrees of freedom available
to control the estimation variance, e.g. NMT ∈ {1, 2, ..., 16} is recommended in [7]. After
obtaining the PSD estimate X̂MT (fn), the energy of the signal in each of the system chan-
nels is measured similar to the classical multiband energy detector. The resultant values per
spectral channel are compared to predetermined threshold values to decide between H0,l and
H1,l. Haykin in [4,7] proposed a multitaper-singular-value-decomposition based cooperative
scheme among CRs to measure the level of present interference and improve the quality of
spectrum sensing; it is a soft-combining approach. It was shown in [37] that the multitaper
technique delivers premium sensing quality compared with the classical energy detector for
a single CR and multiple collaborating SUs. Interestingly, a number of digital filter-bank
sensing approaches are addressed in [39] where it was shown that the theory of multitaper
spectrum estimation can be formulated within the filterbank framework. Filterbank tech-
niques have a long history in the DSP field with established solutions.
Although the MT-PSDE has nearly optimal performance and is robust against noise inac-
curacies, it has notably high computational and implementation complexities compared to
the periodogram. It is noted that filterbank-based multicarrier communication techniques,
e.g. OFDM, is widely viewed as the modulation schemes of choice for CRs [6, 8]. This is
due to their ability to flexibly adapt the spectrum shape of the transmitted signal based on
the available spectral opportunities. They have built-in FFT/IFFT processors that can be
utilised to estimate the spectrum over wide frequency ranges making periodogram-type es-
timators a prime candidate. It was shown in [39] that such filterbank estimators adequately
adapted to a multicarrier communication technique can produce accurate PSD estimates
similar to the MT-PSDE. The use of filter-bank-type detector has the added advantage that
the filterbank can be used for the CR sensing and transmission functionalities.
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Figure 1.6: The PSD of arbitrarily placed transmissions of varying widths in B = [fmin, fmax].

Wavelet-based Sensing

The underlying assumption in the adopted system model is that the secondary users survey
spectral subbands with known locations and widths (see Section 1.1.3). However, the present
heterogeneous transmissions can have different bandwidths and occupy part(s) of the pre-
defined subbands. In [40] a wavelet-based MSS approach was proposed where the present
transmissions have arbitrary positions and boundaries within the wide overseen frequency
range B. The wavelet-based detector models the incoming signal as a train of transmissions
each bandlimited/confined to a spectral subband with unknown position or width as demon-
strated in Figure 1.6. The signal PSD within each of the active channels is assumed to be
smooth, but exhibits discontinuities or singularities at the subbands’ boundaries or edges.
The Continuous Wavelet Transform (CWT) of the power spectral density of the incoming
wide sense stationary signal facilitates detecting these singularities, which reveal the location
and width of the present transmissions.
In the frequency domain, the CWT can be expressed by

WX
ϑ (f) = PY (f) ∗ ϕϑ(f) (1.21)

where PY (f) is the PSD of the received wideband signal y(t), ∗ is the convolution operator,

ϕϑ(f) =
1

ϑ
ϕ

(
f

ϑ

)

, (1.22)

ϕ(f) is the frequency response of the wavelet smoothing function and ϑ is the dilation factor.
The latter dyadic scale can take values that are power of 2. To make the pursued discon-
tinuities more pronounced and their characterisation easier, derivatives of the WX

ϑ (f) are
used [40]. Such approaches are known as wavelet-modules-maxima. For example, the local
maxima of the first order derivative of WX

ϑ (f) and the zero-crossings of the second order
derivative are employed to find the active subbands boundaries and locations, respectively.
Controlling ϕϑ(f) provides additional flexibility rendering wideband wavelet-based detection
suitable to dynamic spectrum structures. They also possess the requisite properties to adap-
tively tune the time and frequency resolution where a high frequency resolution aids locating
the subband edges.
To improve the edges detection procedure at the expense of higher complexity, the wavelet
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Table 1.2: Comparison between Nyquist MSS techniques where fUS > fNyq.

Category Detector Advantages Limitations

Sequential
Demodulation Widely used and simple Slow and complex inefficient hardware
Tunable BPF Simple and effective Complex hardware and requires tuning
Two-stage sensing Faster high quality sensing Complex hardware and expensive

Parallel

Bank of SMNSS High quality sensing Complex, bulky, inefficient and expensive
Multiband Energy Simple and low complexity Not robust against noise or interference
Multitaper Accurate and robust Relatively high complexity
Wavelet-based Used for unknown subbands Not robust against noise or interference

multi-scale product W̃X
NW

(f) or sum W̄X
NW

(f) can be applied where

W̃X
NW

(f) =

NW∏

n=1

dWX
2n(f)

df
and W̄X

NW
(f) =

NW∑

n=1

dWX
2n(f)

df
. (1.23)

The NW summands/multiplicands in (1.23) are the first order derivatives of the CWT with
the dyadic scales 2n, n = 1, 2..., NW . Higher order derivatives and/or NW values can be
exploited to enhance the multiband detection sensitivity.
The wavelet-based multiband detector is not robust against interferers and noise. Their
impact can be minimised by appropriately setting the detection threshold or/and increase
NW in (1.23) as suggested in [41]. It is noted that a digital implementation of the wavelet-
based multiband detector consist of the following four blocks: 1) Uniform sampler fUS >
fNyq, 2) discrete-time PSD estimator (e.g. periodogram that involves the scaled squared
magnitude of the FFT of the received signal), 3) wavelet transform of the estimated PSD
and 4) local maximum detector to extract the edges of the active subbands. Other advanced
PSD estimation techniques, e.g. multitaper estimator, can be used and the wavelet-based
detector generally has a higher complexity compared with the multiband energy detector.

1.2.3 Comparison of Various Nyquist Multiband Detection Methods

All the above Nyquist wideband spectrum sensing techniques are compared in Table 1.2. Se-
quential sensing methods demand an analogue filtering module that permit processing one
subband at a time. Whilst this facilitates sampling at relatively low rates fUS > 2BC , it intro-
duces severe delays and imposes stringent space as well as power consumption requirements.
On the other hand, the parallel detectors simultaneously scan all the system subbands by
digitally processing the entire overseen frequency range. They use excessively high sampling
rates, especially for ultra-wide bandwidths. This inevitable trade-off motivated researchers
to study novel sampling approaches to overcome the data acquisition bottleneck of digitally
accomplishing the sensing task. Such algorithms are dubbed sub-Nyquist detectors and are
discussed in the remainder of this chapter. We divide them into two categories: compressive
and non-compressive; their pros and cons are outlined in Section 1.5.
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1.3 Compressive Sub-Nyquist Wideband Sensing

Compressed Sampling (CS) or compressive sensing promote the reconstruction of sparse
signals from a small number of their measurements collected at significantly low sub-Nyquist
rates. In [42, 43] comprehensive overviews of CS and its various aspects are given with an
extensive list of references. Noting the low spectrum utilisation premise in CR networks,
the processed wideband signal is inherently sparse in the frequency domain since only a few
of the overseen subbands are concurrently active LA � L. CS enables accomplishing the
wideband spectrum sensing with data acquisition rates α � fNyq = 2LBC . These rates
are proportional to the joint bandwidth of the active subbands, i.e. BA, representing the
information rate in lieu of the entire monitored spectrum B. Due to the current immense
interest in CS, new compressive multiband detection algorithms are regularly emerging. In
this section, a number of widely cited and state-of-the-art CS approaches are addressed.
In CS, the the secondary user collects M sub-Nyquist samples of the signal of interested that
encompasses the present transmissions, i.e. x(t), via

y = Φx (1.24)

where y ∈ CM is the samples vector and x ∈ CN is the discrete-time representation of the
transmissions captured at/above the Nyquist rate. The measurement matrix is Φ ∈ CM×N

such that M < N and noiseless observations are assumed in (1.24). The signal is analysed
within the time window Tj = [τj , τj + TW ] and the sensing time is TST =

∣
∣∪J

j=1Tj

∣
∣; usually

J = 1 and TST = TW . According to the Nyquist criterion, the number of Nyquist samples
in Tj is given by N = bTW fUSc where fUS > fNyq. Since the CS average sampling frequency
is defined by α = M/TW , the achieved reduction in the data acquisition rate is reflected in
the compression ratio C = fNyq/α ≈ N/M .
For the DFT transform basis matrix D ∈ CN×N , we have x = Ψ−1f such that Ψ = D
and Ψ−1 is the inverse DFT matrix. The sparse vector f ∈ CN , which is the frequency
representation of the present transmissions, is characterised by ‖f‖0 ≤ KS where KS is the
sparsity level and KS � N . The `0 ”norm” ‖f‖0 is defined as the number of nonzero entries
in f . The relationship between the compressed samples and the signal spectrum can be
expressed by

y = Υf (1.25)

and Υ = Φ−1Ψ is the sensing matrix. With CS, we can exactly recover f from the M < N
noise-free linear measurements, e.g. M = O (KS log (N/KS)) suffices, furnishing substantial
reductions in the sampling rate. This is facilitated by the sparsity constraint on f , which
makes solving the underdetermined system of linear equations in (1.25) feasible with close
form performance guarantees. Such guarantees impose certain conditions on the measure-
ment matrix Φ or more generally on the sensing matrix Υ [42, 43]. Recovering f from y



22CHAPTER 1. PAVING A WIDER WAY FOR MULTIMEDIA OVER COGNITIVE RADIOS: AN OVERVIEW OF WIDEBAND SPECTRUM SENSING ALGORITHMS

entails solving an optimisation whose basic statement is given by

f̂ = arg min
f∈ΣKS

‖f‖0 s.t. y = Υf (1.26)

and ΣKS
=
{
f ∈ CN : ‖f‖0 6 KS

}
. Whilst tackling (1.26) directly has combinatorial com-

putational complexity, a plethora of effective and efficient sparse recovery techniques were
developed, e.g. convex-relaxation, greedy, Bayesian, non-convex and brute-force algorithms,
see [42, 44, 45] for an overview. It is noted that noise can be added to (1.25) to represent
noisy signal observations, i.e. y = Φx + ε and ε is the additive measurements noise vector.
Sparsifying basis/frames other than the DFT can be adopted to promote the sparsity prop-
erty. Motivated by the wavelet-based detection to identify the edges of the active spectral
channels, the earliest papers on CS-based MSS utilise Ψ = ΓDW where Γ is an N×N differ-
entiation matrix, W applies the wavelet-smoothing operation and x is a realisation/estimate
of the discrete-time signal autocorrelation function [46,47].
In the majority of the theoretical treatments of the CS problem in (1.25), the measurement
matrix Φ is assumed to be random and drawn from a sub-Gaussian distribution [42]. This
implies the availability of signal measurements collected at/above the Nyquist rate as in [46],
which defies the objective of sub-Nyquist sampling. On the contrary, the compressed samples
in y should be collected directly from the received wideband analogue signal y(t) without the
need to capture the Nyquist samples first. This can be achieved by using the Analogue to
Information Converter (AIC) shown in Figure 1.7; it is known as the Random Demodulator
(RD). The incoming signal is multiplied by a pseudorandom chipping sequence switching
at a rate of fp = 1/Tp > fNyq followed by an integrator and a low rate (sub-Nyquist) uni-
form sampler of period TUS . Generating a fast chipping sequence can be easily achieved
in practice unlike sampling at excessively high rates with specialised ADCs. RD is devised
to process multitone signals made up of pure sinusoids, e.g. located at multiples of an un-
derlying resolution frequency Δf . Whilst the integrator can be implemented using a Low
Pass Filter (LPF), fUS is proportional to O (KSlog (2B/KSΔf )) and KS is the number of
present pure tones in the double-sided processed bandwidth 2B. Several other lower bounds
on fUS � fNyq for Ks � 2B/Δf are derived in [48]. Although compressed model-based
spectrum estimation algorithms are proposed in [49] to improve the random demodulator
performance, it remains unsuitable for multiband signals with each transmission occupying
a particular system subband. The RD is also very sensitive to modeling mismatches levying
fine hardware-software calibration procedures [42,50]. An alternative AIC approach employs
a slow uniform sampler that randomly skips samples. It is equivalent to using Φ that ran-
domly selects rows out of N × N unity matrix [42]. This results in a nonuniform sampling
scheme , i.e. random sampling on grid, discussed in Section 1.4.
Assuming the availability of y and that DFT is the sparsifying basis, multiband detection
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Figure 1.7: Block diagram of the random demodulator sub-Nyquist CS sampler [48].

can be performed via

T(y) ,
∑

fn∈Bl

|X̂(fn)|2
H0,l

Q
H1,l

γl, l = 1, 2, ..., L. (1.27)

The estimated spectrum X̂ (fn) from the compressed samples in y refers to the entry in
vector f̂ representing the frequency point fn. We recall that f̂ is obtained from solving (1.25)
using a sparse approximation algorithm. Therefore, the detector in (1.27) is a sub-Nyquist
multiband energy detector whose sampling rate is α � fNyq. The number of frequency points
per subband depends on spectral resolution dictated by the number of Nyquist samples N

in the signal analysis time window where N = bTW fNyqc. Additionally, Ψ can be a frame to

increase the spectral resolution where D ∈ CN×N̂ and N̂ > N . Figure 1.8 displays the block
diagram of several sub-Nyquist wideband spectrum sensing techniques. For the test statistic
T(y) in (1.27), we have F{X̂ (fn) , fn ∈ Bl} =

∑
fn∈Bl

|X̂ (fn) |2. Two simply CS-based
sensing techniques for a generic Φ can be expressed as follows:

1. CS Method 1 (CS-1) [15,51]: the estimated spectral points that belong to each channel
are grouped to calculate T (y) and N = bTST fNyqc.

2. CS Method 2 (CS-2) [52]: Unlike CS-1, L DFT points are calculated, i.e. f ∈ CL, and
one DFT point is recovered per monitored subband. The sensing time TST is divided into
bTST /TW c sub-windows each of width TW = L/fNyq. Within each of these partitions
an f̂ solution is determined where Φ ∈ CM×L. To improve the estimation accuracy, J

of the CS estimates are averaged over TST = JTW . This emulates the scenario of J

spatially distributed CRs collaboratively overseeing B.

Compressive samplers that are particularly suitable for multiband signals include Mulitcoset
Sampling (MCS) and Modulated Wideband Converter (MWC) shown in Figure 1.9. They
consist of a bank of mb samplers collecting uniformly distributed measurements at sub-
Nyquist rates. The resulting measurements vectors for all the data acquisition branches can
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Figure 1.8: Block diagram of several sub-Nyquist MSS techniques; X̂(f) is the recov-
ered/estimated spectrum and α is the data acquisition rate such that α � fNyq.

be combined in the M × mb matrix Y = [y1,y2, ...ymb
], dubbed Multiple Measurements

Vector (MMV). Similarly, the targeted vector from each bank is stacked in F = [f1, f2, ...fmb
]

and
Y = ΥF (1.28)

where all columns F have the same sparsity pattern. Several sparse recovery algorithms can
be applied to solve the MMV case, e.g. minimum variance distortionless response and range
of extended greedy techniques [42]. Next, we briefly describe MCS, MWC and the Multirate
Asynchronous sub-Nyquist Sampling (MASS) systems highlighting their main features.

1.3.1 Multicoset Sampling and Blind Spectrum Sensing

The MCS, otherwise known as periodic nonuniform sampling, was proposed by Feng [55]
as a sub-Nyquist data acquisition approach that promotes the accurate reconstruction of
deterministic multiband signals. MCS selects a number of measurements out of an underlying
grid whose equidistant points are separated by a period less or equal to TNyq = 1/fNyq =
1/2B. The uniform grid is divided into Mb blocks of uniformly distributed samples. In each
block, the fixed set D of length |D| = mb < Mb denotes the indices of the retained samples
in the block; the remaining Mb − mb samples are discarded. The set

D = {%1, %2, ..., %mb
} , 0 6 %1 < %2 < ... < %mb

6Mb − 1 (1.29)

is referred to as the sampling pattern. The samples of the received wideband signal y(t) in
the ith branch/coset are given by

yi[m] = y ((mMb + %i) TNyq) , m ∈ Z (1.30)
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(a) (b)

Figure 1.9: Block diagrams of two sub-Nyquist CS samplers.(a) Mulitcoset sampling [53].
(b) Modulated wideband converter [54].

and they are all shifted by the delay Δi = %iTNyq with respect to the origin. An example of
a MCS sequences is shown in Figure 1.10 with Mb = 12 and mb = 3 instants are selected.
The multicoset sampling scheme can be implemented by a bank of mb uniform samplers
each running at an acquisition rate of fUS = fNyq/Mb and preceded by a delay as depicted
in Figure 1.9a. The rate of the uniform samplers fUS in each of the system branches should
fulfill

fMCS
US > BC . (1.31)

and typically fUS = BC . The MCS average sampling rate is αMCS = mbfNyq/Mb , which is
lower than Nyquist for mb < Mb. For signals with unknown spectral support (i.e locations
of the active subbands in B are unknown), the MCS minimum permissible rate is

αMCS > 4LABC , (1.32)

recalling that LA is the maximum number of concurrently active spectral channels [53, 55].
Accordingly, the minimum number of required multicoset sampling channels is mMCS

b ≥ 4LA.

Figure 1.10: MCS with Mb = 12 and mb = 3. Uniform samplers 1, 2 and 3 capture the mea-
surements sets {y(t1,1), y(t1,2), ...}, {y(t2,1), y(t2,2), ...} and {y(t3,1), y(t3,2), ...},respectively.
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The rate in (1.32) is twice the Landau rate fLandau = 2LABC , which is the theoretical min-
imum sampling rate that permits the exact recovery of the continuous-time signal from its
measurements as per Landau theorem [56]; maximum spectrum occupancy is assumed [42].
From (1.30), it can be shown that the spectrum of the incoming signal, i.e. Y (f) =∫ +∞
−∞ y(t)e−j2πftdt, and that attained from the samples in the ith branch are related via

Y d
i (f) =

+∞∑

m=−∞

yi[m]e−j2πf((mMb+%i)TNyq) = BC

L−1∑

n=−L

Y (f + nBC) ej2π%in/Mb (1.33)

such that f ∈ B̂, B̂ = [0, BC ], y(t) is real and Mb = 2L. It is noted that (1.33) incorporates
a frequency point per monitored spectral subband. Subsequently, we can write

y(f) = Ax(f), f ∈ B̂ (1.34)

where y(f) is a vector of length mb combining all
{
Y d

i (f)
}mb

i=1
. The (i, k)th entry of the

mb × Mb matrix A is BCej2π%ik/Mb and x(f) contains the Mb sought unknowns for each
frequency f , i.e. {Y (f + nBC)}L−1

n=−L. To fully recover the signal’s infinite resolution spec-

trum, equation (1.34) has to be solved for f ∈ B̂ where x(f) is sparse since only few of the
subbands are simultaneously active. The resulting infinite number of equations in (1.34) for
{y(f), f ∈ B̂} is referred to as an Infinite Measurement Vector (IMV). It is reasonable to
assume that the set of all vectors {x(f), f ∈ B̂} have common support since the non-zero
values for each f pertain to the same active subbands [42]. Sampling patterns that permit
the exact recovery of Y (f) and thereby the underlying continuous-time signal from its mul-
ticoset samples were studied in [57]; searching all possibilities is a combinatorial problem.
In [53], signal reconstruction from its multicoset samples was introduced within the com-
pressed sampling framework. Let the support set defined by K = {i : Y (f + iBC) 6= 0, f ∈
B̂, i = −L,−L + 1, ..., L− 1} be the indices of the KS 6 2LA active subbands and |K| = KS

(positive and negative frequencies are included). For the wideband spectrum sensing prob-
lem, unveiling the unknown K suffices. The Continuous To Finite (CTF) algorithm/block
robustly detects K and reduces the IMV to a MMV of finite dimensions via

V = AU (1.35)

where frame Q = VVH can be constructed using Q =
∑

f∈B̂ y(f)yH(f) from roughly 2KS

snapshots of y(f) [42, 53]. The decomposition performed to attain V from Q minimises
the impact of the present noise in the received signal where y[m] = x[n] + w[n] and x[n]
represents the active transmissions. The received signal y(t) in (1.33) is presumed to consist
of noiseless transmissions to simplify the notation. Assuming that the conditions in (1.31)
and (1.32) are satisfied, it is shown in [53] that the underdetermined system in (1.35) has
a unique solution matrix U0 with the minimal number of non-identically zeros rows. The
indices of the latter rows coincide with the support set K, which in turn reveals the occupied
system subbands. A block diagram of the continuous to finite module is depicted in Figure



1.3. COMPRESSIVE SUB-NYQUIST WIDEBAND SENSING 27

1.11. Its input y(f) is the DTFT or FFT of the data samples produced in all the MCS
branches. As well as accomplishing multiband detection, the CTF module plays a critical
role in recovering the detected transmissions at the secondary user for postprocessing tasks,
if required [42, 53]. Other approaches to the IMV problem exist, e.g. MUSIC-type algo-
rithms [55]. An interesting discussion on the correlation and relationship between the initial
work on MCS and CS is given in [58].
Therefore, the MCS facilitates wideband spectrum sensing with substantially low sub-Nyquist
sampling rates and αMCS � fNyq in the low spectrum utilisation regime, i.e. LA � L . The
CTF algorithm can also significantly reduce the sub-Nyquist MSS computational complex-
ity as the sensing matrix A in (1.35) is of fixed dimension mb × Mb for an infinite spectral
resolution. On the contrary, directly applying CS with DFT sparsifying basis/frame to the
detection problem, e.g. CS-1, yields sensing matrices whose dimensions grow proportional
to the sought resolution. Nevertheless, implementing multicoset sampling involves accurate
time interleaving among the mb relatively slow uniform samplers that directly process the
incoming wideband signal. This necessitates a high bandwidth track and hold sampling
device, which is difficult to build and might require specialised fine-tuned ADCs [54]. Main-
taining accurate time shifts in the order of 1/fNyq as per (1.10) is challenging to realise in
hardware, especially for fNyq in excess of several GHz. Inaccurate-shifts can notably degrade
the quality of the spectrum recovery.

1.3.2 Modulated Wideband Converter

The MWC data acquisition system depicted in Figure 1.9b aims to exploit advances in the CS
field and circumvents the MCS drawbacks [54]. It is comprised of mb bank of modulators and
low-pass filters. In the ith branch, i = 1, 2, ..,mb, the received signal y(t) is multiplied by a
periodic chipping waveform pi(t) of period Tp. The modulated output ỹi(t) = y(t)pi(t) is low-
pass filtered and subsequently sampled at a sub-Nyquist sampling rate equal to fUS = 1/TUS ;
the analogue filter cut-off frequency is 0.5fUS . To be able to recover the spectrum of the
sampled signal or identify the active subbands, a typical MWC configuration imposes

fb =
1

Tp

> BC , fMWC
US > fp, αMWC > 4LABC (1.36)

Figure 1.11: Block diagram of the CTF module utilised in the MCS and MWC systems [54].
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as the frequency of the periodic waveform, uniform sampling rate per branch and the mod-
ulated wideband converter overall average sampling rate, respectively. This implies that

mMWC
b > 4LA (1.37)

sampling channels are required for fUS = BC . With MWC, the number of deployed modula-
tors mb can be reduced at the expense of increasing the uniform sampling rate per branch [54].
It can be shown that the DTFT of the samples in the ith branch is given by

Y d
i (f) =

+∞∑

m=−∞

yi[m]e−j2πfmTUS =

L0∑

n=−L0

ci,nY (f − nfp), f ∈ B̃ (1.38)

where B̃ = [−0.5fUS, 0.5fUS ] is the range dictated by the low pass filter. The coefficients ci,n

in (1.38) are the Fourier expansion coefficients of pi(t) such that ci,n = fp

∫ Tp

0
pi(t)e

−j2πnt/Tpdt.
To ensure that the 2L overseen subbands (including negative frequencies) are present in
Y d

i (f), we have L0 = d0.5Tp(fNyq + fUS)e − 1 = L for fp = BC . The mixing periodic
function pi(t) should have a transition speed fTran & fNyq within Tp, i.e. Tp is divided into
MPS > 2L+1 slots within which the chipping sequence can alter its values. Equation (1.38)
leads to

y(f) = Bx(f), f ∈ B̃ (1.39)

where y(f) is a vector of length mb with the ith element being Y d
i (f). The (i, n)th entry of

mb × 2L0 + 1 matrix B is the ci,n Fourier coefficient and the entries of vector x(f) are the
sought {Y (f − nfp)}

L0
n=−L0

for f ∈ B̃. It is noticed that the multicoset sampling formulation
in (1.34) and that of the MWC in (1.39) are very similar. Thus, the CTF algorithm is also
utilised in the MWC system and similar performance guarantees are derived in [54]. We note
that the CTF in MWC is less computationally demanding compared with MCS. Constructing
frame Q in MWC does not involve interpolating the slow sub-Nyquist data streams where
Q =

∫
f∈B̃ y(f)yH(f)df =

∑+∞
m=−∞ ȳ[m]ȳT [m] and ȳ[m] = [y1[m], y2[m], ..., ymb

[m]]T .
In principle, any periodic function, i.e. pi(t) = pi(t + Tp), with low-mutual correlation and
high-speed transitions exceeding fNyq is admissible. A popular choice is the sign altering
function with MPS sign intervals within Tp; other sign patterns can be used [42]. This
flexibility is crucial and the high speed chipping signals can be easily generated using a
standard shift-register. Synchronising the mb uniform samplers can be enforced by driving
all samplers from a single master-clock. The low-pass filters in MWC do not have to be
ideal since mismatches, e.g. rugged filter response(s), can be compensated for in the digital
domain [42]. They also limit the bandwidth of the digitised signal in each of the system
branches to approximately ±BC , i.e. off-the-shelf ADCs can be employed. In general, the
MWC is robust against noise and model mismatches compared with RD and MCS. Similar
to the latter, the lower bound on the modulated wideband converter sub-Nyquist sampling
rate implies αMWC � fNyq for low spectrum occupancy. Since the objective here is MSS,
recovering the signal’s spectral support using the CTF block is sufficient. Finally, it can
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Figure 1.12: Block diagram of the MASS-based sub-Nyquist multiband detection system [60].

be noticed that the MWC consists of a bank of random demodulators. The relationship
between the RD and MWC is thoroughly treated in [59].

1.3.3 Multirate Asynchronous Sub-Nyquist Sampler

The MASS system in Figure 1.12 was proposed in [60] as a CS-based multiband detection
approach. It utilises a bank of q uniform samplers each running at a distinct sub-Nyquist
sampling rate fUS,i, i = 1, 2, ..., q. Most notably, the MASS does not impose synchronisation
among its q channels, i.e. asynchronous. Let TST be the width of the signal observation
window (in seconds) and M = {Mi}

q
i=1 is the set encompassing the number of captured

uniform samples in all the system branches. Thus, the multirate approach average sampling
rate is: αMASS =

∑q
i=1 fUS,i = M/TST and M =

∑q
i=1 Mi is the total number of collected

measurements. The aim is to achieve M � N such that N = bTST fNyqc denotes the number
of Nyquist samples and fNyq = 2B. In a typical MASS configuration, we have

Mi = ρ̃i

√
N, Mi ∈ M, ρ̃i ∈ P, M1 < M2 ∙ ∙ ∙ < Mq (1.40)

where P is the set of prime numbers and the chosen measurements numbers in M usually
have consecutive values. Both M and q dictate the achieved compression ratio N/M .
According to Figure 1.12, discrete Fourier transform or FFT is applied in each sampling
branch and the absolute value of the resultant is taken. Let Y d

Nyq(f) =
∑N−1

n=0 y(nTNyq)e
−j2πfnTNyq

be the discrete-time Fourier transform of the incoming wideband signal sampled at the
Nyquist rate and TNyq = 1/fNyq. It can be shown that the relationship between the DFT
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from the Mi measurements in the ith branch and Y d
Nyq(f) can be expressed by

Y d
i [m] =

Mi

N

b0.5Nc∑

n=−b0.5Nc

Y d
Nyq[n]

+∞∑

l=−∞

δ[n − (m + lMi)], m ∈ [−b0.5Mic , b0.5Mic] (1.41)

such that δ[n] is a Kronecker delta. By expressing (1.41) in a matrix format, we can write

yi = Cif (1.42)

where yi ∈ CMi×1 is output of the FFT block in the ith sampling channel, Ci ∈ RMi×N is the
sensing matrix and f ∈ CN is the sought signal spectrum. The (m,n)th entry of Ci is given by
Mi

N

∑+∞
l=−∞ δ[n − (m + lMi)]. This implies that each column of the sensing matrix contains

only one non-zero value equal to Mi/N and in each row the maximum number of non-zero
entries is dN/Mie. Whilst fNyq guarantees no aliasing is present in Y d

Nyq(f), the sub-Nyquist
rates in each of the MASS branches wrap the wideband signal spectrum content onto itself
in Y d

i [m]. Nonetheless, the sparsity constraint ‖f‖0 6 KS and the operating conditions set
in (1.40) ensure that the probability of a spectral overlap is very small [26]. By aggregating
the data from all the q system branches, we can write

y̆ = C̆f̆ (1.43)

where y̆ = [|yi| , |y2| , ..., |yq|]
T and C̆ = [C1,C2, ..., Cq]

T are the concatenated absolute
values of the FFT outputs and the associated disjoint sensing matrices, respectively. It
is noted that y̆ ∈ RM×1 and C̆ ∈ RM×N can be of high dimensions since M =

∑q
i=1 Mi.

Whereas, the sought sparse real vector is f̆ = |f | and determining the spectrum magnitude at
a resolution of 1/N accomplishes the MSS task. The spectrum recovery block in the MASS
system entails solving (1.43) using one of the standard sparse recovery algorithms from the
CS literature. The energy per subband can be subsequently measured to establish its status.
It is shown in [26] that f̆ can be reliably reconstructed from (1.43) provided that

qMASS > 2KS − 1. (1.44)

sampling branches are employed. For low spectrum utilisation, i.e. KS � N , the multi-
rate asynchronous sub-Nyquist sampling detector can substantially reduce the sampling rate
where M ∼ O(KS

√
N).

Whilst MASS is asynchronous, its computational complexity can be high given the sizes
of the handled matrices. Nevertheless, it circumvents the need for specialised analogue
preconditioning modules as in the RD, MCS and MWC systems that can render the CS
sampler inflexible and expensive. Most importantly, MASS is particularly amenable to be
implemented by spatially distributed CRs. Each radio can have one (or a few) sampling
channel(s) and transmits its Mi measurements to a fusion centre; i.e. soft combining. Since
synchronisation among different channels is not required, SUs do not need to share their sens-
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ing matrices. The latter aspect is a limiting factor for implementing other CS approaches
across a network since each row of their sensing matrix is uniquely generated (e.g. chipping
sequences, etc.) and synchronisation among the collaborating radio is essential to ensure a
reasonable detection/spectrum-recovery quality. Thus, MASS can effectively leverage spatial
diversity in CR networks.

1.3.4 Remarks on Compressed Sampling Detectors and Other Techniques

The original MCS and MWC design objective is to be able to fully recover the processed
multiband signal x(t) from its sub-Nyquist samples. For the wideband spectrum sensing
task, their average sampling rates are bounded by α ≥ 4LABC = 2fLandau (the maximum
expected spectrum occupancy is assumed). Additionally, the other addressed CS detection
techniques levy similar requirements by requesting M ∼ O(κKS) measurements in Tj . The
spectrum sparsity level denoted by KS ∼ O(2LABC) depends on the spectral resolution and
the constant κ is typically significantly larger than 2 as in MASS.
If the final goal is multiband detection for cognitive radio, full signal reconstruction is not
necessary. This can ease the data acquisition requirements and even alleviate the sparsity
constraint on the overseen spectrum [61–63]. These two advantages can be acquired by
formulating the detection problem in terms of recovering the power spectral density of the
received wideband signal, which is assumed to consist of K 6 L wide sense stationary
transmissions. Energy in each system subband can be subsequently measured to determine
the channel’s status, see Figure 1.8. It is shown in [63] that the MCS and MWC systems
permit the exact recovery of the incoming signal PSD (not the underlying signal realisation)
when its average sampling rate satisfies

αSC > 2LABC , LA � L (1.45)

assuming sparse spectrum. Hence for low spectrum utilisation, the sampling rate can be half
of that imposed by the original MCS and MWC systems. In this case, the computationally
efficient CTF algorithm can be used. Most remarkably, a sampling rate exceeding

αNSC > 0.5fNyq (1.46)

is sufficient for non-sparse signals . This implies that the sampling rates of the multiband
detector can be as low as half of the Nyquist rate even for high spectrum occupancy, i.e.
the joint bandwidth of the simultaneously active system channels can be arbitrarily close
to the total overseen bandwidth. Since majority of the CS-based detectors are prone to
interference and noise uncertainty, a CS-based feature detector is proposed in [64]. It is
robust against such adverse effects and exploits the cyclostationarity feature of the incoming
transmissions assuming that their 2-D cyclic spectrum is sparse. Its main ideas are derived
from the classical cyclostationary detector described in Section 1.1.1.
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In summary, CS facilitates performing parallel wideband spectrum sensing at significantly
low sub-Nyquist sampling rates, i.e. mitigates the faced data acquisition rate limitation. This
comes at the expense of more complex processing techniques, e.g. sparse recovery algorithms
that can be highly nonlinear, and specialised hardware to precondition the digitised signal.
There are several remaining challenges that require further analysis, e.g. devising flexible CS
samplers, effect of noise on CS-based detector, model-based recovery techniques that take
the communication signal structures into account, efficient implementations, to name a few.

1.4 Alias-free Sampling for Sub-Nyquist Wideband Sensing

The sampling process, which converts a continuous-time signal x(t) into its discrete-time
representation x(tm), is typically modeled by

x(tm) = x(t)s(t), m ∈ Z, (1.47)

as depicted in Figure 1.13. The sampling signal s(t) =
∑

m∈Z δ(t− tm) comprises an infinite
series of Dirac delta pulses positioned at the data acquisition time instants {tm}m∈Z. In
classical DSP, uniform sampling is utilised and the captured measurements are equidistant,
i.e. tm = mTUS = m/fUS . The multiplication in (1.47) translates into a convolution in the
frequency domain and the power spectral density of the sampled waveform is given by

Pd
X(f) = PX(f) ∗ PS(f) (1.48)

where PX(f) is the PSD of the processed wide sense stationary signal and PS(f) is the
spectrum of the sampling signal. For uniform sampling, it can be shown that PS(f) =
fUS

∑
n∈Z δ(f − nfUS) and the spectrum of the discrete-time signal can be expressed by

Pd
X(f) = fUS

∑

n∈Z

PX(f − nfUS). (1.49)

It is made up of identical copies (i.e. aliases) of the continuous-time signal spectrum PX(f)
shifted by multiples of the uniform sampling rate.
Assume that a transmission xl(t) occupies an unknown spectral band Bl, |Bl| = BC , within
the overseen frequency range B of total width B = LBC . If fUS < fNyq (fNyq = 2LB),
more than one spectral replica PXl

(f − nfUS), n ∈ Z of the transmission will be present in
Pd

X(f). Without prior knowledge of the Bl position, we have no means of identifying which
of the overseen system subbands is truly occupied by examining the spectrum of sampled
signal, i.e. Pd

X(f). The simultaneous presence of more than one transmission will lead to
overlap among their replicas in B rendering multiband detection infeasible when fUS < fNyq.
This lack of ability to unambiguously identify the spectral component(s) of the underlying
continuous-time signal from the spectrum of the sampled data is referred to as spectrum
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aliasing, which can cause irresolvable processing problems. Sampling above the Nyquist rate
eliminates aliasing phenomenon and satisfies the Shannon sampling theorem requirements
to fully recovers x(t) from x(mTUS), m ∈ Z. If the position of the sole active subband is
known in advance, bandpass sampling can be used and fUS > 2BC suffices [21]; this is not
the case in wideband spectrum sensing.
Nonuniform Sampling (NUS) poses as an alternative data acquisition approach that offers
additional flexibility and new opportunities due to its potential to suppress spectrum alias-
ing. It intentionally uses nonuniformly distributed sampling instants unlike scenarios where
the irregularity of the collected measurements is viewed as a deficiency, e.g. inaccessibility
of the signals in certain periods, hardware imperfections, etc. Here, we consider randomised
nonuniform sampling (RNUS) that can be regarded as an aliasing repression measure. It
promotes performing wide multiband detection at remarkably low sub-Nyquist rates as illus-
trated in [65–68]. The utilisation of randomised sampling in conjunction with appropriate
processing algorithms, e.g. adapted spectrum estimators, to eliminate/suppress the effect of
aliasing is a methodology referred to as Digital Alias-free Signal Processing (DASP). Few
monographs on the topic exist, e.g. [69–73].
In Figure 1.14, a CR is surveying the frequency range [0 .5, 1] GHz by estimating the spec-
trum of incoming signal using the sub-Nyquist sampling rate α = 96 MHz. A single PU
transmission residing in Bl = [780, 800] MHz is present; its location is unknown to the CR.
With uniform sampling, replicas of the single transmission are spread all over B as shown in
Figure 1.14a. They are indistinguishable from one another and most of the overseen spectral
subbands can be erroneously regarded as occupied. In Figure 1.14b where RNUS is em-
ployed, the previously observed stiff-coherent aliasing is no longer present. It is significantly
suppressed and instead a broadband white-noise-component is added. The latter is known
by smeared or incoherent aliasing and it does not hinder the correct identification of the
active subband(s) as evident from Figure 1.14b. This demonstrates the aliasing-suppression
capabilities of randomised sampling, which is leveraged here to devise effective sub-Nyquist
multiband detection routine. Next, we briefly discuss the notion of alias-free sampling, list
few RNUS schemes and introduce the DASP-based detection.

Figure 1.13: An ideal sampler and for uniform sampling tm = mTUS .
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(a) Uniform sampling. (b) Random nonuniform sampling.

Figure 1.14: Estimated spectrum within the overseen wideband [0 .5, 1] GHz from {x(tm)}M
m=1

captured at α = 95 MHz. One transmission is present (solid-line) at an unknown location.

1.4.1 Alias-free Sampling Notion

The alias-free behaviour is typically related to the spectral analysis of a randomly sampled
signal, e.g. x(t), e.g. estimating the PSD PX(f) from {x(tm)}M

m=1, rather than to recon-
structing [69, 70, 72, 73]. As per (1.48), the total elimination of spectral aliasing is achieved
when

PS(f) = δ(f). (1.50)

Early papers on alias-free sampling, e.g. [74], showed that (1.50) can be fulfilled and PX(f)
can be exactly estimated from arbitrarily slow nonuniformly distributed signal samples col-
lected over infinitely long periods of time. Literal alias-free behavior is only observed in
asymptotic regimes, i.e. as M tends to infinity. In practice, the signal is analysed for a
limited duration of time |Tj| = TW and M is finite. Thus, eradicating spectrum aliasing is
unattainable and the benign smeared-aliasing component is typically sustained. As a result,
several criteria were proposed in the literature to affirm the alias-free nature of a RNUS
scheme for a finite TW [69, 70, 72]. For example, a scheme is alias-free if it satisfies the
following stationarity condition [72]

M∑

m=1

pm(t) = α (1.51)

such that pm(t) is the Probability Density Function (PDF) of the sampling instant tm. The
average sampling rate is defined by α = M/TW and Tj = [τi, τi + TW ]. Different alias-free
criteria can lead to contradicting assessment results for the same scheme.
In the context of the studied wideband spectrum sensing problem, alias-free sampling and
processing simply refers to the ability of the randomised sampling scheme and the deployed
estimator to sufficiently attenuate spectrum aliasing within the overseen wide frequency
range B. As long as this suppression permits the reliable identification of the active system
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subbands, the sampling process is deemed to be suitable. We acknowledge that the term
alias-free can be misleading since Pd

X(f) in practice can never be completely free of aliasing.

1.4.2 Randomised Sampling Schemes

Below, we outline a number of data acquisition strategies that are typically used in DASP
and are adequate for the MSS task. Each scheme has its own spectrum aliasing suppression
characteristics necessitating separate analysis as noted in [70,72].

A. Total Random Sampling (TRS): its concept is drawn from Monte-Carlo integration over a
finite integral. All the M sampling instants of a TRS sequence are Independent Identically
Distributed (IID) random variables. Their PDFs {pm(t)}M

m=1 have non-zero values only
within the signal time analysis window Tj , and for a uniform prior case they are given by

pm(t) =

{
1/TW t ∈ Tj

0 elsewhere, m = 1, 2...,M.
(1.52)

B. Random Sampling on Grid (RSG): it randomly selects M samples out of the total Ng

possible sample positions that can be in general arbitrarily distributed within Tj . For
simplicity, let the nominal time-locations be Tg = 1/fg apart, i.e. form an underlying
uniform grid. Any of the grid points can be selected only once with equal probability and(

Ng

M

)
possible distinct sampling sequences of length M exist. Typically, we set fg = fNyq

and Ng = N = bTW fNqyc. The random sampling on grid scheme accommodates the
practical constraint of having a minimum distance between any two consecutive samples.

C. Stratified Random Sampling (SRS): it divides Tj into NS disjointed subintervals, i.e.
{Sk}

NS

k=1 where Tj = ∪NS
k=1Sk. Let Mk be the number of collected samples in stratum

Sk and M =
∑NS

k=1 Mk is the total number of measurements. Various methods exist for
choosing the number of samples per subinterval. For simplicity, assume Mm = 1 and the
PDF of the M random independent sampling instants is given by

pm(t) =

{
1/ |Sm| t ∈ Tj

0 elsewhere, m = 1, 2...,M.
(1.53)

Choosing |Sm|, e.g. to improve the spectrum estimation quality, demands a priori knowl-
edge of the processed signal. A practical approach is to assume equal subintervals
|Sk| = TW /M = 1/α, i.e. Stratified Sampling with Equal Partitions (SSEP). Figure
1.15 depicts a realisation of an SSEP sequence. Another popular SRS scheme is the an-
tithetical stratified sampling where Mm = 2 and these two samples are equidistant from
the stratum centre.
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Figure 1.15: An SSEP sequence (crosses are the sampling instants). For two ADCs, samples
collected by ADC 1 and 2 are {c1,1, c1,2, ...} and {c2,1, c2,2, ...} seconds apart, respectively.

D. Jittered Random Sampling (JRS): it can be expressed as the intentional departure of
the sampling instants from their nominal uniform sampling grid. It is modeled by:
tm = mTUS + εm, m = 1, 2, ...,M where TUS is a sub-Nyquist uniform sampling pe-
riod and {εm}

M
m=1 are zero mean IID random variables with a PDF pε(t). The PDF of

the mth sample point is pm(t) = pε(t−mTUS). Uniform and Gaussian PDFs with varying
widths/variances are among the common choices of pε(t).

E. Additive Random Sampling (ARS): its sampling instants are described by: tm+1 = tm +
εm, m = 1, 2, ...,M where {εm}

M
m=1 are zero mean IID random variables with a PDF

pε(t). ARS is one of the earliest alias-free schemes and was proposed in [74]. Its mth

sampling instant is the sum of m IID random variables and hence its PDF is given by

pm =
m
~pε(t), m = 1, 2, ...,M (1.54)

where
m
~ is the m− fold convolution operation. Steps {εm}

M
m=1 often have a Gaussian or

Poisson distribution. In [70], correlated {εm}
M
m=1 is suggest as a means to improve the

ARS aliasing-suppression impact, i.e. correlated ARS.

There are plenty of other DASP-oriented randomised and deterministic nonuniform sampling
schemes. For example, a data acquisition driven by the level of the processed signal, i.e.
zero crossing and level crossing sampling, and the previously discussed multicoset sampling
scheme. The MCS aliasing-suppression characteristics is studied in [75].

1.4.3 Reliable Alias-free Sampling Based Multiband Spectrum Sensing

The proposed DASP-based sub-Nyquist wideband spectrum sensing approach relies on non-
parametric spectral analysis similar to the majority of parallel sensing methods. It can be
represented by the block diagram in Figure 1.8 and involves the following three steps: 1)
randomly sample the incoming signal at a rate α � fNyq, 2) estimate the spectrum of the
multiband signal at selected frequency points and 3) compare the estimation outcome with
pre-set thresholds. Revealing the status of the overseen L system subbands does not require
determining the details spectral shape within B. This premise is exploited here and esti-
mating a frequency representation that facilitates the multiband detection task is pursued
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(i.e. not necessarily the signal’s exact power spectral density).
The DASP-based detector adopts the periodogram-type spectrum estimator given by

X̂NUS (fn) =
J∑

j=1

β

∣
∣
∣
∣
∣

M∑

m=1

y(tm)wj(tm)e−i2πfntm

∣
∣
∣
∣
∣

2

(1.55)

where β is a scalar dependent on the sampling scheme and the processed signal is assumed to
be wide sense stationary. The M nonuniformly distributed measurements are contaminated
with AWGN, i.e. {y(tm) = x(tm) + n(tm)}M

m=1. They are collected within a time analysis
window Tj = [τj , τj + TW ]. The total signal observation window or sensing time is given by
TST =

∣
∣∪J

j=1Tj

∣
∣ and the average sampling rate is αNUS = M/TW . The windowing function

wj(t) is introduced to minimise spectral leakage where wj(t) = w(t) for t ∈ Tj and wj(t) = 0
for t /∈ Tj . Recalling that spectrum sensing does not require determining the signal exact
PSD, X̂NUS (f) is shown to yield a frequency representation that facilitates MSS regardless of
the value of α [65–68,70]. It is noted that the statistical characteristics of (1.55) is dependent
on the randomised sampling scheme, i.e. the PDFs of the sampling instants. To demonstrate
the suitability of (1.55) to the detection task, assume that {tm}

M
m=1 are generated according

to the total random sampling scheme and J = 1. It can be shown that

C(f) = E
[
X̂NUS (f)

]
=

M

(M − 1)α

[
PS + σ2

w

]
+

1

EW

PX(f) ∗ |W (f)|2 (1.56)

where β = M/(M − 1)EW , EW =
∫ τj+TW

τj
w2(t)dt is the energy of the employed windowing

function w(t), W (f) =
∫ +∞
−∞ w(t)e−i2πftdt and PX(f) is power spectral density of the present

transmissions. The powers of the processed multiband signal and measurements noise are
denoted by PS and σ2

w, respectively. From (1.56), C(f) consists of a detectable feature given
by the signals windowed PSD, i.e. PX(f) ∗ W (f)/EW , plus a component that represents
the smeared-aliasing phenomenon. Unlike the stiff-coherent spectrum aliasing experienced in
uniform sampling, M [PS + σ2

w] /(M−1)α is a frequency-independent component and merely
serves as an amplitude offset. It does not hamper the sensing operation, see Figure 1.14.
Therefore, X̂NUS (f) is an unbiased estimator of C(f), a detectable frequency representation
that allows unveiling any activity within the monitored bandwidth. The width of Tj is
chosen such that the distinguishable spectral features of the active subband(s) are reserved
by PX(f)∗W (f)/EW and the spectral leakage is kept below a certain level. Similar to the CS-
2 method and to minimise the sensing routine computational complexity, one frequency point
per system spectral channel can be inspected to decide between H0,l and H1,l. To maintain
relatively smooth spectrographs, TW ≥ c/BC , c > 1 serves as a practical guideline [65].
The average sampling rate α and the number of averaged estimates J are the available
design parameters that can restrain the level of estimation error in X̂NUS (f); the variance
expressions should be derived to evaluate the estimation accuracy. To ensure satisfying
certain probabilities of detection and false alarm, i.e.PFA,l 6 ρl and PD,l ≥ ηl, l = 1, 2, ..., L,
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(a) Fixed α = 56 MHz and varying detection requirements. (b) PFA,l ≤ 0.08 and PD,l ≥ 0.965.

Figure 1.16: Recommended minimum SSEP sensing time for BA/B = 0.1.

prescriptive guidelines can be attained for the DASP-based detection. They are based on
the statistical analysis of the undertaken spectrum estimation. Closed form formulas are
presented in [65–68] for a number of RNUS schemes illustrating that the sensing time is a
function of the sampling rate, signal to noise ratio, maximum spectrum occupancy BA and
requested system probabilities PD and PFA, thus

TST > F (α,PD,PFA, BA, SNR) . (1.57)

Such recommendation clearly depict the trade-off between the sensing time, sub-Nyquist
sampling rate and achievable detection performance. Assuming transmissions of equal power
levels, system subbands of identical performance requirements (PFA 6 ρ and PD ≥ η) and
non-overlapping signal windows, the SSEP randomised scheme has

TST >

{
2BAQ−1(ρ)(1 + SNR−1) − Q−1(η)

[
2BA(0.5 + SNR−1) + α

]

(α − BA)/TW

}2

. (1.58)

Most of all, the provided MSS reliability guidelines, e.g. (1.58), affirms that the DASP-
based detector sampling rate can be arbitrarily low at a predetermined additional sensing
time and vice versa. Hence, there is no lower bound on the sampling rate on contrary to
the compressive sensing counterpart. Different NUS schemes have different properties and
guidelines in form of (1.57) can be procured. In Figure 1.16, we display the impact of the
sub-Nyquist sampling rate α, requested ROC probabilities and SNR on the sensing time TST

when the overseen frequency range is of width B = 100 MHz and BA = 5 MHz (L = 20
and BC = 5 MHz). This figure can give a system designer the necessary tools to assess the
requirements and viability of the sub-Nyquist multiband detector.
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Figure 1.17: A way to realise a nonuniform sampler using conventional ADC(s) driven by a
clock with irregularly spaced rising edges.

1.4.4 Remarks on Nonuniform Sampling Based Spectrum Sensing

Each nonuniform sampling scheme exhibits distinct spectrum aliasing suppression capa-
bilities depending on the utilised spectral analysis tool, clearly more advanced estimation
methods can used [73]. However, the simplicity of the periodogram and the fact that its
main building block is an FFT/DFT makes it particularly appealing for spectrum sensing in
CRs. A key limitation of RNUS is its implementation feasibility. Certain schemes are more
amenable to be realised using off-the-shelf components than others. For example, the strati-
fied sampling scheme can be implemented using two or more interleaved conventional ADCs
each running at significantly low sub-Nyquist rate as shown in Figure 1.15. Instead of col-
lecting a data sample every TUS seconds, the sampler collects measurements at nonuniformly
distributed time instants dictated by a pseudorandom generator that drives the ADC. For
SSEP with two ADCs in Figure 1.15, ADC 1 and 2 capture the sampling instants with odd,
i.e. {t1, t3, ...} and even, i.e. {t2, t4, ...}, indices, respectively. Figure 1.17 exhibits a sampler
architecture that generates irregularly spaced signal measurements. Synchronisation among
the interleaved ADCs can have a marginal effect on the detection quality since randomness is
an integrated part of the proposed sampler. Novel ADC architectures that support random
sampling are emerging, e.g. [71, 76].
Similar to the classical energy detector, the proposed DASP-based sensing is not immune
against interference and noise level uncertainties. However, the threshold values that limit
its PFA,l is a function of the combined overall signal and noise powers, i.e. γl = F (PS + σ2

w)
in lieu of γl = F (σ2

w) as in uniform-sampling-based multiband energy detector [77]. This can
render the DASP-based detectors more resilient to noise estimation errors as the combined
signal plus noise powers can be continuously measured at the receiver using a cheap analogue
integrator. It is noted that nonuniform-sampling-based feature detectors that can be robust
against noise and interference effects remain an explored area outside the CS framework.
To preserve the reconstrutability of the detected transmissions, the sampling rates α should
exceed at least twice the total bandwidth of the concurrently active subbands, i.e. α ≥
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fLandau = 2BA. Despite the fact that the DASP methods can operate at sub-Landau rates,
in practice α should be proportional to joint bandwidth of the simultaneously active chan-
nels regardless of the total width of monitored frequency range bandwidth B. Prior to the
emergence the compressive sensing methodology, a range of signal reconstruction techniques
were available to recovery signals from their nonuniformly distributed measurements, e.g.
see [78]. They are customarily based on minimising the `2 Euclidean norm of the recovery
error. Since the signal spectrum is typically sparse, CS reconstruction algorithms can be
applied and they are expected to outperform an `2-based ones.
At this juncture, it can be argued that RNUS is a possible CS data acquisition approach
and that DASP belongs to the general compressive sensing framework. This can be the case
for certain sampling schemes, such as multicoset sampling and random sampling on grid.
However, the CS impeccable performance guarantees can levy over-conservative sampling
requirements and have a limited scope. They are often applicable to abstractly constructed
sensing matrices. Above all, the fundamental difference between DASP and CS method-
ologies is in their sought objectives and the utilised processing techniques to extract the
pursued signal information. Whilst the former takes advantage of the incoherent spectrum
aliasing of a nonuniformly sampled signal and uses a relatively simple spectrum estimators,
compressive sensing focuses on the exact signal reconstruction and uses rather complex re-
covery techniques. This serves as a impetus to further research into a unified sub-Nyquist
framework for the multiband detection problem.

1.5 Comparison of Sub-Nyquist Spectrum Sensing Algorithms

Below, we succinctly compare the considered sub-Nyquist multiband spectrum sensing ap-
proaches and evaluated the detection performance of a number of selected techniques.

1.5.1 Compressed Versus Alias-free Sampling for Multiband Detection

Performance Guarantees and Minimum Average Sampling Rates

Whilst CS provides performance guarantees in terms of the quality of the reconstructed
spectrum (e.g. Fourier transform or PSD), the achieved multiband detection quality (e.g.
in terms of probabilities of detection and false alarm) is not typically addressed. The time
consuming Monte Carlo simulations are commonly used to examine the performance of the
CS-based wideband spectrum sensing algorithm. On the contrary, DASP offers clear guide-
lines on the attainable detection quality and equips the user with perspective recommenda-
tions on how to ensure meeting certain sensing specifications, i.e. reliable MSS routine. Both
CS and DASP, sampling rates are affected by the level of spectrum occupancy, i.e. sparsity
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level. However, the DASP minimum admissible sampling rates can be arbitrarily low at
a predetermined cost of longer sensing time and vice versa. In CS, α has a lower bound
and the impact of the sensing time on the multiband detection operation is unpredictable.
Hence, DASP-based detectors are more suitable candidates when substantial reductions on
the data acquisition rates are pursued.

Computational Complexity

The main attributes of the DASP-based wideband sensing is simplicity and low computa-
tional complexity; it only involves DFT or optimised FFT-type operations. Whereas, the
CS-based techniques entail solving underdetermined sets of linear equations. This is usually
computationally expensive even for state-of-the-art sparse recovery methods. It is noted
that multicoset-sampling and MWC techniques adopt a more efficient approach to spectrum
sensing compared with other CS methods such as CS-1 and MASS. They utilise the CTF
algorithm where the processed matrices are approximately of size mb × 2L in lieu of M ×N

; N � L > mb is the number of Nyquist samples in the signal time analysis window and it
can be very large.

Postprocessing and Related Cognitive Radio Functionalities

Alias-free sampling facilitates spectrum sensing at low sub-Nyquist rates and in its cur-
rent formulation does not offer a means to estimate the signal power spectral density or
power level. Nonetheless, it can be argued that the present smeared-aliasing can be eas-
ily determined and subsequently removed to establish the underlying transmissions PSDs.
On the other hand, compressed-sampling-based multiband detectors can exactly recover the
signal spectrum. Estimating the signal power level in a particular active system subband
can be important in CR networks to characterise the primary users, SU transmission power
control and avoid detrimental interferences. Additionally, the received multiband signal at
the CR incorporate PU and other CR opportunistic transmissions. The ability to recon-
struct the signal from the collected sub-Nyquist samples enables the secondary user to both
sense the spectrum and intercept/receive communications as in standard receivers. Advance
in compressive sensing reconstruction algorithms can be leveraged, possibly even for the
randomised-nonuniform-sampling-based detection.

Implementation Complexity

CS and DASP face similar implementation challenges where pseudorandom sampling se-
quences is commonly used as a compression strategy. Certain CS approaches that do not
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utilise the aforementioned pseudorandom sampling were implemented and prototype systems
were produced, e.g. MWC and RD. Nevertheless, they require complex specialised analogue
pre-conditioning modules prior to the low rate sampling (see Figures 1.7 and 1.9). Their
subsequent processing can be also sensitive to sampler mismodeling. Thus such solutions
are inflexible and are high Size, Weight, Power and Cost (SWPAC). Designing flexible low
SWPAC sub-Nyquist samplers remains an open research question. It is noted that some
nonuniform sampling schemes, e.g. random sampling on grid, are used in compressive sens-
ing. The CS analogue to information converter in this case is a random time-domain sampler
and the sensing matrix Υ is random partial Fourier matrix [42].

1.5.2 Numerical Examples

Consider a scenario that involves a SU monitoring L = 160 subbands, each of width
BC = 7.5 MHz and known central frequency, in search of a spectrum opportunity. The
overseen frequency range is B = [0, 1.2] GHz and the processed total single-sided band-
width is 1.2 GHz. According to the Nyquist criterion, the sampling rate should be at least
fNyq = 2.4 GHz. Let the the maximum expected number of concurrently active subbands
at any point in time or geographic location be LA = 8, i.e. the maximum occupancy is 5%.
Here, an extensive set of Monte Carlo simulations are conducted to evaluate a selected num-
ber of the previously addressed sub-Nyquist wideband spectrum sensing algorithms. This
carried out in terms of the delivered probabilities of detection and false alarm. The objec-
tive is to gain an insight into their behavior for the available design resources and operation
parameters. We are predominantly interested in the impact of the data acquisition rate,
SNR and sensing time TST on the multiband detection outcome. Whenever applicable, let
TW = |Tj| = 0.2μs be the width of the individual signal time analysis window and J non-
overlapping and equal time windows are used, i.e. TST = JTW . The maximum spectrum
occupancy is considered in all the experiments to represent the extreme system conditions;
LA QPSK or 16QAM transmissions with randomly selected carrier frequencies are present in
B. For simplicity, all active channels are assumed to have equal power levels. To maximise
the opportunistic use of a given subband Bl and minimise the interference to the primary
user, an adequate metric to assess the sensing quality is given by

{P̂D,l, P̂FA,l} = arg max
PD,l(i)∈PD,l,PFA,l(i)∈PFA,l

PD,l(i) + [1 − PFA,l(i)] (1.59)

where PD,l = [PD,l(1), PD,l(2), ..., PD,l(p)]T and PFA,l = [PFA,l(1), PFA,l(2), ..., PFA,l(p)]T are
the attained probabilities for an extensive range of threshold values used to produce a com-
plete ROC plot. Next, the basic CS-1 and CS-2 methods are examined along with the
state-of-the-art MWC. The compressed sampling matrix Υ in CS-1/CS-2 is a random par-
tial Fourier matrix and the greedy subspaces pursuit in [79] is employed to recover the sparse
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(a) Total Sensing time TST = 15 μs (b) Total Sensing time is TST = 3 μs.

Figure 1.18: P̂D,l and P̂FA,l for selected sub-Nyquist wideband spectrum sensing algorithms
with varying compression ratios; SNR = 0 dB.

vector. Random sampling on grid is the chosen RNUS scheme for the DASP approach.
Motivated by the goal of furnishing substantial savings on the data acquisition rates, Figure
1.18a depicts P̂D,l and P̂FA,l in (1.59) for sub-Nyquist rates that achieve over 85% reductions
on fNyq whilst SNR = 0 dB and a fixed total sensing time of TST = 15μs. It is noted that
MWC condition in (1.36) is satisfied when α/fNyq ≥ 0.1; the more recent lower rate limit
in (1.45) is exceeded when α/fNyq ≥ 0.05. It can be noticed from the figure that DASP-
based wideband spectrum sensing outperforms the compressive techniques, more noticeably
the MWC for low sampling rates. In Figure 1.18b, α/fNyq ∈ [0.15, 0.5] values are tested
to assess the sub-Nyquist sensing methods response to higher sampling rates. Due to the
excessive high memory and computations requirements of the enormous sensing matrices
associated with CS-1 for high α and/or TST noting the large number of averaged Monte
Carlo experiments, the sensing time is reduced to TST = 3μs. In Figure 1.18b, it is evident
that the CS-based algorithms deliver better detection quality compared with the DASP
counterpart for higher sampling rates, e.g. for α/fNyq ≥ 0.2 in Figure 1.18b. Simulations
also illustrate that MWC exhibits a high sensing quality only when the operation sampling
rate significantly exceeds the lower theoretical bound in (1.36). Thus, Figure 1.18 shows
that DASP-based algorithms can achieve competitive, if not superior, spectrum sensing per-
formance, compared with several compressive sensing approaches when tangible savings on
the data acquisition rates are sought. This advantage degrades as α increases noting the
substantial surge in the incurred computational cost for CS-based techniques.
In order to assess the effect of sensing time on the produced sensing results, Figure 1.19
displays the obtained probabilities of detection and false alarm for a changing TST whilst
α/fNyq = 0.15 and SNR=0 dB. CS-1 was omitted because of its prohibitive computational
complexity. It is apparent from the figure that DASP-based and CS-2 exploit the available
sensing time to enhance their sensing capabilities. Whereas, MWC sensing probabilities re-
main nearly constant as the sensing time increases. This figure demonstrates that alias-free
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Figure 1.19: Performance of sub-Nyquist wideband spectrum sensing algorithms for varying
sensing time such that α/fNyq = 0.15 and SNR = 0 dB.

sampling and CS-2 approaches can effectively utilise or trade-off the sensing time for im-
proved the spectrum sensing quality and vice versa.
Finally, in Figure 1.20 the sub-Nyquist sensing algorithms are simulated for a varying SNR
values whilst the sensing time and the inverse of the compression ratio are fixed; TST = 15μs

and α/fNyq = 0.15. The figure illustrates that the DASP-based approach outperforms MWC
and CS-2 as the SNR increases. The MWC distinctively continues to deliver poor results
compared with the other methods despite increasing signal power. Thus, the sampling rate
is a dominant limiting factor in MWC. In Figure 1.20, the sampling rate α is 1.5 times the
MWC theoretical minimum admissible rate. The ability of MWC to achieve low P̂FA,l for low
α/fNyq, SNR and TST in Figures 1.18, 1.19 and 1.20 can be the resultant of the considerably
low attained P̂D,l in such ranges.
Therefore, exploiting the aliasing suppression capabilities of random time-domain sampling
can lead to a low-complexity and rather simple wideband spectrum sensing algorithms with
competitive detection performance. They circumvent the need to undertake computation-
ally intensive operations, e.g. solving complex optimisations. Nevertheless, with the ever
expanding capability of DSP modules/cores and the emergence of new compressed sampling
implementations, CS can still foster effective and yet efficient sub-Nyquist MSS solutions.

1.6 Conclusions and Open Research Challenges

In this chapter, we first introduced various aspects of the spectrum sensing functionality
in a cognitive radio. The ability of wideband spectrum sensing to promote multimedia
communications over wireless links in CR networks was also highlighted. It enables the
secondary users to effectively exploit multiple spectral bands concurrently and thereby sig-
nificantly improve the network opportunistic throughput to meet stringent QoS provisions.
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Figure 1.20: Performance of sub-Nyquist wideband spectrum sensing algorithms for varying
signal to noise ratio such that α/fNyq = 0.15 and TST = 15 μs .

The design and implementation challenges of multiband detection were outlined and spe-
cial attention was paid to the data acquisition limitation in the pursued wideband regimes.
Several wideband spectrum sensing algorithms were then discussed. Conventional parallel
sensing methods that abide by the Nyquist sampling criterion commonly employ complex
analogue front-ends and a sweeping mechanism that can result in severe intolerable de-
lays. As an alternative, the sub-Nyquist techniques were addressed and categorised as being
either compressed-sampling-based or nonuniform-sampling-based. They offer new oppor-
tunities and mitigate the data acquisition bottleneck of digitally accomplishing the parallel
multiband detection task. Both CS-based and NUS-based approaches have their own merits.
Generally, DASP main advantage is simplicity and low-computational complexity compared
to CS. However, CS offers a more concrete framework that can be used not only for spectrum
sensing but also for subsequent CR functionalities such as PU characterisation and transmis-
sion interception/decoding. Simulations demonstrate that for substantially low sub-Nyquist
sampling rates, DASP-based sensing can produce a higher quality detections.
In most sub-Nyquist wideband sensing systems, the required sampling rate is proportional
to the spectrum utilisation (i.e. sparsity level). Assuming maximum spectrum occupancy
can lead to pessimistically over-conservative measures to ensure the sensing reliability, i.e.
cater for the worst sense scenario. This approach can waste the portable device valued re-
sources such as power, space and memory. In practice, the sparsity level of the wideband
signal is time-varying due to the the dynamic nature of PUs transmissions. Future cogni-
tive radio networks should be capable of performing efficient wideband spectrum sensing for
unknown or time-varying spectrum occupancies. This calls for adaptive wideband detection
techniques that can swiftly and efficiently select the appropriate resources, e.g. sensing time
sub-Nyquist sampling rate and even data acquisition scheme, without prior knowledge of the
signal sparsity level. This can be a very challenging task, especially with the time-varying
fading channels between the PU(s) and the CR.
Whilst the majority of CS-based multiband detectors assume knowledge of the sparsifying
basis/frame (e.g. DFT/IDFT), a future research direction can focus on robust compressed
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sampling with unknown basis/frame. This becomes more pressing as the emerging cognitive
radio networks are expected to alleviate the spectrum under-utilisation by facilitating dy-
namic opportunistic spectrum access. Hence, the radio spectrum will be no longer sparse in
the frequency domain and adopting alternative sparsifying basis/frames will be mandatory
to use the CS methodology. With regards to DASP, similar challenge is faced where estima-
tors other that those targeting the frequency representation will be required.
Due the hidden terminal problem and channel fading effects, a practical dependable wide-
band spectrum sensing will necessitate collaborative detection routines. Hence, sub-Nyquist
multiband detection algorithms that promote collaborative sensing are highly desirable and
are expected to be the focus in the future. For example, how to appropriately combine infor-
mation from several CRs in real time. Finally, realising dynamic low SWPAC sub-Nyquist
samplers with their subsequent processing tasks is an open research question since portable
devices supporting multimedia communications are expected to have limited power, space
and memory resources.

Glossary

List of Abbreviations

ADC Analogue to Digital Converter
AIC Analogue to Information Converter
ARS Additive Random Sampling
AWGN Additive White Gaussian Noise
CR Cognitive Radio
CS Compressed Sampling or Compressive Sensing
CSD Cyclic Spectral Density
CTF Continuous to Finite
DASP Digital Alias-free Signal Processing
DFT Discrete Fourier Transform
DSP Digital Signal Processing
DTFT Discrete-time Fourier Transform
FFT Fast Fourier Transform
IFFT Inverse Fast Fourier Transform
IID Independent Identically Distributed
JRS Jittered Random Sampling
LPF Low Pass Filter
MAC Medium Access Control
MASS Multirate Asynchronous Sub-Nyquist Sampling
MBED Multiband Energy Detector
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MCS Multicoset Sampling
MJD Multiple Joint Detection
MSS Multiband Spectrum Sensing
MT-PSDE Multitaper Power Spectral Density Estimator
MWC Modulated Wideband Converter
NBSS Narrowband Spectrum Sensing
NUS Nonuniform Sampling
PDF Probability Density Function
PMNSS Parallel Multiband Nyquist Spectrum Sensing
PSD Power Spectral Density
PU Primary User
QoS Quality of Service
RD Random Demodulator
RF Radio Frequency
RNUS Randomised Nonuniform Sampling
RSG Random Sampling on Grid
ROC Receiver Operating Characteristics
SMNSS Sequential Multiband Nyquist Spectrum Sensing
SNR Signal to Noise Ratio
SS Stratified Sampling
SSEP Stratified Sampling with Equal Partitions
SU Secondary User
TRS Total Random Sampling
WSCS Wide Sense Cyclostationary
WSS Wide Sense Stationary

Special Notations, Operators and Functions

Scalar variables are denoted by lower case letters, vectors are denoted by bold lower case
letters and matrices are denoted by bold upper case letters:

x Scalar variable
x Vector
X Matrix

Operators

E [x] Statistical Expectation of x

E [x|y] Condition statistical expectation of x given y
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|x| Absolute value or magnitude of x

bxc The largest integer less than or equal to x

dxe The smallest integer greater than or equal to x

Pr {x} Probability of a random variable x

Pr {x|y} Probability of a random variable x conditioned on the value of y

|x| Absolute value or magnitude of x

z∗ Conjugate of a complex variable z

∗ Convolution
m
~ The m − fold convolution operation
xT Transpose of vector or matrix x
xH Conjugate transpose of vector or matrix x
x � y x is significantly smaller than y

x � y x is significantly larger than y

x � y Each element in x is less than or equal to the corresponding element in y
x � y Each element in x is greater than or equal to the corresponding element in y

Special functions

T(y) Detectors test statistics to determine the subband(s) status

Q-function Q(x) = 1√
2π

∫ +∞
x

e−τ2/2dτ

F(x) Generic function of a scalar, vector or matrix
‖x‖0 Number of non-zero elements in vector x

Principal Symbols

B Overseen frequency range for f > 0 and B = ∪L
l=1Bl

Bl The frequency range of the lth system spectral subband for f > 0
B Single-sided width of the overseen frequency range in Hertz
BA Joint width of the LA concurrently active subbands in Hertz for f > 0
BC Width of a system spectral channel for f > 0 in Hertz
di Decision of the ith collaborating CR and di ∈ {0, 1}
f Frequency point in Hertz
fC,l Carrier frequency of the lth transmission in Hertz
fLandau Landau sampling rate in Hertz
fmin Initial frequency point of the monitored bandwidth in Hertz
fmax Highest frequency of the monitored frequency range in Hertz
fNyq Nyquist data acquisition rate in Hertz
fUS Uniform sampling rate in Hertz
fUS,i Uniform sampling rate in Hertz for the ith system branch
I Number of collaborating SUs in cooperative sensing regime
J Number of signal time analysis windows or averaged spectral estimates
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K Number of simultaneously active subbands K 6 LA for f > 0
KS Sparsity level
L Number of monitored spectral subbands for f > 0
LA Maximum number of concurrently active system subbands for f > 0
mb Number of sampling branches in the MCS and MWC systems
M Total number of captured data measurements
Mb Number of grid points in a multicoset sampling block
Mi Number of captured data measurements in the MASS ith sampling branch
MPS Number of time slots within the period TP of the modulating signal
N Number of collected samples at rates exceeding Nyquist’s
NMT Number of employed tapering functions in the multitaper PSD estimator
NW Number of components in the wavelet multi-scale sum and product
PD,l Probability of detection in the lth subband
P̄D Weighted sum of the probabilities of detection for the L system channels.
PFA,l Probability of false alarm in the lth subband
P̄FA Weighted sum of the probabilities of false alarm for the L system channels.
PM,l Probability of missed detection in the lth subband
PS Power of the received signal
PS,l Power of the signal occupying the lth system subband
q Number of sampling branches in the MASS system
RO Opportunistic throughput in bits/seconds
RT The total leveraged opportunistic throughput in bits/seconds
t Time instant in seconds
tm Position of the mth sample point in seconds
TUS The uniform sampling period in seconds
TOT The opportunistic transmission time slot in seconds
TP Fundamental period of a periodic function in seconds
TST Total sensing time TST =

∣
∣∪J

j=1Tj

∣
∣ in seconds

TTotal The total CR access time TTotal = TST + TOT in seconds
TW Width of the Tj signal analysis window in seconds
Tj Signal time analysis window Tj = [τj , τj + TW ] starting at the time instant τj

x(t) The signal encompassing the K transmissions
y(t) The received signal at the secondary user
yl(t) The signal transmitted over the lth system spectral channel
w(t) The chosen tapering function template
X(f) Spectrum of x(t)

X̂(f) Estimated spectrum of x(t)
α Average sub-Nyquist sampling rate in Hertz
β Scaling factor of the periodogram-type estimator used for irregular sampling
δ(t) Dirac delta
δ[n] Kronecker delta
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Δi The delay equal to %iTNyq in the ith instant of an MCS sequence in seconds
D The multicoset sampling pattern
H0,1 Hypothesis that signifies the idle state of the lth spectral subband
H1,l Hypothesis that indicates the presence of a transmission in the lth channel
γl Threshold value for the lth subband
ηl Minimum desired probability of detection in the lth system subband
ρl Maximum tolerated probability of false alarm in the lth spectral channel
ρ̃i A prime number that sets the sub-Nyquist sampling rate in a MASS branch.
λk The kth eigenvalue
νk[m] The kth tapering function in the multitaper PSD estimator
M The set of the numbers of samples in all of the MASS system branches
PX(f) Power spectral density of the continuous-time signal x(t)
PX(f)d Power spectral density of the discrete-time signal x(tm)
WX

ϑ (f) Continuous wavelet transform of signal x(t) with ϑ as the dilation factor
ϑ Wavelet transform dilation factor
ϕ(f) Frequency response of the wavelet smoothing function
Φ Compressed sampling measurement matrix
Ψ Sparsifying basis/frame
Υ CS sensing matrix Υ = ΦΨ−1

σw Standard deviation of the present AWGN
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