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Abstract—We propose a universal classifier for binary
Neyman–Pearson classification where null distribution is known
while only a training sequence is available for the alternative
distribution. The proposed classifier interpolates between Ho-
effding’s classifier and the likelihood ratio test and attains the
same error probability prefactor as the likelihood ratio test, i.e.,
the same prefactor as if both distributions were known. Similarly
to Hoeffding’s universal hypothesis test, the proposed classifier
is shown to attain the optimal error exponent tradeoff attained
by the likelihood ratio test whenever the ratio of training to
observation samples exceeds a certain value.

I. PRELIMENARIES

Consider the following binary classification problem where
an observation x = (x1, . . . , xn) is generated in an i.i.d.
fashion from either of two possible distributions P0 or P1

defined on the probability simplex P(X ) with alphabet size
|X | <∞. We assume that the distribution P0 is known while
only a sequence of training samples z = (z1, . . . , zk) ∼ P k1
generated in an i.i.d. fashion from P1 is available; training and
test sequences are sampled independently from each other. We
also assume that both P0(x) > 0, P1(x) > 0 and P0(x)

P1(x)
≤ c

for each x ∈ X for some positive c. Also we let k, the length
of the training, be such that k = αn for some positive α.

The type of an n-length sequence y is defined as T̂y(a) =
N(a|y)
n , where N(a|y) is the number of occurrences of symbol

a ∈ X in sequence y. The types of the observation and training
sequences x, z are denoted by T̂x, T̂z respectively. The set of
all sequences of length n with type P , denoted by T nP , is
called the type class. The set of types formed with length n
sequences on the simplex P(X ) is denoted as Pn(X ).

Let φ(z,x) : X k × Xn → {0, 1} be a classifier that
decides the distribution that generated the observation x upon
processing the training sequence z. We consider deterministic
classifiers φ that decide in favor of P0 if x ∈ A0(P0, z),
where A0(P0, z) ⊂ Xn is the decision region for the first
hypothesis and is a function of P0 and the training samples z.
We define A1(P0, z) = Xn \A0 to be the decision region for
the second hypothesis. If we assume no prior knowledge on
either distribution, the two possible pairwise error probabilities
determine the performance of the classifier. Specifically, the
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type-I and type-II error probabilities are defined as

ε0(φ) =
∑
z∈Xk

P1(z)
∑

x∈A1(P0,z)

P0(x), (1)

ε1(φ) =
∑
z∈Xk

P1(z)
∑

x∈A0(P0,z)

P1(x). (2)

In the case where both distributions are known, the training
sequence is not needed and the classifier becomes a hypothesis
test. In this case, the classifier is said to be optimal whenever
it achieves the optimal error probability tradeoff given by

min
φ:ε0(φ)≤ξ

ε1(φ), (3)

where ξ ∈ [0, 1]. It is well known that likelihood ratio test

φlrt(x) = 1

{
Pn1 (x)

Pn0 (x)
≥ enγ

}
, (4)

attains the optimal tradeoff (3) for every γ. This is the
well-known Neyman–Pearson lemma [1]. The likelihood ratio
test can also be expressed as a function of the type of the
observation T̂x as e.g.[2], [3]

φlrt(T̂x) = 1
{
D(T̂x‖P0)−D(T̂x‖P1) ≥ γ

}
(5)

where D(P‖Q) =
∑
x∈X P (x) log

P (x)
Q(x) is the relative entropy

between distributions P and Q. The optimal error exponent
tradeoff (E0, E1) is defined as

E∗1 (E0) , sup
{
E1 ∈ R+ : ∃φ, ∃n0 ∈ Z+ s.t.

∀n > n0, ε0(φ) ≤ e−nE0 and ε1(φ) ≤ e−nE1
}
. (6)

By using Sanov’s Theorem [2], [4], the optimal error exponent
tradeoff (E1, E0), attained by the likelihood ratio is given by

E0(φ
lrt) = min

Q∈Q0(γ)
D(Q‖P0), (7)

E1(φ
lrt) = min

Q∈Q1(γ)
D(Q‖P1), (8)

where

Q0(γ) =
{
Q ∈ P(X ) : D(Q‖P0)−D(Q‖P1) ≥ γ

}
, (9)

Q1(γ) =
{
Q ∈ P(X ) : D(Q‖P0)−D(Q‖P1) ≤ γ

}
. (10)

By varying the threshold γ in the range −D(P0‖P1) ≤
γ ≤ D(P1‖P0), Eqs. (7) and (8) fully characterize the error
exponent tradeoff in (6).



The classification problem described above with known P0

and a training sequence from P1, can also be viewed as
the composite binary hypothesis problem where additional
training sequence samples are given for the second hypotheses.
In a composite hypothesis testing setting with given P0 and the
other hypothesis is unrestricted to P(X ), Hoeffding proposed
the generalized likelihood-ratio test given by [5]

φglrt(x) = 1
{
D(T̂x‖P0) > E0

}
, (11)

By Sanov’s theorem, the error exponent of Hoeffding’s test is
given by

E0(φ
glrt) = E0, (12)

E1(φ
glrt) = min

Q∈P(X ),
D(Q‖P0)≤E0

D(Q‖P1). (13)

By varying the threshold E0 in the range 0 ≤ E0 ≤
D(P1‖P0), (12) and (13) fully characterize the optimal error
exponent tradeoff in (6). Using a large deviations refinement
[6], [7], the type-I error probability of the likelihood ratio test
can be expressed as

ε0(φ
lrt) =

1√
n
e−nE0

(
c+ o(1)

)
, (14)

while, for Hoeffding’s test it can be expressed as [8], [6]

ε0(φ
glrt) = n

|X|−3
2 e−nE0

(
c′ + o(1)

)
(15)

where c, c′ are constants that only depend on P0, P1 and the
corresponding test thresholds. Since the likelihood ratio and
Hoeffding’s tests attain the optimal error exponent tradeoff
(6), for any fixed E0, then E1(φ

glrt) = E1(φ
lrt). As a result,

when the number of observations is large, Hoeffding’s test,
although attaining the optimal error exponent tradeoff, suffers
in exponential prefactor when compared to the likelihood
ratio’s 1√

n
for observation alphabets such that |X | > 2. For

|X | = 2, the decision regions for the likelihood ratio and
Hoeffding’s tests coincide and thus, (15) is the same as (14).

II. FIXED SAMPLE SIZED UNIVERSAL CLASSIFIER

We propose a classifier that interpolates between the like-
lihood ratio and Hoeffding’s tests that attains a prefactor that
is independent of the alphabet size and is equal to 1√

n
. In

addition, we show that if the ratio of training samples to the
number of test samples α exceeds a certain threshold, the
proposed test also achieves the optimal error exponent tradeoff.

Hoeffding’s test can favor the second hypothesis for test
sequences with types close to P0 while far from P1. Suppose
we have a training sequence type T̂z , we can relax the
Hoeffding’s test from a ball centered at P0 to a hyperplane
tangent to the Hoeffding’s test ball, directed towards the type
of the training sequence – this is precisely what enables the
improvement in the prefactor of the type-I probability of error.
We propose the following classifier

φβ(T̂x, T̂z) = 1
{
βD(T̂x‖T̂ ′z)−D(T̂x‖P0) ≤ γ(E0, T̂

′
z)
}
,

(16)

where 0 ≤ β ≤ 1, the threshold γ(E0, Q1) is given by

γ(E0, Q1) = β min
Q∈P(X ),

D(Q‖P0)≤E0

D(Q‖Q1)− E0, (17)

and the perturbed training type T̂ ′z(a) is

T̂ ′z(a) =
(
1− δn

)
T̂z(a) +

δn
|X |

, (18)

where, δn can be chosen as any function of the order o(n−1).
We add this small perturbation of the training type to avoid
the cases where some of the alphabet symbols have not been
observed in the training sequence. We define the decision
regions of the proposed classifier by

A0(T̂z, β) = {Q : Q ∈ P(X ), φβ(Q, T̂z) = 0}, (19)

A1(T̂z, β) = {Q : Q ∈ P(X ), φβ(Q, T̂z) = 1}. (20)

Since parameter β controls how much the training weights in
the decision, we have that when β = 0 we recover Hoeffding’s
test while for β = 1 the test is reminiscent of a likelihood ratio
test where instead of P1, we have the perturbed training type
T̂ ′z(a). Intuitively, as long as we have enough training samples,
the training type T̂ ′z(a) will be close to P1 and we will attain
the optimal error exponent tradeoff.

Next, we find a refined expression for the type-I error
probability and show that the error probability prefactor is of
order O( 1√

n
), i.e., of the same order of the prefactor achieved

by the likelihood ratio test.

Theorem 1: For P0, P1, 0 < β ≤ 1 and fixed E0, the
classifier φβ defined in (16) attains a type-I error probability
such that

ε0(φβ) =
1√
n
e−nE0(c+ o(1)), (21)

In addition, for every P0, P1, E0, β ∈ (0, 1], there exists a
finite training to sample size ratio α∗β such that for any α > α∗β

ε1(φβ) =
1√
n
e−nE

∗
1 (E0)(c′ + o(1)), (22)

where c, c′ are positive constants that only depend on the data
distributions and E0.

Theorem 1 shows that the classifier proposed in (16) not
only achieves the optimal error exponent tradeoff for α >
α∗β but also achieves the same prefactor of the type-I error
probability of the likelihood ratio test. This is a significant
improvement with respect to the Hoeffding’s universal test for
observation alphabets |X | > 2, cf. (15). The result also shows
that the proposed classifier achieves the same type-II error
probability prefactor as the likelihood ratio test, establishing
the optimality of the proposed classifier up to a constant. The
proof of the result, as well as upper and lower bounds to α∗β
and an extension to the sequential case can be found in [9].
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