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Typical Error Exponents: A Dual
Domain Derivation
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and Josep Font-Segura , Member, IEEE

Abstract— This paper shows that the probability that the
error exponent of a given code randomly generated from a
pairwise-independent ensemble is smaller than a lower bound
on the typical random-coding exponent tends to zero as the
codeword length tends to infinity. This lower bound is known to
be tight for i.i.d. ensembles over the binary symmetric channel
and for constant-composition codes over memoryless channels.
Our results recover both as special cases and remain valid for
arbitrary alphabets, arbitrary channels—for example finite-state
channels with memory—, and arbitrary pairwise-independent
ensembles. We specialize our results to the i.i.d., constant-
composition and cost-constrained ensembles over discrete mem-
oryless channels and to ensembles over finite-state channels.

Index Terms— Error exponents, typical random codes, typical
error exponent, expurgated bound.

I. INTRODUCTION

S INCE Shannon’s work [1], the random coding method
remains a key tool in information theory and is applied

to a wide variety of communication and compression settings.
Specifically, by analysing the probability of error averaged
over a certain ensemble of randomly generated codes, it is
possible to show the existence of sequences of codes with a
certain rate having vanishingly small probability of error.

A refinement of the random coding analysis allows to
show that, for any discrete memoryless channel (DMC),
the ensemble average error probability decays exponentially
according to a certain error exponent, often referred to as the
random-coding exponent [2], [3]. The resulting exponent is
known to be tight at high rates [4], but not at low rates.
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By expurgating poor codebooks from the ensemble, it is
possible to show that there exist sequences of codes that
attain the expurgated exponent, known to be strictly better
than the random coding one at low rates [3], [5], [6]. While
it is difficult to infer the structure of the resulting expurgated
ensemble, it is useful to prove the existence of good low-
rate codes. The expurgated exponent is known to be tight at
rate that tends to zero [4]. It is also possible to show the
existence of codes that attain the maximum of the expurgated
and random-coding exponents [6] and to construct explicit
random-coding ensembles that attain the same maximum [7].

As opposed to the exponent of the ensemble-average error
probability, Barg and Forney [8] studied the average error
exponent attained by the i.i.d. random-coding ensemble over
the binary symmetric channel (BSC). They coined the result-
ing exponent the typical error exponent and showed that at
low rates, it can be strictly higher than the random-coding
exponent and strictly lower than the expurgated —the typ-
ical and expurgated error exponents coincide for rate zero.
Nazari et al. [9] derived bounds to the typical error exponent
with constant-composition ensembles for discrete-memoryless
and multiple-access channels. Significant progress in the
understanding of typical error exponents has been made since.
Merhav has derived the typical error exponent in a num-
ber of settings, including DMCs with constant-composition
codes [10], trellis codes [11], and power-constrained ensem-
bles over the coloured Gaussian noise channel [12]. Recently,
Tamir et al. [13] showed that the probability of finding a
code whose exponent is lower (higher) than the typical error
exponent decays exponentially (resp. double-exponentially)
illustrating an asymmetry in the lower and upper tails of
the distribution of the error exponent of random constant-
composition codes. The concentration properties of the error
exponent of randomly generated codes is studied in [14].
Tamir and Merhav [15] have shown that the typical error
exponent can be achieved by a universal decoder ignorant
of the channel law. Specifically, they have shown that a
stochastic decoder based on the empirical mutual information
between the received sequence and each codeword attains the
typical error exponent. Most aforementioned derivations of
the typical error exponent are done in the primal domain,
i.e., they minimize a certain objective function involving
information quantities such as the mutual information, entropy
or the relative entropy over a constrained set of probability
distributions.

In this paper, we refine a Lemma by Gallager to provide
a derivation of a lower bound to the typical error exponent
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for general channels and pairwise-independent random-coding
ensembles. As opposed to most previous works, ours is
naturally a dual-domain derivation [3], i.e., it is expressed
as a maximization of an exponent function over certain non-
negative real-valued parameters. This usually has the advan-
tage that any choice of parameters provides an achievable
exponent, and that it naturally extends to arbitrary alphabets.
In [16] Lagrange duality was applied to the primal domain
expression to obtain a dual domain expression for a lower
bound on the typical error exponent for independently and
identically distributed (i.i.d.) random coding and mismatched
stochastic decoding. The overall expression involves an opti-
mization over five parameters. Unlike [16], we directly derive a
dual domain achievability proof of the typical error exponent.
Our lower bound is valid for any channel and code ensem-
ble with pairwise-independent codewords, thus significantly
extending previous results, including [16]. We particularize
our result to i.i.d., constant composition and cost-constrained
ensembles over DMCs and we show that these coincide with
well known expressions for the typical error exponent for
DMCs, i.e., is tight in such cases. As a consequence of our
derivation, we provide a rather direct dual-domain derivation
of the expurgated exponent for constant composition ensem-
bles. We also particularize our bound to the case of finite-state
channels (FSC). Although it is known that reliable commu-
nication over a finite-state channel is theoretically possible
at any rate below capacity [3, pp. 176–182], comparatively
little research has been carried out with respect to DMC [17].
As pointed out in [18], the most studied channel model with
memory has been the finite-state channel (FSC) and some of
its special cases. The channel coding theorem for finite-state
indecomposable channels was first proved by Blackwell,
Breiman and Thomasian [19]. The random-coding exponent
for FSC was studied in [20] and [21] and further developed
in [3, Sec. 5.9]. In this paper, we provide an expression for
the corresponding lower bound on the typical error exponent.
Finally, we present an extension of our results to the case
of a mismatched decoder, of which the maximum likelihood
(ML) is a special case, which is valid for all channels and
pairwise-independent code ensembles.

The paper is structured as follows. Section II introduces
the preliminaries and the main notation used in the paper.
Section III introduces the refinement of Gallager’s lemma and
derives the main results of the paper. Section IV particularizes
the results of Section III to memoryless channels with i.i.d.,
constant-composition and cost-constrained code ensembles.
Section V shows how to adapt the main results in Section III
to finite-state channels. Proofs of some lemmas can be found
in the Appendix.

II. PRELIMINARIES

We consider coding over discrete channels with conditional
probability distribution Wn(y|x), being x ∈ Xn and y ∈ Yn

the transmitted and received sequences of length n, and X ,Y
the finite channel input and output alphabets, respectively. For
memoryless channels we have Wn(y|x) =

∏n
i=1 W (yi|xi),

where xi ∈ X , yi ∈ Y . A code Cn = {x1, . . . , xMn}

is a set of Mn codewords of length n. We consider a
maximum-likelihood decoder that outputs message estimate m̂
as

m̂ = arg max
m∈{1,...,Mn}

Wn(y|xm). (1)

Assuming equiprobable messages, the error probability of a
fixed code Cn is given by

Pe(Cn) =
1

Mn

Mn∑
m=1

Pe(Cn, m), (2)

where Pe(Cn, m) is the error probability conditioned to code-
word xm being transmitted. We define the finite-length error
exponent of a code Cn as

En(Cn) = − 1
n

log Pe(Cn). (3)

An exponent E is said to be achievable when there
exists a sequence of codes {Cn}∞n=1 such that lim infn→∞
En(Cn) ≥ E.

Lower bounds on the error exponent of codes used over
discrete memoryless channels are traditionally derived using
random-coding arguments [3, Sec. 5.6], [22, Ch. 10]. More
specifically, let Cn be the random variable representing a code
randomly generated according to some probability distribution.
In code ensembles with pairwise-independent codewords, such
as the i.i.d., the constant-composition or the cost-constrained
ensembles later discussed in Sec. IV, the Mn codewords
are generated independently with some probability distribu-
tion Qn(x). For such ensembles there exists a sequence of
codes {Cn}∞n=1 whose limiting error exponent, given in (3) as
n → ∞, is at least as large as the random-coding error
exponent Er(R, Q) given by

Er(R, Q) = lim
n→∞

− 1
n

log E[Pe(Cn)], (4)

where R = limn→∞
1
n log Mn is the code rate and Q is

the asymptotic single-letter version of Qn. For the i.i.d., con-
stant composition and cost-constrained ensembles over DMCs,
(4) is the actual error exponent of the ensemble average error
probability, and not only a lower bound. The random-coding
error exponent in (4) is known to be tight at high rates [4]
while it is not at low rates. Expurgation allows to show
the existence of a codebook with an improved exponent, the
expurgated exponent Eex(R, Q) [3, Eq. (5.7.11)].

In contrast to the limiting exponent of the ensemble-average
error probability, Barg and Forney in [8] defined the typical
random-coding error exponent Etrc(R, Q) as the limiting
expected error exponent of the ensemble, that is

Etrc(R, Q) = lim
n→∞

− 1
n

E[log Pe(Cn)]. (5)

The typical error exponent improves over the random-coding
error exponent (4) at low rates, and is achieved by most codes
in the specified ensemble, unlike the expurgated exponent,
achieved by a subset of codes with unknown structure.
Therefore, the typical error exponent emerges as the error
exponent attained by a given ensemble for a coding length that
tends to infinity. Interestingly, the expressions of the typical
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and expurgated exponents are strongly connected. For the
i.i.d. [8] and the constant-composition [10], [9, Lemma 3]
ensembles, the typical error exponent is shown to satisfy
Etrc(R, Q) = Eex(2R, Q) + R ≤ Eex(R, Q), with equality
for R = 0. In [10] an inequality sign is used, but this is only
because the improved expurgated presented in [23, Sec. 1,
point 4] is used instead of Gallager’s.

III. MAIN RESULT

The main result of this paper is a consequence of the
following one, a refinement of a Lemma by Gallager
in [3, p. 151].

Lemma 1: Let γn be a sequence in n taking values in R
+.

For an arbitrary random-coding ensemble and channel and
s > 0, it holds that

P

[
Pe(Cn) ≥ γ

1
s
n E[Pe(Cn)s]

1
s

]
≤ 1

γn
. (6)

Proof: For any s > 0, consider the random variable Z =
Pe(Cn)s and let a = γnE[Z] where γn is a positive real-
valued sequence. Markov’s inequality implies that P[Z ≥ a] =
P[Z

1
s ≥ a

1
s ] ≤ E[Z]

a , obtaining (6).
While Lemma 1 holds for any positive-valued sequence γn,

by adding the constraint that γn be monotonically increasing
such that limn→∞ γn = ∞, we obtain that the probability to
randomly generate a code Cn such that

Pe(Cn) < γ
1
s
n E[Pe(Cn)s]

1
s (7)

is larger than 1 − 1
γn

, a quantity that tends to 1 as n → ∞.
The r.h.s. of (7) shows a strong connection with the typical
random-coding exponent (5) as lims→0 log E[Pe(Cn)s]

1
s =

E[log Pe(Cn)]. However, since we assume that γn > 1 from
a certain n, the bound (7) is tightened for s < ∞. This result
is subsumed in Theorems 1 and 2, valid for channels with
arbitrary alphabets or memory and pairwise-independent code
ensembles.

For compactness of notation, in the following we will be
using the quantity:

Rn � 1
n

log Mn, (8)

where limn→∞ Rn = R.
Before moving to Theorem 1 we define the following

quantities.
Definition 1: We define

Etrc,x(Rn, Qn) = En
ex(2Rn, Qn) + Rn − δn, (9)

where

En
ex(Rn, Qn) = En

x (λ̂n, Qn) − λ̂nRn (10)

is the multi-letter version of the expurgated exponent,

En
x (λ, Qn)=− 1

n
log
(∑

x

∑
x′

Qn(x)Qn(x′)Zn(x, x′)
1
λ

)λ

,

(11)

Zn(x, x′) =
∑

y

√
Wn(y|x)Wn(y|x′) is the Bhattacharyya

coefficient between x, x′ ∈ Xn,

λ̂n = arg max
λ≥1

{
En

x (λ, Qn) − λ2Rn

}
(12)

is the bound parameter that yields the highest exponent, while

δn =
λ̂n

n
log γn, (13)

and γn is a positive-defined sequence.
Definition 2: Let

Etrc,r(Rn, Qn) = En
r (Rn, Qn) − ιn, (14)

where

En
r (Rn, Qn) = E0(ρ̂n, Qn) − ρ̂nRn (15)

is the multi-letter version of Gallager’s random-coding expo-
nent in [3, Eq. (5.6.16)],

En
0 (ρ, Qn)=− 1

n
log

(∑
y

(∑
x

Qn(x)Wn(y|x)
1

1+ρ

)1+ρ)
,

(16)

ρ̂n is the optimal bound parameter

ρ̂n = argmax
0≤ρ≤1

{
E0(ρ, Qn) − ρRn

}
, (17)

and

ιn =
1
n

log γn, (18)

where γn is a positive-defined sequence.
Theorem 1: For a channel Wn and a pairwise-independent

ensemble with codeword distribution Qn, it holds that

P [En(Cn) > Etrc,lb(Rn, Qn)] ≥ 1 − 1
γn

, (19)

where γn is a positive real-valued sequence and

Etrc,lb(Rn, Qn) = max {Etrc,x(Rn, Qn), Etrc,r(Rn, Qn)} .

(20)

Proof: We start deriving an upper bound on the average
tilted error probability.

For a given code Cn with equiprobable messages, we have:

Pe(Cn) =
1

Mn

Mn∑
m=1

Pe(Cn, m) (21)

≤ 1
Mn

Mn∑
m=1

∑
y

Wn(y|xm)
1

1+ρ ·

·
( ∑

m′ �=m

Wn(y|xm′)
1

1+ρ

)ρ

, (22)

where (22), valid for ρ ≥ 0 , is obtained from Gallager’s
bound to a given code [24]. Raising (22) to the power of s
with range in (0, 1], we have that:

Pe(Cn)s ≤
(

1
Mn

Mn∑
m=1

∑
y

Wn(y|xm)
1

1+ρ ·
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·
( ∑

m′ �=m

Wn(y|xm′)
1

1+ρ

)ρ
)s

(23)

≤
Mn∑

m=1

(
1

Mn

∑
y

Wn(y|xm)
1

1+ρ ·

·
( ∑

m′ �=m

Wn(y|xm′)
1

1+ρ

)ρ
)s

, (24)

where (24) follows from the fact that (
∑

ai)s ≤
∑

(ai)s for
s ∈ (0, 1] [3, Ch. 5]. Taking the ensemble average of (24) we
obtain:

E[Pe(Cn)s] ≤ E

[
Mn∑

m=1

(
1

Mn

∑
y

Wn(y|Xm)
1

1+ρ ·

·
( ∑

m′ �=m

Wn(y|Xm′)
1

1+ρ

)ρ
)s
⎤
⎦ (25)

=
Mn∑

m=1

E

[(
1

Mn

∑
y

Wn(y|Xm)
1

1+ρ ·

·
( Mn∑

m′=1

Wn(y|Xm′)
1

1+ρ

)ρ
)s]

(26)

= MnE

[(
1

Mn

∑
y

Wn(y|X)
1

1+ρ ·

·
( Mn∑

m′=1

Wn(y|Xm′)
1

1+ρ

)ρ
)s]

, (27)

where (27) is because m is a dummy variable and, after
averaging, it leads to Mn equal terms. Rising (27) to 1

s ,
we obtain the following bound on the tilted average probability
of error:

E[Pe(Cn)s]
1
s ≤ 1

Mn
M

1
s
n

(
E

[(∑
y

Wn(y|X)
1

1+ρ ·

·
( Mn∑

m′=1

Wn(y|Xm′)
1

1+ρ

)ρ
)s]) 1

s

. (28)

Now we proceed to upper bound the right-hand side of (7) in
two different ways starting from (28). We show that one of
the two bounds is En

ex(2Rn, Qn)+Rn, where En
ex(Rn, Qn) is

Gallager’s expurgated exponent, while the other is the random-
coding exponent. In Remark 3 after Theorem 2 we show that,
under certain conditions, taking the maximum of the two and
optimizing over the input distribution we recover the typical
random coding (TRC) exponent for the whole range of rates
below capacity.

a) Derivation of Etrc,x(Rn, Qn): Restricting ρ to [0, 1]
in (28) while keeping s ∈ (0, 1] we have the following set of
steps

E[Pe(Cn)s]
1
s ≤

1

Mn

M
1
s

n

��
x

Qn(x)E

�
���

y

W n(y|x)
1

1+ρ ·

·
� Mn�

m′=1

W n(y|Xm′ )
1

1+ρ

�ρ
�s
������X =x

	

� 1

s

(29)

≤
1

Mn
M

1
s

n

��
x

Q
n
(x)E

�
���

y

W
n
(y|x)

1
1+ρ ·

·
Mn�

m′=1

W
n
(y|Xm′ )

ρ
1+ρ

�s
������X = x

	

� 1

s

(30)

≤
1

Mn

M
1
s

n

��
x

Qn(x)E

�
� Mn�

m′=1

��
y

W n(y|x)
1

1+ρ ·

· W n(y|Xm′)
ρ

1+ρ

�s
�����X =x

�� 1
s

(31)

=
1

Mn
M

λ
n

��
x

Q
n
(x)

Mn�
m′=1

E

�
���

y

W
n
(y|x)

1−t ·

· W
n
(y|Xm′)t

� 1
λ

������X = x

	

�λ

(32)

=
1

Mn

�
M

2
n

λ

�
��

x

�
x′

Q
n
(x)Q

n
(x

′|x) ·

·
��

y

W n(y|x)1−tW n(y|x′)t

� 1
λ

�
�

λ

(33)

=
1

Mn

�
M2

n

λ

�
��

x

�
x′

Qn(x)Qn(x′) ·

·
��

y

W n(y|x)1−tW n(y|x′)t

� 1
λ

�
�

λ

(34)

≤
1

Mn

�
M2

n

λ

�
��

x

�
x′

Qn(x)Qn(x′)·

·
��

y

�
W n(y|x)W n(y|x′)

� 1
λ

�
�

λ

(35)

where in (29) we conditioned the expectation to a given x
and averaged out over all possible x, (30) follows from
the inequality (

∑
i ai)ρ ≤

∑
i(ai)ρ for 0 ≤ ρ ≤ 1,

(31) follows from the same inequality considered with respect
to s instead of ρ, equality (32) comes from renaming the
variables s → 1/λ, ρ → t/(1 − t) (to make the expression
aesthetically similar to Gallager’s expurgated), changing their
ranges to λ ∈ [1,∞), t ∈ [0, 1/2] and from the linearity
of the expectation, while (33) is because m′ is a dummy
variable of summation leading to Mn identical terms and from
the fact that we consider pairwise-independent codewords,
which implies Qn(x′|x) = Qn(x′), where Qn(x′|x) is the
probability to generate codeword x′ given that codeword x
has been already generated. Now we note that (33) is convex
in t and symmetric with respect to t = 1/2. Thus, (33)
is minimized with respect to t in t = 1/2, leading to
expression (35). Taking the negative normalized logarithm of
(35), we obtain for s ∈ (0, 1] and λ ∈ [1,∞) that

− 1
n

log E[Pe(Cn)s]
1
s ≥

Rn − λ2Rn − λ

n
log
(∑

x

∑
x′

Qn(x)Qn(x′)Zn(x, x′)
1
λ

)
.

(36)

Including the γn in (36) and optimizing both sides in the
respective variables, we have

max
s∈(0,1]

{
−1

s

1
n

log γn − 1
n

log E[Pe(Cn)s]
1
s

}
≥
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max
λ∈[1,∞)

{
−λ

n
log γn + Rn − λ2Rn +

− λ

n
log

(∑
x

∑
x′

Qn(x)Qn(x′)Zn(x, x′)
1
λ

)}
.

(37)

b) Derivation of Etrc,r(Rn, Qn): In the following we
derive the random-coding exponent starting from (27).
Restricting ρ to [0, 1] in (28) while keeping s ∈ (0, 1] we
have now that

E[Pe(Cn)s]
1
s

≤ 1
Mn

M
1
s
n

(∑
x

Qn(x)E

[(∑
y

Wn(y|x)
1

1+ρ ·

·
( Mn∑

m′=1

Wn(y|Xm′)
1

1+ρ

)ρ
)s∣∣∣∣∣X = x

]) 1
s

(38)

≤ 1
Mn

M
1
s
n

(∑
x

Qn(x)

(∑
y

Wn(y|x)
1

1+ρ ·

· E
[(

Mn∑
m′=1

Wn(y|Xm′)
1

1+ρ

)ρ∣∣∣∣∣X = x

])s) 1
s

(39)

≤ 1
Mn

M
1
s
n

(∑
x

Qn(x)

(∑
y

Wn(y|x)
1

1+ρ ·

·
( Mn∑

m′=1

E

[
Wn(y|Xm′)

1
1+ρ

∣∣∣X = x
])ρ

)s) 1
s

(40)

=
1

Mn
M

1
s
n Mρ

n

(∑
x

Qn(x)

(∑
y

Wn(y|x)
1

1+ρ ·

·
(∑

x′
Qn(x′|x)Wn(y|x′)

1
1+ρ

)ρ
)s) 1

s

(41)

=
1

Mn
M

1
s
n Mρ

n

(∑
x

Qn(x)

(∑
y

Wn(y|x)
1

1+ρ ·

·
(∑

x′
Qn(x′)Wn(y|x′)

1
1+ρ

)ρ
)s) 1

s

(42)

=
1

Mn
M t

nMρ
n

(∑
x

Qn(x)

(∑
y

Wn(y|x)
1

1+ρ ·

·
(∑

x′
Qn(x′)Wn(y|x′)

1
1+ρ

)ρ
) 1

t

⎞
⎠

t

(43)

≤ 1
Mn

M t
nMρ

n

((∑
x

Qn(x)
∑

y

Wn(y|x)
1

1+ρ ·

·
(∑

x′
Qn(x′)Wn(y|x′)

1
1+ρ

)ρ
) 1

t

⎞
⎠

t

(44)

≤ 1
Mn

M t
nMρ

n

(∑
x

Qn(x)
∑

y

Wn(y|x)
1

1+ρ ·

·
(∑

x′
Qn(x′)Wn(y|x′)

1
1+ρ

)ρ
)

(45)

≤ 1
Mn

M t
nMρ

n

(∑
y

(∑
x

Qn(x)Wn(y|x′)
1

1+ρ

)1+ρ
)

,

(46)

where (39) follows from Jensen’s inequality and the concavity
of xs for s ∈ (0, 1], (40) follows from Jensen’s inequality
and the concavity of xρ for ρ ∈ [0, 1], (41) comes from the
fact that m′ is a dummy variable once the average over x′

is taken leading to ((Mρ
n)s)1/s = Mρ

n equal terms, (42) is
because of pairwise independence of the codewords, in (43) we
applied the change of variable s → 1/t, t ∈ [1,∞), while (44)
is because of Jensen’s inequality applied to the function x

1
t

which is concave for t ≥ 1. Taking the negative normalized
logarithm of (46), including γn and optimizing we find

max
s∈(0,1]

{
−1

s

1
n

log γn − 1
n

log E[Pe(Cn)s]
1
s

}

≥ max
t≥1

max
ρ∈[0,1]

{
− t

n
log γn − ρRn − (t − 1)Rn

− 1
n

log

(∑
y

(∑
x

Qn(x)Wn(y|x′)
1

1+ρ

)1+ρ
)}

(47)

≥ max
ρ∈[0,1]

{
− 1

n
log γn − ρRn

− 1
n

log

(∑
y

(∑
x

Qn(x)Wn(y|x′)
1

1+ρ

)1+ρ
)}

,

(48)

where (47) is because t = 1 leads to the maximum.
Combining (37) and (47) and using Lemma 1 we obtain the

theorem statement.
Theorem 1, since based on Lemma 1, only requires γn

to take positive values. By adding some additional constraint
on γn, the next theorem gives a bound on the exponents of typ-
ical codes. Like Theorem 1, the following holds for channels
with arbitrary alphabets or memory and pairwise-independent
code ensembles.

Theorem 2: Let γn be a positive real-valued sequence in n
such that

lim inf
n→∞

γn = ∞, (49)

∞∑
n=1

1
γn

< ∞. (50)

Then, for any channel Wn and pairwise-independent ensemble
with codeword distribution Qn it holds that:

P

[
lim inf
n→∞

En(Cn) > lim inf
n→∞

Etrc,lb(Rn, Qn)
]

= 1. (51)

Proof: The proof is based on the Borel-Cantelli lemma.
Such lemma is often used to upgrade convergence in proba-
bility to almost sure (a.s.) convergence. However, our theorem
does not consider either kind of convergence, although the
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result of the theorem is similar in spirit to going from
convergence in probability to a.s. convergence.

From the assumptions and from the statement of Theorem 1
we have that limn→∞ P

[
An(Cn)] = 0 where

An(Cn) = {En(Cn) ≤ Etrc,lb(Rn, Qn)} . (52)

Consider also the following asymptotic event [25, Sec. 1.3]
[26, Sec. 2.3]:

lim sup
n→∞

An(Cn) =
⋂
n≥1

⋃
k≥n

Ak(Ck) = {An(Cn) i.o.}, (53)

where “i.o.” stands for “infinitely often” and denotes that
events of the kind An(Cn) happen for an infinite number of
values of n. The event in (52) corresponds to finding a code for
which the event within square brackets in (19) does not hold
(i.e. the complementary event). The event in (53) corresponds
to the event “infinitely many An(Cn) occur”. Note that in (53)
the code sequence Cn, n = 1, . . . ,∞, is fixed.

To get an intuition on how this corresponds to the left-hand
side term in (53), assume there exists a positive integer n′

such that
⋃

k≥n′ Ak(Ck) = ∅, i.e., no Ak(Ck) occurs for
k ≥ n′. In this case less than n′ events of the kind An(Cn) can
occur, and so only finitely many such events happen. Note also
the following: consider the event

⋂
n≥1 An(Cn). While the

occurrence of such event implies that infinitely many An(Cn)
occur, it also implies that each An(Cn), n = 1, 2, . . . occur,
which is not needed here. Hence the union in (53). From
Theorem 1 and from (49), we have that P

[
An(Cn)

]
≤ 1

γn
,

and as a consequence that

∞∑
n=1

P

[
An(Cn)

]
< ∞. (54)

By the Borel-Cantelli lemma [26, Sec. 2.3] and using (54) we
have:

P

[
An(Cn) i.o.

]
= 0. (55)

Equation (55) is equivalent to the statement of Theorem 2.
This can be formally proven noticing that equation (55)
implies that the event complementary to the one within brack-
ets has probability one and using the following identity

An(Cn) i.o. = lim sup
n→∞

An(Cn) (56)

= lim inf
n→∞

An(Cn) (57)

where to obtain (57) we applied twice the De Morgan’s law
[25, Sec. 1.2].

Some considerations are in order.
Remark 1: We use lim infn→∞ rather than limn→∞ in (51)

because on the one hand lim infn→∞ En(Cn) necessarily
exists in R∪{−∞, +∞}. On the other hand, for a given code
the limit of the exponent might not exist even if the limit of
En

ex(2R, Qn) does.
Note that we used the fact that R = lim infn→∞

1
n

log Mn = lim supn→∞
1
n log Mn, which follows from the

definition of R.

Remark 2: Theorem 2 holds whether the positive sequence
δn has a limit or not and, if it does, whether it converges or
not. Let us consider the case in which it converges, that is

δn =
ρ̂n

n
log γn → c, (58)

where c < ∞. The smaller c is, the tighter the bound. Hence,
we are particularly interested in the case c = 0. Note that (58)
implies ιn → 0, since ιn ≤ δn. Define ρ̂ = limn→∞ ρ̂n.
Assume that ρ̂ < ∞. Then we need that limn→∞ δn =
limn→∞

1
n log γn = 0, which imposes a further constraint

on γn. Instead, for ρ̂n → ∞ we have that limn→∞ δn = 0 if
and only if ρ̂n grows slower than n

log γn
, e.g., as ρ̂n =

√
n

log γn
.

Under these assumptions, δn vanishes with n. Thus, γn must
grow fast enough for the series of its reciprocal to converge,
but slow enough so that the above holds. This is the case,
for example, for i.i.d. codes and constant-composition codes
over DMC as well as any code over finite-state channels,
as we show in the next section. We analyze the case in which
ρ̂n → ∞ in Section III-B.

In some case it can happen that, although ιn and δn go
to 0 asymptotically, the statement of Lemma 1 has limited
practical relevance, despite the conditions of Theorem 2 being
satisfied. This is the case, for instance, in channels whose
capacity is zero. As an example, we consider the quasi-static
binary symmetric channel (BSC) studied in [27], where the
crossover probability of the channel p is fixed for the whole
transmission of a codeword, and changes randomly according
to some distribution, from codeword to codeword. In this case,
the ensemble-average error probability of the quasi-static BSC
E[Pe(Cn)] does not vanish with n but rather converges to a
constant, the outage probability, given by Pout(R) = P[I(p) <
Rn], where I(p) = 1−h(p) is the mutual information of a BSC
with crossover probability p, where the probability is taken
with respect to the random crossover probability p. In this
case, the complementary of the tail probability in (51), written
in terms of error probability instead of error exponent, with
s = 1 for simplicity, satisfies

P

[
lim inf
n→∞

Pe(Cn) ≥ lim inf
n→∞

γn E[Pe(Cn)]
]

= P

[
lim inf
n→∞

Pe(Cn) ≥ lim inf
n→∞

γn · Pout(Rn)
]

(59)

= P

[
lim inf
n→∞

Pe(Cn) ≥ ∞
]

(60)

= 0, (61)

where we assumed that Pout(Rn) > 0, in other words, that
the distribution of the crossover probability p is such that the
expectation in the left-hand side of (59) converges to a positive
number. For such channel, Theorem 2 applies but gives a result
which is not practically relevant.

There might also be cases that δn diverges for R = 0.
Whether for a given pairwise code ensemble and channel this
is the case or not, depends on the variance of the quantity
log Zn(x, x′), as will be shown in Section III-B.

Remark 3: Let Eex(R, Q) and Er(R, Q) be the asymp-
totic single-letter expurgated and random-coding exponents,
respectively in (10) and (15), and denote by Q the limiting
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distribution of Qn. If the following limits exist

lim
n→∞

En
ex(2Rn, Qn) = Eex(2R, Q), (62)

lim
n→∞

En
r (Rn, Qn) = Er(R, Q), (63)

after exploiting the superadditivity of lim inf in Theorem 2,
it follows that

P

[
lim inf
n→∞

En(Cn) > max
{
Eex(2R, Q) + R +

− lim inf
n→∞

δn, Er(R, Q) − lim inf
n→∞

ιn

}]
= 1. (64)

Equation (64) holds independently on the behaviour of δn and
ιn and specifically on whether they (or only one of them)
approaches 0 as n tends to infinity. Note that if they both
diverge, (64) leads to a trivial result while if only δn tends
to infinity while ιn → 0 the maximum always coincides
with Er(R, Q).

Restricting to channels and ensembles for which δn → 0
(and thus ιn → 0, see Remark 2), Equation (64) becomes

P

[
lim inf
n→∞

En(Cn)>max {Eex(2R, Q) + R, Er(R, Q)}
]
=1.

(65)

Now, keeping the assumption that the limits exist and that
(65) holds, consider the maximum R (if it exists) such that
the optimal ρ leading to Er(R, Q) is 1 and let us refer to such
rate as R∗. We have: Eex(R∗, Q) = Er(R∗, Q), which follows
from similar arguments as in [3, Sec. 5.7]. Furthermore, since
the derivatives of Eex(R, Q) and Er(R, Q) with respect to R
are exactly −λ and −ρ, respectively, we obtain that

max {Eex(2R, Q) + R, Er(R, Q)}

=

{
Eex(2R, Q) + R R ≤ R∗

Er(R, Q) R > R∗,
(66)

recovering the TRC exponent over all rates. We note that
Er(R, Q) might be zero above a certain rate. Optimizing over
the input distribution Q, such rate indeed coincides with the
channel capacity. Note also that, in case δn → ∞ and ιn → 0,
then R∗ = 0, i.e., Etrc,lb(Rn, Qn) coincides with Er(R, Q).

Observe that Theorem 1 does not apply to code ensem-
bles whose codeword generation is not pairwise independent,
such as the random Gilbert-Varshamov (RGV) ensemble [7].
For this ensemble, it is known that the exponent of the
ensemble average error probability is the maximum of the
expurgated and random-coding exponents [7]. For ensem-
bles whose average error probability achieves the expurgated
exponent, like the RGV, by setting s = 1 in Lemma 1,
we find that P

[
En(Cn) > En

ex(Rn, Qn) − δn

]
> 1 − εn,

implying that the error exponent of typical codes is lower
bounded by En

ex(Rn, Qn). This can also be seen as a
consequence of Jensen’s inequality, since E[log Pe(Cn)] ≤
log E[Pe(Cn)] = En

ex(Rn, Qn), and thus Etrc(R, Q) =
limn→∞ − 1

nE[log Pe(Cn)] ≥ En
ex(Rn, Qn).

A. Mismatched Decoder

While Theorem 1 and Theorem 2 assume a ML decoder,
they can be easily generalized to mismatched decoding, that
recovers ML as a special case. This is done by replacing
Etrc,x(Rn, Qn) and Etrc,r(Rn, Qn) with their mismatched
counterpart as follows. Let qn(x, y) be the decoding metric,
Dm the decision region for codeword xm according to such
metric and m̂ the index of the codeword selected by the
decoder. The mismatched decoder uses the decoding rule

m̂ = arg max
m∈{1,...,Mn}

qn(xm, y). (67)

The choice qn(x, y) = Wn(y|xm) recovers the ML decoder.
If codeword xm is transmitted, for all y /∈ Dm, where Dm is
the decoding region for message m, we have that( ∑

m′ �=m

(
qn(xm′ , y)
qn(xm, y)

)τ
)ρ

≥ 1, (68)

for τ ≥ 0, ρ ≥ 0. Using (68), we can bound the probability of
error Pe(Cn, m) and find an upper bound on the probability
of error for a given code in the ensemble. Similarly to (21),
we have

Pe(Cn)≤ 1
Mn

Mn∑
m=1

∑
y

Wn(y|xm)

( ∑
m′ �=m

(
qn(xm′ , y)
qn(xm, y)

)τ
)ρ

,

(69)

where (69) follows from (68) and from extending the sum to
all y.

Using (69) instead of (21) in the proof of Theorem 1
we obtain that Etrc,r(Rn, Qn) and Etrc,x(Rn, Qn) are now
respectively given by

Etrc,r(Rn, Qn)

= max
ρ∈[0,1],τ≥0

{
− 1

n
log γn − ρRn − 1

n
log

(∑
x

Qn(x) ·

·
∑

y

Wn(y|x)
(∑

x′
Qn(x′)

(
qn(x′, y)
qn(x, y)

)τ)ρ
)}

(70)

and

Etrc,x(Rn, Qn)

= max
λ≥1,τ≥0

{
−λ

n
log γn + Rn − λ2Rn+

− λ

n
log

(∑
x

∑
x′

Qn(x)Qn(x′)·

·
(∑

y

Wn(y|x)
(

qn(x′, y)
qn(x, y)

)τ
) 1

λ
)}

.

(71)

Note that, except for the term − 1
n log γn, the result in (70)

recovers the expression of Gallager’s mismatched decod-
ing exponent for i.i.d. inputs [28, Eq. (7.4)]. Similarly,
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subtracting Rn and −λ
n log γn from (71) and substituting 2Rn

with Rn in the remaining expression, one recovers the expur-
gated exponent for the mismatched decoding i.i.d. case given
in [28, Eq. (7.35)]. Using (70) and (71), Theorem 1 and
Theorem 2 can be directly extended to the mismatched case.

B. Low Rates, ρ̂n → ∞
For some channels and ensembles it can happen that, in the

rate regime where Etrc,lb(Rn, Qn) = Etrc,x(Rn, Qn), the
optimal λ grows unbounded with n, i.e., λ̂n → ∞. This is
easy to see for R = 0, but can also happen for positive
rates. We start by calculating the derivative of En

x (λ, Qn) with
respect to λ and show that it is strictly positive, except some
special cases, for n ≥ 2 and 1 ≤ λ < ∞. We have:

∂En
x (λ, Qn)
∂λ

= − 1
n

log
∑

x

∑
x′

Qn(x)Qn(x′)Zn(x, x′)
1
λ +

+
1
n

∑
x

∑
x′ Qn(x)Qn(x′) log

[
Zn(x, x′)

1
λ

]
Zn(x, x′)

1
λ∑

x

∑
x′ Qn(x)Qn(x′)Zn(x, x′)

1
λ

(72)

= − 1
n

log EQn

[
Zn(X, X ′)

1
λ

]
+

+
1
n

∑
x

∑
x′ Qn(x)Qn(x′)Zn(x, x′)

1
λ log

[
Zn(x, x′)

1
λ

]
EQn

[
Zn(X , X ′)

1
λ

]
(73)

= − 1
n

log EQn

[
Zn(X, X ′)

1
λ

]
+

+
1
n

∑
x

∑
x′

Pn(x, x′) log
Pn(x, x′)

Qn(x)Qn(x′)
+

+
1
n

∑
x

∑
x′

Pn(x, x′) log
{

EQn

[
Zn(X, X ′)

1
λ

]}
(74)

=
1
n

∑
x

∑
x′

Pn(x, x′) log
Pn(x, x′)

Qn(x)Qn(x′)
(75)

=
1
n

D (Pn‖QnQn) (76)

where in (73) we substituted

EQn

[
Z(X, X ′)

1
λ

]
=
∑
x

∑
x′

Qn(x)Qn(x′)Zn(x, x′)
1
λ ,

(77)

in (74) we defined

Pn(x, x′) =
Qn(x)Qn(x′)Zn(x, x′)

1
λ

EQn

[
Z(X, X ′)

1
λ

] , (78)

while in (75) we used the fact that Pn(x, x′) is a probability
distribution and thus its components add up to 1. As suggested
by Equation (76), the derivative of En

x (λ, Qn) is 1
n times

the relative entropy between the distributions Pn(x, x′) and
Qn(x)Qn(x′), and thus is strictly positive except in some
special case. Furthermore, for most channels and ensembles,

for any finite λ ≥ 1 its value is bounded. This is because
the relative entropy takes value ∞ only if the ratio of the
distributions diverges with n for some value. Since P (x, x′)
is equal to Qn(x)Qn(x′) times another term, the derivative
is infinite only if such term goes to 0 fast enough so that the
double sum grows asymptotically faster than n.

We now study the behaviour of En
x (λ, Qn) for λ → ∞.

Since for all n the derivative is non-negative, En
x (λ, Qn) can

either converge to a constant or diverge. By calculating the
limit we obtain

lim
λ→∞

En
x (λ, Qn) = − 1

n

∑
x

∑
x′

Qn(x)Qn(x′) log Zn(x, x′).

(79)

Note that the right-hand side of (79) can be ∞ in some case
depending on the distribution of log Zn(X, X ′).

Now let us consider expression (10) and study the cases
in which, for Rn > 0, the optimal λ̂n grows unbounded as
n → ∞. This happens for all rates Rn < R∞(Qn), where
R∞(Qn) > 0 is a quantity that can be found following a
similar reasoning as in [3, Sec. 5.7]. Let us study the R-axis
intercept of the following linear function En

x (λ, Qn) + Rn −
λ2Rn, given by

Rn =
En

x (λ, Qn)
2λ − 1

. (80)

Using (75), (77), (78), and taking the limit for λ → ∞ we
have

R∞(Qn)
= lim

n→∞
Rn (81)

= lim
n→∞

−1
2

1
n

log
∑
x

∑
x′

Qn(x)Qn(x′)1{Zn(x, x′) > 0}

(82)

= lim
n→∞

−1
2

1
n

log P [Zn(x, x′) > 0] . (83)

Expression (83) is (one half) the exponent of the probability
that the Bhattacharyya bound on the pairwise error probability
be positive. For all rates smaller than R∞(Qn) as given
in (83), the quantity En

x (λn, Qn) − λn2Rn + Rn is infinite,
which implies that En

x (λn, Qn) is given by (79) because λ̂
is ∞. Notice that this is achieved using a λ̂n that tends
to infinity as n grows. In order to assess the behaviour of
the TRC exponent we need to study the δn in Definition 9
as λ̂n → ∞. We recall that δn = λ̂n

n log γn. Repeating
the derivation of R∞(Qn) including δn in the calculation,
Equation (80) becomes (ignoring the −1 at the denominator
which has no impact asymptotically):

Rn =
En

x (λ, Qn) − λ log γ
n

2λ
=

En
x (λ, Qn)

2λ
− log γ

2n
. (84)

Taking the limit in (84) we obtain again R∞(Qn) as in (83).
If R∞(Qn) > 0, for all rates Rn < R∞(Qn) the TRC
exponent is infinite. Note that in such case it can happen that
δn → ∞, as λn must grow asymptotically like En

x (λ, Qn),
which could be actuall faster than n

log γn
. However, also in
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such case the statement of Theorem 2 would give a non-
trivial result, as En

x (λ, Qn) grows faster than δn. The R∞(Qn)
derived here is closely related to the quantity R∞

x derived
in [3, Sec. 5.7] for the DMC and is, in fact, equal to
1/2 times the equivalent of R∞

x for general channels and
pairwise-independent code ensembles. Similarly to Rx,∞, the
quantity 2R∞(Qn) is a lower bound on the zero-error capacity
for general channels. This implies that for all code ensembles
and channels considered in the present section for which the
zero-error capacity is 0, R∞(Qn) = 0 as well.

Let us now consider the case in which R∞(Qn) = 0.
Expression (83) implies R∞(Qn) = 0 whenever the probabil-
ity that the Bhattacharyya bound on the codeword transition
probability decreases sub-exponentially. To understand what
happens to the TRC exponent in such case, we need to check
both (79), which is the average exponent of the bound, and the
behaviour of δn. Note that expression (79) does not necessarily
go to ∞ when R∞(Qn) = 0. For strictly zero rates, namely
when limn→∞

1
n log Mn = 0, the largest exponent in (10) is

achieved for λ̂n → ∞. We then consider the dependence on
n in the rate by using the definition Rn = 1

n log Mn in (12)
and let λ̂n be

λ̂n = argmax
λ≥1

{
En

x (λ, Qn) − 2λ

n
log Mn

}
. (85)

In order to characterize how λ̂n grows as n → ∞, we find
the Taylor series expansion of En

x (λ, Qn) around λ → ∞,
yielding

En
x (λ, Qn) = νn

0 (Qn) − νn
1 (Qn)

λ
+ O(λ−2), (86)

where

νn
0 (Qn) = − 1

n
E[log Zn(X, X ′)] (87)

and

νn
1 (Qn) =

1
2n

Var[log Zn(X, X ′)]. (88)

Then, it follows that λ̂n grows as

λ̂n =

√
νn
1 (Qn)

2 log Mn

n + log γn

n

+ σn, (89)

where the two terms at the denominator vanish with n, and also
σn → 0. From (89) it follows that δn defined in (18) satisfies
limn→∞ δn = 0 for R = 0 if 1

nVar[Zn(X , X ′)] grows slower

than
√

n
log γn

. Note that Var[log Zn(X , X ′)] depends both on

the channel and the specific code ensemble. The parameter
νn
0 (Qn) in (87) is the same as the expression in (79). Note

that the analysis on the growth rate of λ̂n just carried out
applies to all cases in which λ̂n → ∞. Thus, apart from the
case R = 0, it also holds for 0 < R < R∞(Qn). In such case
the denominator of (89) does not vanish with n. This implies
that Var[log Zn(X , X ′)] → ∞ faster than n. The term νn

1

in (88) characterizes the backoff of the error exponent (86)
from its limiting value as λ → ∞.

IV. MEMORYLESS CHANNELS

In this section, we specialize Theorem 2 to memory-
less channels with i.i.d., constant-composition and cost-
constrained ensembles. As a by-product, we provide a
direct dual-domain derivation of the expurgated exponent
for constant-composition-codes [6], as an alternative to that
in [29].

A. i.i.d. Ensemble

Let us consider the i.i.d. ensemble with distribution

Qn
iid(x) =

n∏
i=1

Q(xi). (90)

Using (90) in (10), we recover the single-letter version of the
Gallager’s Ex-function [3, Eq. (5.7.12)], namely

Eiid
x (λ, Q) = −λ log

∑
x

∑
x′

Q(x)Q(x′)Z(x, x′)
1
λ , (91)

where Z(x, x′) is the single-letter Bhattacharyya coefficient,
and the i.i.d. expurgated exponent in (11) becomes

Eiid
ex (R, Q) = Eiid

x (λ̂, Q) − λ̂R. (92)

When R > 0, it follows that the optimal parameter (12) does
not depend on n, its limit exists and reads

λ̂ = arg max
λ≥1

{
Eiid

x (λ, Q) − λ2R
}
. (93)

In all cases for which λ̂ < ∞, the condition limn→∞ δn = 0 of
the theorem is satisfied. For all cases in which ρ̂ is infinite we
can specialize the discussion in Section III-B to the i.i.d. case.
For strictly zero rates, namely when limn→∞

1
n log Mn = 0,

the largest exponent in (92) is achieved for λ̂ → ∞. Then,
from (89), it follows that λ̂n grows as

λ̂n =

√
n · ν1(Q)

2 logMn + log γn
+ σn, (94)

where

ν1(Q) =
1
2
Var [log Z(x, x′)] (95)

is constant in n while σn is a term that vanishes as n → ∞,
implying that δn defined in (18) satisfies limn→∞ δn = 0 as
in the R > 0 case.

The case in which λ̂n grows unbounded for positive rates is
obtained by replacing R∞(Qn) (after optimization over Qn)
with 1

2R∞
x [3] in Section III-B. As mentioned for the general

case, also for the DMC the δn can, in principle, diverge when
R < R∞(Qn), and yet Etrc,lb(Rn, Qn) → ∞.

According to Theorem 1, with probability approaching one
as n → ∞, an i.i.d. code Ciid

n randomly generated from the
ensemble (90) has an error exponent (3) satisfying

En(Ciid
n ) ≥ Eiid

ex (2Rn, Q) + Rn − δn (96)

with vanishing δn. Particularizing (92) to the BSC case,
it follows that the bound (96) coincides with the TRC exponent
given by Barg and Forney in [8].
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Remark 4: Let us denote the smallest rate for which λ̂ = 1
with R∗ and recall that the expurgated exponent and the
random-coding exponent coincide for such rate [3, pg. 154].
Similarly as in Remark 3, it can be shown that, for all
cases in which δn → 0, Theorem 2 implies that the achiev-
able typical random-coding exponent is lower bounded as
follows:

Etrc(R, Q) ≥
{

Eex(2R, Q) + R 0 ≤ R ≤ R∗
2

Er(R, Q) R > R∗
2 .

(97)

Note that Er(R, Q) might become zero above a certain
rate. If a maximization with respect to the input distribu-
tion is carried out, such rate coincides with the capacity
of the channel. This lower bound is known to be tight for
constant-composition ensembles [10] and coincides with the
one derived in [8] for the BSC.

B. Constant-Composition Ensemble

For every n, let Q̂n be a type, or empirical distribution,
such that ‖Q̂n − Q‖∞ ≤ 1

n where ‖P‖∞ = maxx P (x).
Then, the constant-composition ensemble has codeword
distribution

Qn
cc(x) =

1
|T n(Q̂n)|

1
{
x ∈ T n(Q̂n)

}
, (98)

where Tn(Q̂n) is the type class, i.e., the set of all sequences
of length n with empirical distribution Q̂n, while 1{.} is the
indicator function.

For the constant-composition ensemble (98), the normal-
ized multi-letter Gallager’s expurgated function En

x (λ, Qn)
reads

En
x (λ, Qn)=− 1

n
log
(∑

x

Qn(x)
∑
x′

Qn(x′)
n∏

i=1

Z(xi, x
′
i)

1
λ

)λ

.

(99)

In (99), we have used the fact that the channel is memoryless
to express Zn(x, x′) as a product, and we have also changed
the order of the summations over x and x′.

Since all codewords x′ have the same probability 1
|T n(Q̂n)| ,

the summation over x′ in (99) for a fixed constant-
composition sequence x satisfies

∑
x′

Qn(x′)
n∏

i=1

Z(xi, x
′
i)

1
λ

=
1

|T n(Q̂n)|
∑
x′

n∏
i=1

Z(xi, x
′
i)

1
λ (100)

≤ min
P̄

{
(n + 1)|X |−1enD(Q̂n‖P̄ )

n∏
i=1

∑
x′

P̄ (x′)Z(xi, x
′)

1
λ

}
,

(101)

where the upper bound in (101) follows by identifying
gi(xi) = Z(xi, x

′
i)

1
λ in [30, Eq. (2.4)], P̄ is an auxiliary

probability distribution and D(Q‖P̄ ) is the relative entropy

between distributions Q and P̄ . Using the upper bound (101)
into (99) and arranging terms, we obtain

En
x (λ, Qn)

≥ max
P̄

{
− 1

n
log
(

(n + 1)|X |−1enD(Q̂n‖P̄ )·

· 1
|T n(Q̂n)|

∑
x

n∏
i=1

∑
x′

P̄ (x′)Z(xi, x
′)

1
λ

)λ}

(102)

= max
P̄

{
− 1

n
log
(

(n + 1)|X |−1enD(Q̂n‖P̄ )
∏
x

(∑
x′

P̄ (x′)·

· Z(x, x′)
1
λ

)nQ̂n(x))λ}
,

(103)

where (103) follows since the sum over x in (102) has exactly
|T n(Q̂n)| terms and from elementary properties of constant-
composition sequences. Next, we rewrite the maximization
over P̄ as maximization over an auxiliary function a(x) [29]
satisfying P̄ (x) = Q̂n(x)e

a(x)
λ . Using this in (103) we find

that

En
x (λ, Qn)

≥ max
a(·)

{
− 1

n
log
(

(n + 1)|X |−1e−
n
λ

�
x Q̂n(x)a(x)·

·
∏
x

(∑
x′

Q̂n(x′)e
a(x′)

λ Z(x, x′)
1
λ

)nQ̂n(x))λ}

(104)

= −λ(|X | + 1)
n

log(n + 1) + max
a(·)

{
−λ log

∏
x

(∑
x′

Q̂n(x′)·

·
(
Z(x, x′)ea(x′)−a(x)

)1
λ

)Q̂n(x)}
. (105)

We observe that the the first term in the r.h.s. of (105)
vanishes with n. Using that ‖Q̂n − Q‖∞ ≤ 1

n , and further
simplifying the result, we obtain the constant-composition
version of the Gallager’s Ex-function, namely

Ecc
x (λ, Q) = max

a(·)

{
−λ

∑
x

Q(x) log
∑
x′

Q(x′)
(
Z(x, x′) ·

· ea(x′)−a(x)
) 1

λ

}
.

(106)

According to Theorem 1, with probability approaching one as
n → ∞, a constant-composition code Ccc

n randomly generated
from the ensemble (98) has an error exponent satisfying

En(Ccc
n ) ≥ Ecc

ex(2R, Q) + R, (107)

where
Ecc

ex(R, Q) = Ecc
x (λ̂, Q) − λ̂R (108)

is the constant-composition version of the expurgated exponent
with optimal parameter

λ̂ = arg max
λ≥1

{
Ecc

x (λ, Q) − λ2R
}
, (109)
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coinciding with the expression in [10]. Similarly to what seen
for the i.i.d. case, we need to address the case in which λ̂n

diverges as n grows. For the zero-rate case we find that the
optimal λ̂n grows as

λ̂n =

√
n · ν1(Q)

2 logMn + log γn
+ σn, (110)

where

ν1(Q) = max
a(·)

1
2
Var

[
log

(
Z(x, x′)ea(x′)−a(x)

)]
, (111)

impliying that δn → 0.
The case in which λ̂n grows unbounded for positive rates

is obtained in a similar way as for the i.i.d. case by using the
equivalent of R∞

x for the constant-composition case, which
can be derived in a similar way as done for the general case
in Section III-B and the i.i.d. case in [3, Sec. 5.7].

At high rates the typical error exponent coincides
with the random-coding exponent for constant-composition
ensembles [31]

Ecc
r (Q, R) = max

Q
max

0≤ρ≤1
E0(Q, ρ) − (1 + ρ)D(Q‖Q) − ρR,

(112)

where E0(Q, ρ) is Gallager’s E0 function for the i.i.d. ensem-
ble while D(Q‖Q) is the relative entropy between the distri-
butions Q and Q.

C. Cost-Constrained Ensemble

The cost-constrained ensemble is described by a set of
symbol-wise cost functions and an i.i.d. input distribution
Qn(x) =

∏n
i=1 Q(xi) that induce the pairwise-independent

codeword distribution:

Qn
cost(x) =

1
μn

n∏
i=1

Q(xi)1 {x ∈ Dn} , (113)

where μn is a normalization factor and Dn is the set of input
sequences satisfying the cost constraints given by

Dn =

{
x :

∣∣∣∣∣ 1n
n∑

i=1

a�(xi) − φ�

∣∣∣∣∣ ≤ δ

n
,  = 1, . . . , L

}

(114)

for some δ > 0 and φ� =
∑

x Q(x)a�(x) where {a�(x)}L
�=1

are auxiliary cost functions and can be optimized to obtain an
improved exponent with respect to the i.i.d. case. A system
cost of the form 1

n

∑n
i=1 c(xi) ≤ Γ can be included in the

analysis, except that no optimization over the function c(x)
itself can be done. This ensemble [29] is a generalization of
the one in [3, Sec. 7.3], which considers a single constraint.
As done for the i.i.d. and the constant-composition ensembles,
we specialize the result of Theorem 2 to the cost constrained
case by upper bounding Etrc,x(Rn, Qn) and Etrc,r(Rn, Qn).
The key advantage of this ensemble is that it allows to
obtain the same performance of constant-composition codes
for channels with possibly continuous alphabets.

Let us start with Etrc,x(Rn, Qn). Plugging (113) into (11)
we obtain

En
x (λ, Qn

cost) = − 1
n

log

(
1
μ2

n

∑
x

∑
x′

Qn(x)Qn(x′) ·

· 1 {x ∈ Dn}1 {x′ ∈ Dn}Zn(x, x′)
1
λ

)λ

.

(115)

Under mild assumptions on the cost functions, namely and
EQ

[
a�(X)2

]
≤ ∞ for all  = 1, 2, . . . , L, the normalization

constant satisfies [29, Prop. 2], [32] limn→∞
1
nμn = 0,

implying that, for n large,

En
x (λ, Qn

cost) = − 1
n

log

(∑
x

∑
x′

Qn(x)Qn(x′) ·

· 1 {x ∈ Dn}1 {x′ ∈ Dn}Zn(x, x′)
1
λ

)λ

. (116)

We next find an upper bound on the indicator function in (116).
Define an

� (x) =
∑n

i=1 a�(xi). For any real-valued number r�,
we have

1 {x ∈ Dn} =
L∏

�=1

1
{
|an

� (x) − nφ�| ≤ δ
}

(117)

≤
L∏

�=1

er�(a
n
� (x)−nφ�)e|r�|δ (118)

= e
�L

�=1 r�(a
n
� (x)−nφ�)+|r�|δ, (119)

where in (118) we upper bounded each indicator function
using (114) for any real number r� [29, Eq. (56)], which
is independent of n. Using (119) we bound the product of
indicator functions in (115) as:

1
{
x ∈Dn

}
1
{
x′ ∈ Dn

}
≤ e

�L
�=1 r�(a

n
� (x)−nφ�)+|r�|δe

�L
�=1 r�(a

n
� (x′)−nφ�)+|r�|δ

(120)

=
e
�L

�=1 r�(a
n
� (x)−nφ�)

e
�

L
�=1 r′

�(a
n
� (x′)−nφ�)

eδ
�L

�=1(|r�|+|r′
�|) (121)

where in (121) we renamed r as −r′. Since r� is a real-valued
variable which does not depend on n, we can bound the
argument of the logarithm in (116) using (121):(∑

x

∑
x′

Qn(x)Qn(x′)1 {x ∈ Dn}1 {x′ ∈ Dn} ·

· Zn(x, x′)
1
λ

)λ

(122)

≤
(∑

x

∑
x′

Qn(x)Qn(x′)
e
�L

�=1 r′
�(a

n
� (x′)−nφ�)

e
�L

�=1 r�(an
� (x)−nφ�)

·

· eδ
�L

�=1(|r
′
�|+|r�|)Zn(x, x′)

1
λ

)λ

(123)

=̇

(∑
x

∑
x′

Qn(x)Qn(x′)
e
�L

�=1r′
�(a

n
� (x′)−nφ�)

e
�

L
�=1r�(an

� (x)−nφ�)
Zn(x, x′)

1
λ

)λ

,

(124)
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where in (124) we used the fact that eδ
�L

�=1(|r�|+|r′
�|) is

independent of n while Qn(x) =
∏n

i=1 Q(xi) is an input
distribution that satisfies the conditions of [29, Prop. 2] as
well as the system cost constraint . From (124) we can bound
En

x (λ, Qn
cost) as follows:

En
x (λ, Qn

cost)
≥ En

x (λ, Qn, {a�}, {r�}, {r′�})

= − 1
n

log

(∑
x

∑
x′

Qn(x)Qn(x′)
e
�L

�=1 r′
�(a

n
� (x′)−nφ�)

e
�

L
�=1 r�(an

� (x)−nφ�)
·

· Zn(x, x′)
1
λ

)λ

. (125)

Expanding each term as single-letter product and optimizing
over the auxiliary variables, we obtain:

En
x (λ, Qn

cost)
≥ Ex(λ, Q)

= sup
{r�}L

�=1,{r′
�}L

�=1,{a�(.)}L
�=1

{
−λ log

(∑
x

∑
x′

Q(x)Q(x′) ·

· e
�L

�=1 r′
�(a�(x

′)−φ�)

e
�L

�=1 r�(a�(x)−φ�)
Z(x, x′)

1
λ

)}
.

(126)

From (126), the bound Etrc,x(Rn, Qn) follows. As a side
remark we point out that the expurgated of the i.i.d. and the
constant-composition ensembles can be recovered from (126).
The former is recovered by setting r� = r′� = 0 in (126),
while the latter is obtained by setting L = 1, r′1 = 1 and
r1 = 0. This differs from the similar result in [29], where the
constant-composition exponent is obtained with L = 2, due to
the fact that [29] considers a mismatched decoder rather than
a ML one as in our case.

Let us now consider the case in which λ̂n → ∞ as n grows.
For the zero-rate case we find from (89) that

λ̂n =

√
n · ν1(Q)

2 logMn + log γn
+ σn, (127)

where now the term ν1(Q) is given by

ν1(Q) = sup
{r�}L

�=1,{r′
�}L

�=1,{a�(·)}L
�=1

{
1
2
Var

[

log

(
e
�L

�=1 r′
�(a�(x

′)−φ�)

e
�

L
�=1 r�(a�(x)−φ�)

Z(x, x′)

)]}
, (128)

implying that δn → 0.
The case in which λ̂n grows unbounded for positive

rates is obtained in a similar way as for the i.i.d. and the
constant-composition ensembles by using the equivalent of
R∞

x for the cost constraint case.
As for the bound Etrc,r(Rn, Qn), it can be obtained by

plugging (113) into (15), using the bound on the indicator
function given in (119) and following a similar reasoning as
for En

x (λ, Qn
cost) to obtain [29], [31]

En
0 (ρ, Qn

cost)

≥ En
0 (ρ, Q)

= sup
{r�}L

�=1,{r′
�}L

�=1,{a�(.)}L
�=1

log

(∑
y

(∑
x

Q(x)·

· e
�L

�=1 r�(a�(x)−φ�)W (y|x)
1

1+ρ

)1+ρ
)

, (129)

from which the bound on the TRC exponent at high rates
Etrc,r(Rn, Qn) follows.

V. FINITE-STATE CHANNELS

In this section, we particularize the result in Theorem 2
to the case of finite-state channels. In particular, we derive
the two lower bounds on the exponents Etrc,x(Rn, Qn) and
Etrc,r(Rn, Qn) in (51).

We consider finite-state channels with A states
{1, 2, . . . , A}. The statistical behaviour of the channel
is described by a joint probability measure linking the current
channel state and output to the current input and previous
state W (yt, st|xt, st−1). Similarly to [3, Sec. 4.6], our results
are based on the probability of the channel output y, given
the channel input x and initial state s0, which can be obtained
by summing over all the possible state sequences (s1, . . . , sn)
using the following recursive expression,

Wn(y|x, s0) =
A∑

sn=1

Wn(y, sn|x, s0), (130)

where the probability Wn(y, sn|x, s0) can be calculated using
the recursion

Wt(yt, st|xt, s0) =
A∑

st−1=1

W (yt, st|xt, st−1)Wt−1(yt−1, st−1|xt−1, s0), (131)

for t = 1, . . . , n. In (131), xt and yt are respectively
the channel input and output sub-sequences given by xt =
(x1, . . . , xt) and yt = (y1, . . . , yt), while for t = 1 we
have the initial relation W1(y1, s1|x1, s0) = W (y1, s1|x1, s0).
Equation (130) represents a family of channel transition prob-
abilities, indexed by the initial state s0, that also encompasses
compound channels since s0 can be considered as an index
that determines the channel from the compound set. We study
the error probability of ensemble of codes using a mismatched
decoder that employs a decoding metric that averages over
the initial state assuming an equiprobable state distribution,
as in [3],

Wn(y|x) =
A∑

s0=1

1
A

Wn(y|x, s0). (132)

A. Lower Bound on Etrc,x(Rn, Qn) for Finite-State Channels

From Lemma 1 and the error probability bound in (35),
we have that with high probability, a code drawn randomly
from a pairwise-independent ensemble used over a FSC and
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averaged over all possible states has an error probability
bounded by

Pe(Cn)

≤ 1
Mn

(γnMn(Mn − 1))λ

(∑
x

∑
x′

Qn(x)Qn(x′)·

·
(∑

y

√
Wn(y|x)Wn(y|x′)

) 1
λ

)λ

(133)

≤ 1
Mn

(γnMn(Mn − 1))λ

(∑
x

∑
x′

Qn(x)Qn(x′)·

·
(∑

y

√√√√ A∑
s0=1

1
A

Wn(y|x, s0)
A∑

s′
0=1

1
A

Wn(y|x′, s′0)

) 1
λ
)λ

,

(134)

where (134) follows from (132). From (134) it is possible to
find a bound that holds for any given initial state, useful in
case a distribution over such state is unknown. Referring to
the error probability for code Cn given an initial state s̄0 as
Pe(Cn, s̄0), we have the bounds

Pe(Cn) =
∑
s̄0

q(s̄0)Pe(Cn, s̄0) (135)

≥ max
s̄0

q(s̄0)Pe(Cn, s̄0) (136)

≥ 1
A

Pe(Cn, s̄0). (137)

From (137) we obtain

Pe(Cn, s̄0) ≤ APe(Cn), (138)

a bound that holds independently of the initial state distribution
or on whether such distribution exists or not. Plugging (134)
into (138) we get an upper bound on the average error
probability for a given initial state which does not depend
on the initial state distribution. From Theorem 1, keeping the
dependency on the initial state into account, we have that, with
high probability, for any initial state s0:

Pe(Cn, s0)

≤ A

Mn
(γnMn(Mn − 1))λ

(∑
x

∑
x′

Qn(x)Qn(x′)·

·
(∑

y

√√√√ A∑
s0=1

1
A

Wn(y|x, s0)
A∑

s′
0=1

1
A

Wn(y|x′, s′0)

) 1
λ
)λ

(139)

=
1

Mn
(γnMn(Mn − 1))λ

(∑
x

∑
x′

Qn(x)Qn(x′)·

·
(∑

y

√√√√ A∑
s0=1

Wn(y|x, s0)
A∑

s′
0=1

Wn(y|x′, s′0)

) 1
λ
)λ

(140)

where in (140) we simplified the outer A with those under the
square root. Taking the negative normalized logarithm in (140)
we finally get a lower bound on the exponent of a typical code
from an ensemble over a finite state channel with initial state
s0 for a given n. Thus (9) can be rewritten as:

Etrc,x(Rn, Qn) = Fn
x (λ̂n, Qn) − 2λ̂nRn − δn (141)

where

Fn
x (λ, Qn) = − 1

n
log

(∑
x

∑
x′

Qn(x)Qn(x′)·

·
(∑

y

√√√√ A∑
s0=1

Wn(y|x, s0)
A∑

s′
0=1

Wn(y|x′, s′0)

) 1
λ
)λ

.

(142)

We next show that the limit of (142) for n that tends to infinity
exists and is finite. We start with the following lemma, which
is the equivalent for TRC of [3, Lemma (5.9.1)].

Lemma 2: For any finite-state channel the following holds:

Fn
x (λ, Qn) ≥ k

n
Fk(λ, Qk) +

l

n
Fl(λ, Ql) (143)

where k and l are positive integers and k + l = n.
Proof: See Appendix A.

The next lemma is the equivalent of [3, Lemma (5.9.2)] for
the typical error exponent case.

Lemma 3: Let us define:

F∞
x (λ, Q) = sup

n
Fn

x (λ, Qn), (144)

Q being the limiting distribution of Qn, which is assumed
to exist. For all pairwise-independent code ensembles and all
finite state channels for which there exists an n0 such that for
n > n0 the normalized relative entropy (76)

1
n

D (Pn(x, x′)‖Qn(x)Qn(x′)) < ∞ (145)

and for λ ≥ 1 we have:

lim
n→∞

Fn
x (λ, Qn) = F∞

x (λ, Q). (146)

Furthermore, for 1 ≤ λ < ∞ the convergence is uniform in λ
and F∞

x (λ, Q) is uniformly continuous in λ.
Proof: Consider first the case 1 ≤ λ < ∞. The bound-

edness and positiveness of the derivative (76), particularized
to finite-state channels, for any finite λ together with the fact
that Fn

x (1, Qn) is finite (see proof of Lemma 4 below and
[3, Lemma (5.9.2)]) implies that Fn

x (λ, Qn) is positive and
bounded. This fact together with Lemma 2 allows us to apply
[3, Lemma (4A.2)], which implies (146). Furthermore, the
finiteness of the derivative in λ for each n implies uniform
convergence and uniform continuity.

For the case in which λ̂n → ∞, we have that the following
limit:

lim
n→∞

Fn
x (λ̂n, Qn) (147)

exists and is either finite or infinite. This follows from the fact
that the derivative of Fn

x (λ, Qn) with respect to λ exists for
any n and is positive.
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An important implication of Lemma 2 is that it guarantees that
the limit in (62) exists. This means that Theorem 2 gives a
result which is non trivial and in fact practically relevant.

The behavior of Etrc,lb(Rn, Qn) in the case λ̂n → ∞ can
be derived from the general case presented in Section III by
substituting the Bhattacharyya bound on the pairwise error
probability with:

∑
y

√√√√ A∑
s0=1

Wn(y|x, s0)
A∑

s′
0=1

Wn(y|x′, s′0). (148)

From the discussion above it follows that the limit (147)
is always ∞ for R > 0 (the dependency on Rn is hidden
in λ̂n, which is in turn a function of Rn), since λ̂n → ∞ for
a positive rate R only if R < R∞(Qn), while it can be finite
in R = 0.

B. Lower Bound on Etrc,r(Rn, Qn) for Finite-State Channels

We recall from Definition 2 that Etrc,r(Rn, Qn) =
En

r (Rn, Qn) − ιn where En
r (Rn, Qn) is the random-coding

exponent while, under the conditions of Theorem 2, ιn → 0.
The derivation of a lower bound to En

r (Rn, Qn) for finite-state
channels was developed in [3, Sec. 5.9], leading to the
random-coding error exponent

Er(R, Q) = max
0≤ρ≤1

F∞
0 (ρ, Q) − ρR (149)

where F∞
0 (ρ, Q) is defined as

F∞
0 (ρ, Q) = lim

n→∞
Fn

0 (ρ, Qn) (150)

and is related to the limiting E0-function as

F∞
0 (ρ, Q) = min

s0
E∞

0 (ρ, Q, s0) (151)

with

E∞
0 (ρ, Q, s0)

= lim
n→∞

− 1
n

log

(∑
y

(∑
x

Qn(x)Wn(y|x, s0)
1

1+ρ

)1+ρ
)

.

(152)

C. Rate R∗

Let us now focus on indecomposable channels1. For such
channels different definitions of capacity exist. In [3, Sec. 4.6]
the upper (C) and lower (C) capacities are considered. They
differ in that the former includes a maximization over the
initial state s0, while the latter includes a minimization.
Interestingly, for indecomposable channels the two definitions
coincide, i.e., C = C = C. In the following we show that
there exists a rate R∗ such that below R∗ Etrc,x(Rn, Qn) is
larger than Etrc,r(Rn, Qn) while the other way round is true
for rates R∗ < R < C.

We start by pointing out that Er(R, Q) is convex and strictly
decreasing in R for R < C, as shown in [3], and the optimal ρ
is a decreasing function of R so that for R that goes to C the

1See [3, Sec. 4.6] for a definition.

optimal ρ gets close to 0 while it takes value 1 in a continuous
interval that includes the point R = 0. As for Fn

x (λn, Qn),
we can see that R and λ play the same roles as in Ex(λ, (Q))
as defined in [3, Sec. 5.7], and thus Fn

x (λn, Qn) − λnRn is
convex and strictly decreasing in R and the optimal λ is also
a decreasing function in R. Note, however, that such quantity
(which is a bound on the expurgated exponent for finite-state
channels) can reach 0 at a rate which is much smaller than
the capacity. Now let us call Rcr the largest rate at which the
maximum of Er(R, Q) is obtained for ρ = 1.

The following lemma is instrumental in proving Theorem 3,
where the TRC exponent for all rates is presented.

Lemma 4: For finite-state channels:

Fn
0 (1, Qn) − log A

n
≤ Fn

x (1, Qn) ≤ Fn
0 (1, Qn) +

log A

n
.

(153)

Furthermore, if Fn
0 (1, Qn) is finite Fn

x (1, Qn) is finite as well.
Proof: See Appendix B.

The following theorem shows that, for finite-state channels,
the limits in Theorem 2 exist and, if δn → 0, the result of
the theorem is non-trivial, i.e., the typical exponent exists and
is strictly positive. Furthermore, it provides the result to the
minimization in Theorem 2 for each rate below capacity.

Theorem 3: For all finite-state channels for which δn → 0
the following holds:

lim inf
n→∞

min {Etrc,x(Rn, Qn), Etrc,r(Rn, Qn)}

=

{
Eex(2R, Q) + R R ≤ R∗

Er(R, Q) R > R∗ (154)

where R∗ = Rcr
2 . Furthermore, Eex(2R, Q) + R is strictly

positive for range R ≤ R∗ while Er(R, Q) is strictly positive
in R∗ < R < C if a maximization over Q is carried out.

Proof: Using Lemma 4, the fact that both Fn
x (λ, Qn) and

Fn
0 (ρ, Qn) are increasing in λ and ρ, respectively, and the fact

that λ ≥ 1 while 0 < ρ ≤ 1, it follows for large n that

max
λ≥1

En
x (λ, Qn) − λRn ≥ max

0≤ρ≤1
Fn

0 (ρ, Qn) − ρRn (155)

when R ≤ Rcr and that

max
λ≥1

En
x (λ, Qn) − λRn < max

0≤ρ≤1
Fn

0 (ρ, Qn) − ρRn (156)

for Rn > Rcr. Thus, for Rn ≤ Rcr we obtain that

En
ex(Rn, Qn) ≥ Er(Rn, Qn) (157)

while for Rn > Rcr

En
ex(Rn, Qn) < Er(Rn, Qn) for Rn > Rcr. (158)

Finally, since Etrc,x(Rn, Qn) = En
ex(2Rn, Qn)+Rn−δn, for

all cases such that δn → 0 and with reference to the statement
of Theorem 2:

lim inf
n→∞

min {Etrc,x(Rn, Qn), Etrc,r(Rn, Qn)}

=

⎧⎨
⎩

lim inf
n→∞

Etrc,x(Rn, Qn)=Eex(2R, Q) + R0 ≤ R ≤ R∗

lim inf
n→∞

Etrc,r(Rn, Qn)=Er(R, Q)R > R∗

(159)
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which was obtained by equating Eex(2R, Q) + R and
Er(R, Q), from the definition of Rcr and setting R∗ = Rcr

2 .
At the right-hand side of (159), the quantity Eex(2R, Q)+ R
is positive for rates R ≤ R∗, while Gallager’s exponent
Er(R, Q) can be made positive up to capacity by maximizing
over the input distribution, which gives the theorem statement.

D. State Known at the Receiver

In the following we specialize the results for the FSC to
the case in which the state of the channel is known at the
receiver. We consider a channel in which the state changes
at any symbol time according to a Markov chain with a finite
number A of states. In particular, we consider an FSC in which
the channel state sequence s seen by a transmitted codeword is
a deterministic function of the output y and the initial state s0,
i.e., s = f(y, s0). At a given instant, the channel is modelled
as a DMC, the characteristics of which depend on the state
at previous instant. This introduces memory in the channel.
Channels corresponding to different states are different DMCs,
with the only constraint that the input alphabet X be the
same. An example of such family of channels are FSCs for
which the DMCs have the same input set but disjoint output
sets, that is, the intersection of the output alphabets of any
two DMCs is empty. This allows the receiver to know what
the state in previous instant was. Knowing the channel state
allows the receiver to use maximum-likelihood decoding with
the transition probability Wn(y|x, s0) and to write (140) as

Pe(Cn, s0) ≤
1

Mn
(γnMn(Mn − 1))λ

(∑
x

∑
x′

Qn(x)·

· Qn(x′)
(∑

y

√
Wn(y|x, s0)Wn(y|x′, s0)

) 1
λ

)λ

,

(160)

where the initial state s0 is known at the receiver. Similarly
to what done in [3, Sec. 5.9] to derive the random coding
exponent (RCE), let us introduce the following conditional
probability function:

Wn(y, s|x, s0) =

{
Wn(y|x, s0) if s = s(y, s0)
0 otherwise.

(161)

Using (161) in (160) we have:

Pe(Cn, s0)

≤ 1
Mn

(γnMn(Mn − 1))λ

(∑
x

∑
x′

Qn(x)·

· Qn(x′)
(∑

s

∑
y

√
Wn(y, s|x, s0)Wn(y, s|x′, s0)

) 1
λ

)λ

=
1

Mn
(γnMn(Mn − 1))λ

(∑
x

∑
x′

Qn(x)Qn(x′)·

·
(∑

s

n∏
i=1

∑
y

√
Wn(y, si|xi, si−1)Wn(y, si|x′

i, si−1)
) 1

λ

)λ

.

(162)

Note that in (162) only the state sequence s corresponding to
the initial state s0 and output sequence y actually leads to a
non-zero term in the sum over s. Similarly to [3, Sec. 5.9],
we express the overall bound as a function of a matrix product.
Let:

β(s, s′, x, x′) =
∑

y

√
W (y, s|x, s′)W (y, s|x′, s′) (163)

where s, s′ ∈ {0, 1, . . . , A − 1} and x, x′ ∈ X . We define the
following set of matrices

Ax,x′ =

⎛
⎜⎜⎜⎝

β(0, 0, x, x′) · · · β(0, A − 1, x, x′)
β(1, 0, x, x′) · · · β(1, A − 1, x, x′)

...
...

...
β(A − 1, 0, x, x′) · · · β(A − 1, A − 1, x, x′)

⎞
⎟⎟⎟⎠ .

(164)

Using (163) and (164) in (162) we have:

Pe(Cn, s0) ≤
1

Mn
(γnMn(Mn − 1))λ

(∑
x

∑
x′

Qn(x)·

· Qn(x′)
(

e(s0)T

( n∏
i=1

Axi,x′
i

)
1
) 1

λ

)λ

(165)

where e(s0) is an A × 1 vector with a 1 in position s0 and
0 elsewhere, while 1 is a A × 1 vector of all 1’s.

Finding a single-letter expression for (165) is challeng-
ing due to the presence of the matrix product, but can be
evaluated using Monte Carlo. We do this in the following
numerical example, in which the two-state model presented in
[3, Fig. 5.9.1] is considered. At a given instant, the channel is
modelled as a BSC. The channel transition probability at time
t is p0 if the channel was in state 0 at t−1, and p1 otherwise,
the probability of state change being q. As in [3, Figure 5.9.2],
we assume that the receiver knows the state of the channel at
every instant. For this specific channel, Ax,x′ in (164) can
take two possible values, given by

A0,0 = A1,1 =
(

1 − q q
q 1 − q

)
, (166)

while:

A0,1 = A1,0

=
(

2(1 − q)
√

(1 − p0)p0 2q
√

(1 − p1)p1

2q
√

(1 − p0)p0 2(1 − q)
√

(1 − p0)p0

)
.

(167)

The bound in (154) is plotted against the rate in Fig. 1. The
term Er(R, Q) given in (149) is evaluated in closed form as
in [3, Fig. 5.9.2], while Etrc,x(Rn, Qn), i.e., the the negative
normalized logarithm of (165), is evaluated using the Monte
Carlo method with 106 iterations for a codeword length of n =
200. More specifically, due to channel memory, the statistical
mean inside square brackets in Eq. (165) cannot be written as
a single-letter product, and can only be estimated by randomly
generating a large-enough set of pairs of codewords (x, x′) of
length n. The TRC for the DMC channel derived from this
FSC (i.e., setting q = 1/2, see [3, Sec. 5.9]) is also shown
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Fig. 1. TRC exponent for the FSC described in [3, Sec. 5.9] with q = 0.01, p0 = 0.01 and p1 = 0.1 obtained with monte carlo for n = 200 and
106 iterations. The TRC over DMC is also shown for comparison. The latter is obtained by setting the state transition probability q to 1/2.

for comparison. The result is consistent with the behaviour
of the RCE presented in [3]. Note that, for this channel, the
memory does not decrease the capacity with respect to its
i.i.d. counterpart. This can be seen in Fig. 1(c) noting that the
smallest rates for which the two curves are zero coincide.

APPENDIX

A. Proof of Lemma 2

Let us split the length-n input sequence x into two
sequences of length k and l x1 and x2, respectively, i.e.,
x = (x1, x2). Let us do the same for the output sequence, i.e.,
y = (y1, y2). Let us also impose that the input distribution
be Qn(x) = Qn(x1)Qn(x2). This choice can be suboptimal
in some cases, but does not impact our proof. With this
assumptions and from (130) it follows that

e−nF n
x (λ,Qn)

=

(∑
x

∑
x′

Qn(x)Qn(x′) ·

·

⎛
⎝∑

y

√√√√ A∑
s0=1

Wn(y|x, s0)
A∑

s′
0=1

Wn(y|x′, s′0)

⎞
⎠

1
λ

⎞
⎟⎠

λ

(168)

=

⎛
⎝∑

x1

∑
x2

∑
x′

1

∑
x′

2

Qn(x1)Qn(x2)Qn(x′
1)Q

n(x′
2) ·

·

⎛
⎝∑

y1

∑
y2

√√√√ A∑
s0=1

A∑
sk=1

W k(y1, sk|x1, s0)W l(y2|x2, sk) ·

·

√√√√ A∑
s′
0=1

A∑
s′

k=1

W k(y1, s
′
k|x′

1, s
′
0)W l(y2|x′

2, s
′
k)

⎞
⎠

1
λ

⎞
⎟⎠

λ

(169)

=

⎛
⎝∑

x1,x′
1

Qn(x1)Qn(x′
1)
∑

x2,x′
2

Qn(x2)Qn(x′
2) ·

·

⎛
⎝∑

y1

∑
y2

√√√√ A∑
sk=1

A∑
s′

k=1

W l(y2|x2, sk)W l(y2|x′
2, s

′
k) ·

·

√√√√ A∑
s0=1

A∑
s′
0=1

W k(y1, sk|x1, s0)W k(y1, s
′
k|x′

1, s
′
0)

⎞
⎠

1
λ

⎞
⎟⎠

λ

(170)

≤

⎛
⎝∑

x1,x′
1

Qn(x1)Qn(x′
1)
∑

x2,x′
2

Qn(x2)Qn(x′
2) ·

·

⎛
⎝∑

y1

∑
y2

√√√√ A∑
sk=1

A∑
s′

k=1

W l(y2|x2, sk)W l(y2|x′
2, s

′
k) ·

·

√√√√ A∑
s0=1

A∑
s′
0=1

W k(y1|x1, s0)W k(y1|x′
1, s

′
0)

⎞
⎠

1
λ

⎞
⎟⎠

λ

(171)

=

⎛
⎝∑

x1,x′
1

Qn(x1)Qn(x′
1)

⎛
⎝∑

y1

√√√√ A∑
s0=1

A∑
s′
0=1

W k(y1|x1, s0)W k(y1|x′
1, s

′
0)

⎞
⎠

1
λ

⎞
⎟⎠

λ

·

·

⎛
⎝∑

x2,x′
2

Qn(x2)Qn(x′
2)

⎛
⎝∑

y2

√√√√ A∑
sk=1

A∑
s′

k
=1

W l(y2|x2, sk)W l(y2|x′
2, s

′
k)

⎞
⎠

1
λ

⎞
⎟⎠

λ

(172)

= e−kFk(λ,Qk)e−lFl(λ,Ql) (173)
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where in (169) we applied (131), in (170) we reorganized
(169), while in (171) we used the fact that

W k(y1, sk|x1, s0)W k(y1, s
′
k|x′

1, s
′
0)

≤
∑
sk,s′

k

W k(y1, sk|x1, s0)W k(y1, s
′
k|x′

1, s
′
0) (174)

= W k(y1|x1, s0)W k(y1|x′
1, s

′
0) (175)

which concludes the proof.

B. Proof of Lemma 4

Let us evaluate Fn
x (λ, Qn) at λ = 1. From (142) we obtain

that

e−nF n
x (1,Qn)

=
∑
x

∑
x′

Qn(x)Qn(x′) ·

·
∑

y

√√√√ A∑
s0=1

Wn(y|x, s0)
A∑

s′
0=1

Wn(y|x′, s′0) (176)

=
∑

y

∑
x

∑
x′

Qn(x)Qn(x′) ·

·

√√√√ A∑
s0=1

Wn(y|x, s0)
A∑

s′
0=1

Wn(y|x′, s′0) (177)

=
∑

y

⎛
⎝∑

x

Qn(x)

√√√√ A∑
s0=1

Wn(y|x, s0)

⎞
⎠

2

(178)

≤
∑

y

(
A∑

s0=1

A

A

∑
x

Qn(x)
√

Wn(y|x, s0)

)2

(179)

= A2
∑

y

(
A∑

s0=1

1
A

∑
x

Qn(x)
√

Wn(y|x, s0)

)2

(180)

≤ A2
A∑

s0=1

1
A

∑
y

(∑
x

Qn(x)
√

Wn(y|x, s0)

)2

(181)

= A
A∑

s0=1

∑
y

(∑
x

Qn(x)
√

Wn(y|x, s0)

)2

(182)

≤ A2 max
s0

∑
y

(∑
x

Qn(x)
√

Wn(y|x, s0)

)2

(183)

= Ae−nF n
0 (1,Qn). (184)

On the other hand,

e−nF n
x (1,Qn) =

∑
y

⎛
⎝∑

x

Qn(x)

√√√√ A∑
s0=1

Wn(y|x, s0)

⎞
⎠

2

(185)

≥ max
s0

∑
y

(∑
x

Qn(x)
√

Wn(y|x, s0)

)2

(186)

=
1
A

e−nF n
0 (1,Qn) (187)

and, since A is finite, we have that

Fn
0 (1, Qn) − log A

n
≤ Fn

x (1, Qn) ≤ Fn
0 (1, Qn) +

log A

n
.

(188)

Using (188) and the fact that A is finite, Fn
x (1, Qn) coincides

asymptotically with Fn
0 (1, Qn). Finally, since the chains of

inequality above hold for any n and A is finite, if Fn
0 (1, Qn)

is finite Fn
x (1, Qn) is also finite.
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