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Abstract—We derive random-coding/binning error exponents
for block source coding for finite-state sources. Specifically, our
derivation accounts for a mismatch in the finite-state source
model, recovers known special cases and provides an achievable
rate, the generalized entropy rate, that quantifies the loss in rate
with respect to the entropy rate induced by mismatch.

I. INTRODUCTION

Consider a finite-state source with source alphabet V , a finite
set of states S = {1, 2, . . . , A}, A conditional probability mea-
sures {p(·|s)}s∈S , and a next-state function f : S × V → S .
Given an initial state s0, the conditional probability of a source
sequence vn = v1, . . . , vn ∈ Vn is defined as

PV n|S(v
n|s0) =

n∏
i=1

PV |S(vi|si−1) (1)

where si = f(si−1, vi) for all 1 ≤ i ≤ n. We define,

P̄V n(vn) =
∑
s0

1

A
PV n|S(v

n|s0). (2)

With some abuse of notation we will use S to refer to this
source model. A finite-state model S is said to be irreducible
if and only if it is possible, with nonzero probability, to reach
each state from any other state in a finite number of states.

A block source code C(n,R) is defined as a mapping
g : Vn → X of source n-tuples vn ∈ Vn to a set of
indices/bins/codewords X = {1, . . . ,M} where R = 1

n logM
is the code rate. A decoder ϕ : X → Vn maps each in-
dex/bin/codeword back into a source n-tuple v̂n. Typically the
number of codewords is smaller than the number of n-tuples
and the decoder makes an error whenever ϕ(x(vn)) ̸= vn.

Given the source model S, the initial state s0 and a block
source code C(n,R), the decoder that minimizes the average
probability of the error is the maximum-likelihood (ML)
decoder which maps each codeword x to the most likely source
sequence encoded into x, i.e.,

v̂n = ϕ(x) = argmax
vn: g(vn)=x

PV n(vn|s0). (3)

Block source codes have been considered in a number of works
in different contexts, see e.g. [1]–[4] and references therein.
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In practical systems, the exact source model is almost
never known exactly and we are bound to fit some model
to the source data and use the extracted model for designing
an efficient code. Therefore it is meaningful to assume that
in a block source coding setup, the decoder always uses a
mismatched source model for decoding. Such a model can be
generated during the encoding process and shared with the
decoder to allow for correct decoding.

II. MAIN RESULTS

Assume that instead of the real source model S, we describe
the source with a mismatched model with a finite set of
states Ŝ = {1, 2, . . . , Â}, Â conditional probability measures
{Q(·|ŝ)}ŝ∈Ŝ , and a next-state function f̂ : Ŝ × V → Ŝ.

We consider a maximum metric decoding based on mis-
matched model without the knowledge of initial state as
follows,

v̂n = ϕ̂(x) = argmax
vn

q(vn, x), (4)

where
q(vn, x) = Q̄V n(vn)1 {g(vn) = x} , (5)

and Q̄V n(vn) = 1
Â

∑
ŝ0
QV n|S(v

n|ŝ0).
In the following, we consider the random ensemble of

(n,R) codes for alphabet V as the set of all (n,R) block codes
where each source n-tuple is mapped randomly, independently
and with equal probability 1

M into one of the M indices
or codewords independent from the initial state s0. In this
paper, we study a random-coding error exponent for finite-
state sources S with decoding based on a mismatched source
model Ŝ.

Theorem 1. For a finite-state source with irreducible model
S, there exists a block code with M = ⌈enR⌉ codewords such
that using a decoder based on mismatched source model Ŝ
for any initial state s̄0 we have

pe(s̄0) ≤ e−n er(R) (6)

where
er(R) = sup

ρ∈[0,1],τ≥0

ρR− Es(ρ, τ), (7)

Es(ρ, τ) = log λ(ρ, τ) + ρ log λ̂(τ) + o(n) (8)



and λ(ρ, τ), λ̂(τ) are respectively the largest magnitude eigen-
values of the matrices Γρ,τ ∈ RAÂ×AÂ, Γ̂τ ∈ RÂ×Â with
entries

γjȷ̂kk̂(ρ, τ) =
∑
v

PV,S|S(v, j|k)
QV,S|S(v, ȷ̂|k̂)τρ

(9)

γ̂ȷ̂k̂(τ) =
∑
v

QV,S|S(v, ȷ̂|k̂)τ , (10)

where γjȷ̂kk̂(ρ, τ) is the entry in row (j−1)Â+ ȷ̂ and column
(k − 1)Â+ k̂ of matrix Γρ,τ .

Proof: Since the decoding metric is independent of the
initial state we bound the random-coding error probability as

p̄e ≤
∑
vn

P̄V n(vn)P
[ ⋃
v̄n ̸=vn

{q(v̄n, X) ≥ q(vn, X)}
]

(11)

For events {Bi} it can be shown that for any 0 ≤ ρ ≤ 1 we
have P[

⋃
i Bi] ≤ (

∑
i P[Bi])

ρ [5, Ch. 5]. Using the random
ensemble definition, for any sequences vn, v̄n we have

P[q(v̄n, X) ≥ q(vn, X)] =
1

M
1
[
Q̄V n(v̄n) ≥ Q̄V n(vn)

]
(12)

≤ 1

M

Q̄V n(v̄n)τ

Q̄V n(vn)τ
(13)

for any τ ≥ 0. Therefore, the average error probability
(averaged also over the initial state)

p̄e ≤
1

Mρ

∑
vn

P̄V n(vn)

( ∑
v̄n ̸=vn

Q̄V n(v̄n)τ

Q̄V n(vn)τ

)ρ

. (14)

Since the average error probability over the ensemble is upper
bounded as in (14), there is at least one code in the ensemble
that satisfies the above bound. Also, since the error probability
for such a code is an average over A equally likely states, the
conditional error probability given any particular initial state,
can be no more than A times the average. This gives a bound
on error probability which is valid for any initial state and no
longer depends on the assumption of the equally likely states
as per (2). Therefore, conditional on any initial state s̄0 ∈ S
the average error probability is bounded as

p̄e(s̄0) ≤
A

Mρ

∑
vn∈Vn

P̄V n(vn)

( ∑
v̄n ̸=vn

Q̄V n(v̄n)τ

Q̄V n(vn)τ

)ρ

. (15)

For any sequences vn, v̄n we have

Q̄V n(v̄n)τ

Q̄V n(vn)τ
≤ Â|τ−1|

∑
ŝ0
QV n|S(v̄

n|ŝ0)τ∑
ŝ′0
QV n|S(vn|ŝ′0)τ

. (16)

This can be seen by considering separately the cases for τ ≤ 1
and τ ≥ 1. For τ ≤ 1 we use the inequality (

∑
ai)

r ≤
∑

ari
for 0 < r ≤ 1 to upper bound the numerator and (

∑
Piai)

r ≥∑
Pia

r
i for r ≤ 1 to lower bound the denominator. For τ ≥ 1

we use (
∑

Piai)
r ≤

∑
Pia

r
i for r ≥ 1 to upper bound the

numerator and (
∑

ai)
r ≥

∑
ari for r ≥ 1 to lower bound the

denominator. Substituting (16) in (15) we get

p̄e(s̄0) ≤
AÂρ|τ−1|

Mρ

×
∑

vn∈Vn

P̄V n(vn)

(∑
v̄n

∑
ŝ0
QV n|S(v̄

n|ŝ0)τ∑
ŝ′0
QV n|S(vn|ŝ′0)τ

)ρ

. (17)

We further bound the term in brackets by swapping the sums
over v̄n and ŝ0 and upper bounding the numerator using
(
∑

ai)
r ≤

∑
ari for 0 < r ≤ 1 and lower bounding the

denominator using (
∑

Piai)
r ≥

∑
Pia

r
i for r ≤ 1. This gives

p̄e(s̄0) ≤
AÂρ|τ−1|

Mρ

×
∑

vn∈Vn

P̄V n(vn)

∑
ŝ0

(∑
v̄n QV n|S(v̄

n|ŝ0)τ
)ρ

Âρ−1
∑

ŝ′0
QV n|S(vn|ŝ′0)τρ

. (18)

Using (2), changing the order of sums over vn and s0 and
upper bounding the sum over s0 by A times maximum over
s0, and upper bounding the sum over ŝ0 by Â times maximum
over ŝ0 and upper bounding the sum over ŝ′0 as

1∑
ŝ′0
QV n|S(vn|ŝ′0)τρ

≤ max
ŝ′0

1

ÂQV n|S(vn|ŝ′0)τρ

we obtain

p̄e(s̄0) ≤
AÂρ|τ−1|−ρ+1

Mρ
max
s0

max
ŝ′0

max
ŝ0

enEs(ρ,τ,s0,ŝ0) (19)

where

Es(ρ, τ, s0, ŝ
′
0, ŝ0)

=
1

n
log

∑
vn∈Vn

PV n|S(v
n|s0)

(∑
v̄n

QV n|S(v̄
n|ŝ0)τ

QV n|S(vn|ŝ′0)τ

)ρ

(20)

We notice that the bound in (19) is valid for the general
finite-state source without the deterministic state transition
assumption. Similarly to the channel coding case with ML
decoding [5, Sec. 5.9] it can be shown that for any s0, ŝ

′
0, ŝ0

the function Es(ρ, τ, s0, ŝ
′
0, ŝ0) is continuous, increasing and

convex in ρ with Es(0, s, s0, ŝ
′
0, ŝ0) = 0. This will prove

important to derive the corresponding achievable rate. In the
following, we proceed to simplifying (19).

In the following, we split the maximization argument in (19)
into two terms and work out the two terms separately

p̄e(s̄0) ≤
AÂρ|τ−1|−ρ+1

Mρ

(
max
s0

max
ŝ0

∑
vn∈Vn

PV n|S(v
n|s0)

QV n|S(vn|ŝ0)τρ

)

×max
ŝ0

(∑
v̄n

QV n|S(v̄
n|ŝ0)τ

)ρ

, (21)

where in the first term we change the notation from ŝ′0 to ŝ0,
since after splitting there is no more confusion between those.

Based on the state transition mechanism of source model
S and mismatched model Ŝ given the initial states s0 and ŝ0,
the source sequence vn = (v1, . . . , vn) uniquely determines
state sequences s = s(vn, s0) and ŝ = ŝ(vn, ŝ0). Therefore,



similarly to [5, Eq. (5.9.31)] we can define

PV n,S|S(v
n, s|s0)

QV n,S|S(vn, ŝ|ŝ0)τρ
=

{
PV n|S(vn|s0)

QV n|S(vn|ŝ0)τρ for s, ŝ

0 othewise,
(22)

and

PV n,S|S(v
n, s|s0)

QV n,S|S(vn, ŝ|ŝ0)τρ
=

n∏
i=1

PV,S|S(vi, si|si−1)

QV,S|S(vi, ŝi|ŝi−1)τρ
(23)

where

PV,S|S(vi, si|si−1) =

{
PV |S(vi|si−1) for si = f(si−1, vi)

0 othewise.
(24)

We thus write the first term in brackets in (21) as

max
s0

max
ŝ0

∑
s,ŝ

∑
vn

n∏
i=1

PV,S|S(vi, si|si−1)

QV,S|S(vi, ŝi|ŝi−1)τρ
(25)

= max
s0

max
ŝ0

∑
s,ŝ

n∏
i=1

∑
vi

PV,S|S(vi, si|si−1)

QV,S|S(vi, ŝi|ŝi−1)τρ
(26)

Similarly, we write the second term in brackets in (21) as

max
ŝ0

(∑
ŝ

n∏
i=1

∑
v̄i

QV,S|S(v̄i, ŝi|ŝi−1)
τ

)ρ

. (27)

Now we define an AÂ×AÂ matrix Γρ,τ with elements

γjȷ̂kk̂(ρ, τ) =
∑
v

PV,S|S(v, j|k)
QV,S|S(v, ȷ̂|k̂)τρ

(28)

for j = f(k, v), ȷ̂ = f̂(k̂, v) and γjȷ̂kk̂(ρ, τ) = 0 otherwise.
We also define an Â× Â matrix Γ̂τ with elements

γ̂ȷ̂k̂(τ) =
∑
v

QV,S|S(v, ȷ̂|k̂)τ , (29)

for ȷ̂ = f̂(k̂, v) and γ̂ȷ̂k̂(τ) = 0 otherwise. Observe that the
matrices Γρ,τ and Γ̂τ , are not always stochastic matrices. We
denote by 1 and 1̂ respectively column vectors of length AÂ
and Â with all 1’s and by e(s0ŝ0) and e(ŝ0) respectively row
vectors with a 1 in position corresponding to (s0 − 1)Â+ ŝ0
and ŝ0, and 0 in all other components. We rewrite the bound
(21) as

p̄e(s̄0) ≤
AÂρ|τ−1|−ρ+1

Mρ

(
max
s0

max
ŝ0

e(s0ŝ0)Γ
n
ρ,τ1

)
×
(
max
ŝ0

(
e(ŝ0)Γ̂

n
τ 1
)ρ)

(30)

We note that if both actual and mismatched models are irre-
ducible, the product model corresponding to the matrix Γρ,τ

will have a single irreducible subset and the rest of the product
states will be transient states, namely their stationary proba-
bility will be zero. Therefore we can omit rows and columns
corresponding to those transient states from Γρ,τ matrix and
obtain an irreducible matrix. Assuming that the matrices Γρ,τ

and Γ̂τ are irreducible, using Perron-Frobenius theorem we
know that they have largest magnitude eigenvalues with real

positive values. We denote these dominant eigenvalues by
λ(ρ, τ) and λ̂(τ) and their corresponding positive right eigen-
vectors by u(ρ, τ) =

(
u1(ρ, τ), . . . , uAÂ(ρ, τ)

)
, ujȷ̂(ρ, τ) >

0 and û(τ) =
(
u1(τ), . . . , uÂ(τ)

)
, uȷ̂(τ) > 0 respectively,

such that

Γρ,τu(ρ, τ) = λ(ρ, τ)u(ρ, τ) (31)

Γ̂τ û(τ) = λ̂(τ)û(τ). (32)

The positive right eigenvectors u(ρ, τ) and û(τ) are unique
except for a multiplicative factor. To make them unique we
assume that∑

jȷ̂

ujȷ̂(ρ, τ) = 1,
∑
ȷ̂

ûȷ̂(τ) = 1. (33)

If we denote by umax(ρ, τ) and umin(ρ, τ) the largest and
smallest component of the positive right eigenvector u(ρ, τ),
then for any s0 and ŝ0 we have

umin(ρ, τ)

umax(ρ, τ)
λn(ρ, τ) ≤ e(s0ŝ0)Γ

n
ρ,τ1 ≤ umax(ρ, τ)

umin(ρ, τ)
λn(ρ, τ). (34)

Using a similar bound on the second term in (30) we obtain

p̄e(s̄0) ≤
AÂρ|τ−1|−ρ+1

Mρ
· umax(ρ, τ)

umin(ρ, τ)
λn(ρ, τ)

×
(
ûmax(τ)

ûmin(τ)
λ̂n(τ)

)ρ

(35)

= e−n(ρR−Es(ρ,τ)), (36)

where

Es(ρ, τ) = log λ(ρ, τ) + ρ log λ̂(τ) + δn (37)

and

δn =
1

n
log

(
umax(ρ, τ)

umin(ρ, τ)
· ûmax(τ)

ρ

ûmin(τ)ρ
AÂρ|τ−1|−ρ+1

)
. (38)

Finally, observe that for any s0, ŝ0 using (34) we obtain∣∣∣∣Es(ρ, τ, s0, ŝ0)− log λ(ρ, τ)− ρ log λ̂(τ)

∣∣∣∣
≤ 1

n
log

(
umax(ρ, τ)

umin(ρ, τ)
· ûmax(τ)

ρ

ûmin(τ)ρ

)
. (39)

We observe that the term (38) is the only term depending on
the block length n is decreasing with n since the argument of
the log function is greater than or equal to 1. This in turn shows
that the corresponding achievable rate, termed the generalized
entropy rate, is non-increasing in n and thus, it is attained in
the limit for n → ∞. The generalized entropy rate is defined
as

Hger(V) = inf
τ≥0

∑
kk̂

ukk̂(0)
∑
v

−PV |S(v|k)

× log

(
QV |S(v|k̂)τ∑

k̂′ ûk̂′(τ)
∑

v̄ QV |S(v̄|k̂′)τ

)
,

(40)



where ukk̂(0) is the stationary probability of the product state
kk̂ and ûk̂′(τ) is the k̂′-th element of the eigenvector û(τ).

Theorem 2. For a finite-state source with irreducible model
S using block code and a decoder based on a mismatched
source model Ŝ, the generalized entropy rate Hger(V) is an
achievable rate.

Proof: For any τ ≥ 0 the generalized entropy rate is
obtained as n → ∞ and thus it is given by

Hger(V, τ) = lim
n→∞

∂

∂ρ
Es(ρ, τ, s0, ŝ0)|ρ=0

=
∂

∂ρ
log λ(ρ, τ)|ρ=0 + log λ̂(τ). (41)

The next steps to obtain the generalized entropy rate follow
similar lines as [6] where Vašek derived the error exponent
and entropy rate of an ergodic Markov source. Using (33),
from (31) and (32) we have∑
jȷ̂

∑
kk̂

γjȷ̂kk̂(ρ, τ)ukk̂(ρ, τ) =
∑
jȷ̂

λ(ρ, τ)ujȷ̂(ρ, τ) = λ(ρ, τ),

(42)
and ∑

ȷ̂

∑
k̂

γ̂ȷ̂k̂(τ)ûk(τ) =
∑
ȷ̂

λ̂(τ)ûȷ̂(τ) = λ̂(τ). (43)

In the following, in order to simplify the notation, we define
pjk(v) = PV,S|S(v, j|k) and qȷ̂k̂(v) = QV,S|S(v, ȷ̂|k̂). Taking
the derivative of log λ(ρ, τ) with respect to ρ using (42) and
simplifying it we obtain

∂

∂ρ
log λ(ρ, τ) = −

∑
jȷ̂

∑
kk̂

∑
v

pjk(v)

qȷ̂k̂(v)
τρλ(ρ, τ)

× log(qȷ̂k̂(v)
τ )ukk̂(ρ, τ) +

∑
jȷ̂

∑
kk̂

γjȷ̂kk̂(ρ, τ)

λ(ρ, τ)
u′
kk̂
(ρ, τ).

(44)

Since for ρ = 0 from (28) the entries of the matrix Γ0,τ do not
depend on τ , we omit the dependence on τ . We observe that
the resulting matrix denoted by Γ0 is a stochastic matrix with
column sums equal to 1, i.e.,

∑
jȷ̂ γjȷ̂kk̂(0) =

∑
j pjk(v) = 1.

Therefore it has a largest magnitude eigenvalue λ(0) = 1 with
positive right eigenvector u(0) which is the stationary state
distribution of the product finite-state model.

Evaluating (44) at ρ = 0 we obtain

∂

∂ρ
log λ(ρ, τ)|ρ=0 =−

∑
jȷ̂

∑
kk̂

∑
v

pjk(v) log(qȷ̂k̂(v)
τ )ukk̂(0)

+
∑
kk̂

u′
kk̂
(0). (45)

Taking the derivative of both sides in (42) with respect to
ρ we obtain∑

jȷ̂

(
λ′(ρ, τ)ujȷ̂(ρ, τ) + λ(ρ, τ)u′

jȷ̂(ρ, τ)
)
= λ′(ρ, τ). (46)

Simplifying the left hand side and canceling λ′(ρ, τ) from both

sides we have

λ(ρ, τ)
∑
jȷ̂

u′
jȷ̂(ρ, τ) = 0. (47)

Since λ(ρ, τ) is strictly positive, we get
∑

jȷ̂ u
′
jȷ̂(ρ, τ) = 0 and

therefore, the second term in (45) is cancelled. Introducing
(45) and (43) in (41) we obtain

Hger(V, τ) =−
∑
jȷ̂

∑
kk̂

∑
v

pjk(v) log(qȷ̂k̂(v)
τ )ukk̂(0)

+ log

∑
ȷ̂

∑
k̂

∑
v

qȷ̂k̂(v)
τ ûk̂(τ)

 . (48)

Noting that pjk(v) = 0 if j ̸= f(k, v) and similarly qȷ̂k̂(v) = 0

if ȷ̂ ̸= f̂(k̂, v), we merge the sums over jȷ̂ and kk̂ and also
sums over ȷ̂ and k̂ in (48) obtaining

Hger(V, τ) =−
∑
kk̂

ukk̂(0)
∑
v

PV |S(v|k) log(QV |S(v|k̂)τ )

+ log

∑
k̂

ûk̂(τ)
∑
v

QV |S(v|k̂)τ
 . (49)

Noticing that
∑

kk̂ ukk̂(0)
∑

v PV |S(v|k) = 1, combining the
two terms in (49) we obtain (40).

III. SPECIAL CASES

Using our general result from Section II, we recover special
cases of a memoryless mismatched model and a matched
finite-state model.

Theorem 3. For a finite-state source with irreducible model S,
there exists a block code with M = ⌈enR⌉ codewords such that
using a decoder based on a memoryless mismatched source
model for any initial state s̄0 we have

p̄e(s̄0) ≤ e−n er(R)

where
er(R) = sup

ρ∈[0,1],τ≥0

ρR− Es(ρ, τ),

and

Es(ρ, τ) = log λ(ρ, τ) + ρ log
∑
v

QV (v)
τ (50)

+
1

n
log

(
umax(ρ, τ)

umin(ρ, τ)
A

)
, (51)

with achievable rate

Hger(V ) = inf
τ≥0

−
∑
v

PV (v) log
QV (v)

τ∑
v̄ QV (v̄)τ

, (52)

where PV (v) =
∑

k uk(0)PV |S(v|s = k).

In the case where the source is also memoryless, (51)
reduces to

Es(ρ, s) = log
∑
v

PV (v)

(∑
v̄ QV (v̄)

τ

QV (v)τ

)ρ

. (53)
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30/p̄0
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1/p3

Fig. 1: Binary source with 4 states.

with achievable rate given by (52).

Theorem 4. For a finite-state source with irreducible model
S, there exists a block code with M = ⌈enR⌉ codewords such
that using a matched decoder for any initial state s̄0 we have

p̄e(s̄0) ≤ e−n er(R)

where
er(R) = max

ρ∈[0,1]
ρR− Es(ρ),

and

Es(ρ) = (1 + ρ) log λ(ρ) +
1 + ρ

n
log

(
umax(ρ)

umin(ρ)
A

)
, (54)

with achievable rate

Hger(τ) = inf
τ≥0

−
∑
k

uk(0)
∑
v

PV |S(v|k) logPV |S(v|k),

= inf
τ≥0

∑
k

uk(0)H(V |k). (55)

Example 1. Consider a binary source with 4 states given
in Fig. 1. The entropy rate of this source is given by
H(V) =

∑
i

πiH(V |si) where πi is the stationary probability

of being in state si. Assuming the conditional distributions of
the source as {p0, p1, p2, p3} = {0.3, 0.6, 0.2, 0.7} we can
calculate the stationary probabilities as {π0, π1, π2, π3} =
{0.4, 0.15, 0.15, 0.3} and the entropy rate of the source as
H(V) = 0.8708 bits. Assume that at the decoder we attempt
to describe this source with three different models: i) a
matched model, ii) a mismatched model with 2 states as
shown in Fig. 2 with conditional probabilities {pa, pb} as
pa =

∑
i∈{0,2}

πi

π0+π2
pi = 0.2727 and pb =

∑
i∈{1,3}

πi

π1+π3
pi =

0.6667, iii) a memoryless model with distribution {1 − p, p}
p =

∑
i

πipi = 0.45. The generalized entropy rate of the

models are H
(ii)
ger(V) = 0.8782 and H

(iii)
ger (V) = 0.9928 bits,

respectively. Fig. 3 illustrates the error exponent and entropy
rate losses due mismatch.

a b0/p̄a

1/pa

0/p̄b

1/pb

Fig. 2: Mismatched model with 2 states.
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Fig. 3: Error exponents for Example 1.

REFERENCES

[1] L. Davisson, “Universal noiseless coding,” IEEE Trans. Inf. Theory,
vol. 19, no. 6, pp. 783–795, 1973.

[2] T. Ancheta, “Syndrome-source-coding and its universal generalization,”
IEEE Trans. Inf. Theory, vol. 22, no. 4, pp. 432–436, 1976.

[3] R. G. Gallager, “Source coding with side information and universal
coding,” M.I.T. Technical Report LIDS-P-937, Tech. Rep., 1979.

[4] G. Caire, S. Shamai, and S. Verdú, “Noiseless data compression with low-
density parity-check codes,” DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 66, pp. 263–284, 2004.

[5] R. G. Gallager, Information Theory and Reliable Communication. John
Wiley & Sons, Inc. New York, NY, USA, 1968.

[6] K. Vašek, “On the error exponent for ergodic Markov source,” Kyber-
netika, vol. 16, no. 4, pp. 318–329, 1980.


