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Abstract— We show that for a wide range of channels and code
ensembles with pairwise-independent codewords, with probabil-
ity tending to 1 with the code length, expurgating an arbitrarily
small fraction of codewords from a randomly selected code results
in a code attaining the expurgated exponent.

Index Terms— Reliable communications, error exponents,
expurgated error exponent, random code ensembles, random
coding.

I. INTRODUCTION

WE CONSIDER the problem of reliable communication
of Mn equiprobable messages over noisy channels

described by a random transformation Wn(y|x), where
x ∈ Xn and y ∈ Yn are the channel input and out-
put sequences, and X and Y are the input and output
alphabets, respectively. Each message m ∈ {1, . . . ,Mn},
where Mn = ⌈2nR⌉, R being the code rate, is mapped
onto an n-length codeword xm sent over the channel. The
code is defined as C(Mn, n) = {x1, . . . ,xMn

}. We denote
with Pe,m

(
C(Mn, n)

)
the error probability when codeword

m ∈ {1, . . . ,Mn} from code C(Mn, n) is transmitted; sim-
ilarly Pe

(
C(Mn, n)

)
= 1

Mn

∑Mn

m=1 Pe,m

(
C(Mn, n)

)
denotes

the average error probability of the code. Let C(Mn, n) =
{X1, . . . ,XMn

} be a random code, i.e., a set of Mn ran-
dom codewords generated with probability P[C(Mn, n) =
C(Mn, n)] = P[X1 = x1, . . . ,XMn = xMn ]. We assume that
codewords are generated in a pairwise independent manner,
that is, for any two indices m, k ∈ {1, . . . ,Mn}, m ̸= k,
it holds that P[Xm = xm, Xk = xk] = Qn(xm)Qn(xk),
where Qn(xm) = P[Xm = xm] is a probability distribution
defined over Xn.

Let Pe,m

(
C(Mn, n)

)
and Pe

(
C(Mn, n)

)
be the ran-

dom variables denoting the error probability of the m-th
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codeword for random code C(Mn, n) and the average
error probability of the code, respectively. We denote
the n-length error exponents of such random vari-
ables by Em

(
C(Mn, n)

)
= − 1

n log Pe,m

(
C(Mn, n)

)
and

E
(
C(Mn, n)

)
= − 1

n log Pe

(
C(Mn, n)

)
, respectively. For

some ensembles and channels the ensemble-average of the
code error probability E

[
Pe

(
C(Mn, n)

)]
is known to decay

exponentially in n [1]. A lower bound on the error exponent
− 1

n log E
[
Pe

(
C(Mn, n)

)]
is given by Gallager’s multi-letter

random coding exponent En
r (R,Qn) in [2, Eq. (5.6.16)].

For the discrete memoryless channel (DMC), this bound is
known to coincide with the sphere-packing upper bound on
the reliability function [3], [4] in the high rate region.

In [5, Sec. 5.7] Gallager showed that, for some channels and
ensembles, there exists a code with strictly higher error expo-
nent than En

r (R,Qn) at low rates. In order to show this, Gal-
lager considered a pairwise-independent ensemble with M ′

n =
2Mn−1 codewords. Using Markov’s inequality he showed that

P
[
Pe,m(C(M ′

n, n)) ≥ 2
1
s E[Pe,m(C(M ′

n, n))s]
1
s

]
≤ 1

2
(1)

for any s > 0. He then introduced the indicator function

φm

(
C(Mn, n)

)
=

{
1 if Pe,m

(
C(Mn, n)

)
< 2

1
s E

[
Pe,m

(
C(Mn, n)

)s] 1
s

0 otherwise

(2)

and showed that, using (1) and (2), the following inequality
holds

E

 M ′
n∑

m=1

φm(C(M ′
n, n))

 ≥ Mn. (3)

From (3) it follows that, since the average number of
codewords that have a probability of error smaller than
2

1
s E

[
Pe,m

(
C(M ′

n, n)
)s] 1

s in a randomly generated code with
M ′

n = 2Mn − 1 codewords is at least Mn, there must exist a
code having at least Mn codewords, out of the M ′

n, fulfilling
this property. Thus, by removing (expurgating) the worst half
of the codewords from the code with M ′

n codewords we
obtain a new code with Mn codewords, each of which satisfies
the condition in the first line of the right-hand side in (2).
Finally, restricting s to 0 < s ≤ 1, Gallager derives an upper
bound on the exponent of 2

1
s E[Pe,m

(
C(M ′

n, n)
)s]

1
s , given by

En
ex(R,Qn) = En

x (ρ̂n, Qn)− ρ̂nR, (4)

where

En
x (ρ, Qn) = − 1

n
log

(∑
x

∑
x′

Qn(x)Qn(x′)Zn(x, x′)
1
ρ

)ρ

,

(5)
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Zn(x, x′) =
∑

y

√
Wn(y|x)Wn(y|x′) is the Bhattacharyya

coefficient between codewords x, x′ ∈ Xn while

ρ̂n = arg max
ρ≥1

{
En

x (ρ, Qn)− ρR
}

(6)

is the parameter that yields the highest exponent. The
preceding argument is valid for the maximal probability of
error, since every codeword in the expurgated code attains
the same exponent. In addition, observe that since (3)
uses the standard ensemble-average argument (i.e. by taking
the average over the ensemble) we show the existence of
a code with the desired property. The exponent in (4) is
the expurgated exponent. We refer to the code with M ′

n

codewords before expurgation as a mother code. We say that
a mother code is good if, once expurgated, we obtain a code
with asymptotically the same rate, the codewords of which
each have an exponent at least as large as the expurgated.

A refinement of the above follows from (1). Specifically,
for ϵ > 0 it can be shown that there exists a code with
M ′

n = Mn(1 + ϵ) codewords such that removing ϵMn

codewords yields a code that attains the expurgated exponent
[6, Lemma 1]. Although [6, Lemma 1] generalizes Gallager’s
method, it still only shows the existence of a code that attains
the expurgated exponent.

II. MAIN RESULT

This paper strengthens existing results on expurgation by
showing that the probability of finding a code with M ′

n =
(1 + ϵ)Mn codewords that contains a code with at least Mn

codewords each of which achieving the expurgated exponent
tends to 1 with the code length. We define the sequence
δn = ρ̂n

n log γn, where γn is such that limn→∞ γn = ∞
while limn→∞

log γn

n = 0, ρ̂n being a positive sequence
defined in (6) that depends on the channel, the ensemble and
the rate. From the definition of δn it can be seen that if ρ̂n

either converges to a constant or grows sufficiently slowly,
there exists a γn such that δn → 0. Similarly to Gallager, for
a given δn, we define the indicator function

ϕm

(
C(Mn, n)

)
=

{
1 if Em

(
C(Mn, n)

)
> En

ex(R,Qn)− δn

0 otherwise,

(7)

and the number of codewords attaining an exponent higher
than En

ex(R,Qn)− δn as

Φ
(
C(M ′

n, n)
)

=
M ′

n∑
m=1

ϕm

(
C(M ′

n, n)
)
. (8)

Theorem 1: Consider a pairwise-independent code ensem-
ble with M ′

n = Mn(1 + ϵ) codewords and any ϵ > 0. If the
sequence {δn}∞n=1, which depends on the channel and the
ensemble, satisfies limn→∞ δn = 0, then for any 0 < ϵ1 < ϵ,
it holds that

lim
n→∞

P
[
Φ

(
C(M ′

n, n)
)
≥ Mn(1 + ϵ1)

]
= 1. (9)

Proof: See Section III.
In words, with high probability we find a mother code

with M ′
n = (1 + ϵ)Mn codewords, Mn of which attain

the expurgated exponent. That is, good mother codes are
found easily and only contain an arbitrarily small fraction
ϵ/(1+ϵ) of codewords that need to be expurgated. Theorem 1
extends Gallager’s method, and applies, among others, to
independently and identically distributed (i.i.d.) and constant
composition codes over DMCs, as well as channels with
memory such as the finite-state channel in [2, Sec. 4.6], for
which the expurgated exponent is derived in [7].

As a final remark, recent works [7], [8], [9], [10] show
that for many ensembles, most low-rate codes have an error
exponent E

(
C(Mn, n)

)
that is strictly larger than the exponent

of the ensemble average error probability, i.e., the random
coding exponent. Similarly, Theorem 1 implies that for most
codes, almost any codeword has an associated error exponent
Em

(
C(Mn, n)

)
that is strictly larger than the ensemble aver-

age of the exponent of the error probability of the codebook
E

[
E

(
C(Mn, n)

)]
. In both cases the smaller error exponent of

the average probability of error is due to a relatively small
number of elements (codes in the first case, codewords in
the second) that perform poorly. Furthermore, as shown in
[9] and [10] for i.i.d. and constant composition codes over
DMC, the error exponents of the codes in the ensemble
concentrate around the typical random coding (TRC) expo-
nent [8], [11]. Similarly to such works, it can be shown that
the error exponent Em

(
C(Mn, n)

)
, for any m, concentrates

around its mean, the expurgated exponent. The proof makes
use of Lemma 1 in Section III, and follows almost identical
steps as in [10, Theorem 1], [7, Theorem 1] and [7, Theorem 2]
once Pe(C) is replaced by Pe,m

(
C
)

and it is omitted here.

III. PROOF OF THEOREM 1

We start with the following lemma, whose proof is almost
identical to that of [7, Lemma 1].

Lemma 1: For a channel Wn and a pairwise-independent
M ′

n-codewords code ensemble with codeword distribution Qn,
for any m ∈ {1, . . . ,M ′

n} it holds that

P
[
Em

(
C(M ′

n, n)
)

> En
ex(R,Qn)− δn

]
≥ 1− 1

γn
, (10)

where γn and δn are positive real-valued sequences.
The proof of Lemma 1 follows from Markov’s inequality

P
[
Pe,m(Cn) ≥ γ

1
s
n E[Pe,m(Cn)s]

1
s

]
≤ 1

γn
(11)

and applying the same steps as in [7, Theorem 1] once Pe(Cn)
is replaced with Pe,m(Cn). The sequences γn and δn are
the same as those introduced in Section II. Observe that
using inequality (11) and following similar steps as in [7]
it can be shown that limn→∞En

ex(R,Qn) is a lower bound
on limn→∞ E[Em

(
C(Mn, n)

)
]. Furthermore, using similar

arguments as in [10] it can be shown that such bound is
tight at least for i.i.d. and constant composition codes over
DMC. That is, for such ensembles and channels limn→∞
E

[
− 1

n log Pe,m

(
C(Mn, n)

)]
= limn→∞En

ex(R,Qn), i.e., the
expurgated is the typical codeword exponent.

If the positive sequence ρ̂n, defined in (6), converges
or grows sufficiently slowly, then there exists a sequence
γn such that limn→∞ γn = ∞, limn→∞

log γn

n = 0, for
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which δn = ρ̂n

n log γn → 0. For rate zero, that is when
limn→∞

1
n log Mn = 0, the n-length error exponent in (4)

depends on the particular subexponential growth of Mn,
while ρ̂n tends to infinity with a growth that depends on
the channel and the ensemble. In this case, as discussed
in the paragraph succeeding [7, Eq. (89)], the assumption
that ρ̂n

n log γn → 0 holds if the normalized variance of
the Bhattacharyya coefficient Zn(x, x′) grows slower than√

n
log γn

. In any case, choosing such γn and applying Lemma 1
we have that

P
[
Em

(
C(M ′

n, n)
)

> En
ex(R,Qn)− δn

]
≥ 1− 1

γn
. (12)

The random variable Φ(C(M ′
n, n)), averaged across the

ensemble, satisfies

E[Φ(C(M ′
n, n))] =

Mn(1+ϵ)∑
m=1

E[ϕm(C(M ′
n, n))] (13)

≥
Mn(1+ϵ)∑

m=1

(
1− 1

γn

)
(14)

= Mn(1 + ϵ)
(

1− 1
γn

)
, (15)

where (14) follows from the definition of the indicator
function (7) and (12).

We define Ψ(C(M ′
n, n)) = M ′

n − Φ(C(M ′
n, n)), which

is the number of codewords with exponent smaller than
En

ex(R,Qn)− δn. From (15) it follows that

E[Ψ(C(M ′
n, n))] ≤ Mn(1 + ϵ)

γn
. (16)

Then, for sufficiently large n we have that

P
[
Ψ(C(M ′

n, n)) >
Mn(1 + ϵ)
√

γn

]
≤ 1
√

γn
, (17)

where (17) follows from Markov’s inequality and (16). This
shows that the probability of finding a code with many code-
words with exponent strictly smaller than En

ex(R,Qn) − δn

vanishes with n. To prove our main result, we write the tail
probability in (9) as

P
[
Φ(C(M ′

n, n)) ≥ Mn(1 + ϵ1)
]

= 1− P
[
Φ(C(M ′

n, n)) < Mn(1 + ϵ1)
]

(18)

= 1− P
[
Ψ(C(M ′

n, n)) > Mn(ϵ− ϵ1)
]
, (19)

where we used the definitions of Ψ(C(M ′
n, n)) and M ′

n. Since
γn tends to infinity, there must exist an n0 ∈ N such that
ϵ− ϵ1 > (1+ϵ)√

γn
for n > n0 and therefore

lim
n→∞

P
[
Φ(C(M ′

n, n)) ≥ Mn(1 + ϵ1)
]

≥ lim
n→∞

1− P
[
Ψ(C(M ′

n, n)) >
Mn(1 + ϵ)
√

γn

]
(20)

≥ lim
n→∞

1− 1
√

γn
, (21)

where (21) follows from (17). Finally, solving the limit yields
the desired result.
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