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Abstract—We study the convergence in distribution of the error
exponent of random codes, defined as the negative normalized
logarithm of the probability of error, of both i.i.d. and constant-
composition ensembles over discrete memoryless channels. For
a constant number of messages, the distribution of the error
exponent converges to that of the minimum of a set of indepen-
dent normal random variables. For an increasing sub-exponential
number of messages, the error exponent converges to a normal
distribution, independent of the number of messages. As a by-
product, we provide a new method to prove the convergence to
a normal distribution of an infinite number of random variables
based on a modification of the Wasserstein metric.

I. INTRODUCTION

We consider reliable information transmission over a dis-
crete memoryless channel (DMC) with transition probability
W , and finite input and output alphabets X and Y , re-
spectively. We study the transmission of Mn equiprobable
messages using a code cn = {x1,x2, · · · ,xMn

}, where each
codeword xi ∈ Xn. The channel output is denoted by y ∈ Yn.
The error probability of such code is given by

Pe(cn) =
1

Mn

Mn∑
i=1

P
[⋃
j 6=i

{xi → xj}
]
, (1)

where {xi → xj} is the pairwise error event, i.e., the event
of deciding in favor of codeword xj when codeword xi was
transmitted. We consider maximum-likelihood decoding. The
error exponent of cn is defined as

En(cn) = − 1

n
logPe(cn). (2)

Let R = limn→∞
1
n logMn be the rate of the code in bits

per channel use. An error exponent E(R) is said to be
achievable if there exists a sequence of codes {cn}∞n=1 such
that lim infn→∞En(cn) ≥ E(R).

We define the i.i.d. and constant composition random-
coding ensembles as the set of codes Cn whose codewords
X1,X2, · · · ,XMn

are independently generated with either
a single-letter input distribution Q or equiprobably from all
sequences with the same empirical distribution. Let Tn(X×X )
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be the set of all n-joint types on X × X . An n-type QX is
called regular if

|Tn(X × X )|
(
|T (QX)|2 − |T (Q∗XX′)|

|T (QX)|2

)
→ 0 (3)

as n → ∞, where Q∗XX′ := QXQX . The regular condition
of types assumes that the rate of convergence to zero of
Pr[(Xi,Xj) /∈ T (Q∗XX′)] is faster than O(1/(n+ 1)|X |

2

)

Similarly to random variables (RVs), Cn denotes a random
code, and cn denotes a specific code in the ensemble. The
random-coding error exponent Erce(R) is defined as

Erce(R) = lim
n→∞

− 1

n
logE[Pe(Cn)], (4)

where the expectation is taken over the code ensemble [1],
[2]. Observe that (4) suggests that Erce(R) is the asymptotic
exponent of the ensemble-average probability of error. Instead,
the typical random-coding exponent is defined as the limiting
expected error exponent over the ensemble, that is,

Etrc(R) = lim
n→∞

− 1

n
E
[

logPe(Cn)
]
. (5)

The typical error exponent Etrc(R) has been shown to be
significantly larger than the random-coding exponent Erce(R)
for some channels and code ensembles in the region of low
rates [3]–[6]. Zero-rate transmission has applications in areas
such as machine-to-machine or Covert communications.

In our previous work [7], we studied the convergence in
probability of the error exponent to the typical random-coding
exponent for the i.i.d. code ensemble over DMCs, that is

En(Cn)
(p)−→Etrc(R), (6)

for 0 ≤ R < C, where An
(p)−→A is a placeholder for

the condition limn→∞ P[|An − A| > δ] = 0 [8, Sec. 2.2],
for all δ > 0. The convergence in probability for constant
composition codes over DMCs was shown in [9]. Here, we
introduce results related to the convergence in distribution of
the error exponent En(Cn), valid for both i.i.d. and constant-
composition ensembles at asymptotically zero rate. A sequence
of RVs {An}∞n=1 converges to A in distribution, denoted as
An

(d)−→A if limn→∞ supx∈R
∣∣P[An ≤ x]−P[A ≤ x]

∣∣ = 0 [8,
Sec. 2.2] for all points of continuity x of P[A ≤ x].



II. MAIN RESULTS

The following results state the concentration in distribution
of the normalized error exponent En(Cn) as n → ∞, for
a constant number of messages and for an increasing sub-
exponential number of messages.

Theorem 1: Let Uij ∼ N (0, 1), for i = 1, . . . ,M and j =
1, . . . ,M such that i 6= j, be a set of independent standard
normal RVs. Then, the error exponent of random i.i.d. and
constant-composition codes (under the regular condition (3))
with a constant number of codewords, i.e., Mn = M for some
constant M , satisfies

En(Cn)− E[En(Cn)]√
Var(En(Cn))

(d)−→ mini6=j Uij − E[mini 6=j Uij ]√
Var(mini 6=j Uij)

. (7)

The proof of Theorem 1, sketched in Sec. III, is based on
the fact that En(Cn) is a minimization of a constant number of
M(M−1) terms where each term is a sum of independent RVs
in the i.i.d. ensemble, and a sum of dependent RVs with an ad-
ditional vanishing term in the constant-composition ensemble.
In Fig. 1, we plot the histogram of the error exponent En(Cn)
for both the i.i.d. and constant-composition ensembles over a
binary symmetric channel (BSC) with crossover probability
p = 0.11, input distribution Q(x) = 1

2 , M = 4 codewords
and length n = 10, 000, after 107 trials. For comparison, we
also plot the asymptotic distribution of the random variable
mini 6=j Uij in the right-hand side of (7) (solid), and a normal
approximation with the same mean and variance (dashed).
We note that the error exponent converges to a Gaussian-like
distribution, with a slightly asymmetric tilting in both tails,
also observed in the histogram.

Theorem 2: Let Mn be an increasing subexponential
number of messages, namely limn→∞Mn = ∞ and
limn→∞(logMn)/n = 0, but growing fast enough such that

∞∑
n=1

1

Mn(Mn − 1)
<∞. (8)

Then, the error exponent of random i.i.d. and constant-
composition codes (under the regular condition (3)) satisfies

En(Cn)− E[En(Cn)]√
Var(En(Cn))

(d)−→N (0, 1). (9)

The proof of Theorem 2, sketched in Sec. IV, is based on
the fact that, under the condition limn→∞(logMn)/n = 0,
for both i.i.d. and constant-composition, the error exponent
En(Cn) is the minimum of an infinite number of RVs, each
converging to a Gaussian distribution (see Eq. (18) below).

For a constant number of messages Mn = M , the condition
in Theorem 2 is not satisfied, and therefore the error exponent
does not concentrate according to (9) but to (7) instead.
The fact that Mn grows with n implies that the dependence
between the codeword symbols vanishes as n → ∞, and
therefore the independence of Uij is preserved. On the con-
trary, for a (sub-exponentially) growing number of messages
Mn, the dependence among the codewords, and therefore the
correlation among Uij , increases such that the RVs Uij can be
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Fig. 1. Distribution of the error exponent of the (a) i.i.d. and (b) constant-
composition codes over the BSC with M = 4, n = 10, 000, symmetric input
distribution and composition, and p = 0.11. Histograms of En(Cn) with 107

trials, dashed black lines are normal distributions, and solid blue lines are the
distributions of mini6=j Uij .

represented by a common Gaussian random variable U . One
example of sub-exponential growth of the number of messages
satisfying (8) is the polynomial function of n given, for some
δ > 0, by Mn = Ω

(
n

1+δ
2

)
.

III. PROOF OF THEOREM 1

We start with the proof of the convergence in distribution
for a constant number of messages. The proof is based on the
Stein’s method for the convergence in distribution of the sum
of RVs to a Gaussian random variable. For the i.i.d. ensemble,
this is a direct application of the central limit theorem (CLT).
For the constant-composition ensemble, we modify the Stein’s
criteria in [10, Theorem 3.2] to accommodate for the depen-
dence among the RVs in the following lemma. A detailed proof
can be found in [11, Appendix L].

Lemma 1: Let X1, X2, · · · , Xn be zero-mean RVs such
that

∑n
i=1 E[X2

i ] = n. Assume there exist positive sequences
{ξn}∞n=1 and {gn}∞n=1, and a set V ⊂ Rn such that

(
1− ξn

) n∏
i=1

P[Xi = xi] ≤

P[X1 = x1, · · · , Xn = xn] ≤
(
1 + ξn

) n∏
i=1

P[Xi = xi]

(10)



for all x1, x2, · · · , xn ∈ V , and such that

max

{
1,

1√
n

n∑
i=1

|xi|,
1

n

( n∑
i=1

xi

)2

,

1

n

n∑
i=1

x2
i ,

1

n3/2

n∑
i=1

|xi|3
}
≤ gn, (11)

for all (x1, x2, · · · , xn) ∈ Vc. Assume also that

gn max{P(V c),PΠ(V c)} → 0 as n→∞, (12)

as n → ∞, where we defined PΠ as the product probability
measure, i.e., PΠ

[
x1, x2, · · · , xn

]
=
∏n

i=1 P[Xi = xi]. Now,
let Sn = X1 +X2 + · · ·+Xn and define T as

T =
Sn√

Var(Sn)
. (13)

Under the condition that

1

n3/2

n∑
i=1

E[|X3
i |]→ 0, (14)

1

n2

n∑
i=1

E[|Xi|4]→ 0, (15)

we have

T
(d)−→N (0, 1). (16)

Lemma 1 recovers the original Stein’s criterion in [10, The-
orem 3.2] for independent random variables setting Vc = ∅.

We are now equipped to prove Theorem 1. Bounding the
union of pairwise events in the right-hand of (1), we first
observe that the error probability of a code Pe(cn) with Mn

messages can be lower and upper bounded as

max
i6=j

P[xi → xj ] ≤ Pe(cn) ≤Mn(Mn − 1) max
i 6=j

P[xi → xj ].

(17)

From (17), for any Mn sub-exponential in n, it holds that

En(Cn) ∼ min
i6=j

Zij(n) (18)

where Zij(n) is the exponent of the pairwise error
probability P[xi → xj ] given in terms of the Bhat-
tacharyya distance between two symbols dB(x, x′) =

− log
(∑

y

√
W (y|x)W (y|x′)

)
as

Zij(n) = − 1

n

n∑
k=1

∑
x,x′

dB(x, x′)1{(Xik, Xjk) = (x, x′)}.

(19)

In (19), 1{·} is the indicator function, and Xik denotes the k-
th symbol of codeword Xi. Equation (18) states that the error
exponent almost surely equals the minimum of a sequence of
RVs Zij(n), i, j ∈ {1, . . . ,M}, i 6= j, each being the sum of
n RVs according to (19).

We next study the convergence of distribution of Zij(n) as
n→∞, defining Tij(n) as

Tij(n) =
Zij(n)− E[Zij(n)]√

Var(Zij(n))
. (20)

For the i.i.d. ensemble, Zij(n) is a sum of n i.i.d. RVs, so
that the CLT implies Tij(n)

(d)−→N (0, 1), ∀i 6= j. For the
constant-composition ensemble, we will use the method of
types to write (19) as the sum of type class RVs that satisfy
the conditions of Lemma 1. Let QX be the codeword type
and QXX′ the induced joint type. We have that (19) can be
written as

Zij(n) = −
∑
QXX′

∑
x,x′

QXX′(x, x′)dB(x, x′)Aij
QXX′ , (21)

where, for a given pair of random codewords Xi and Xj we
defined the random variable Aij

QXX′ as

Aij
QXX′ = 1{(Xi,Xj) ∈ Tn(QXX′)} (22)

and Tn(QXX′) is the type class. In order to write each random
variable Zij(n) in (21) in a convenient way to use Lemma 1,
we define the random variable U ij

QXX′ as

U ij
QXX′ =

√
|Tn(X × X )|∑

QXX′ E[(V ij
QXX′ )

2]
V ij
QXX′ , (23)

where

V ij
QXX′ =

∑
x,x′

QXX′(x, x′)dB(x, x′)Aij
QXX′

−
∑
x,x′

QXX′(x, x′)dB(x, x′)E
[
Aij

QXX′

]
. (24)

Then,

Zij(n)− E[Zij(n)]√
Var(Zij(n))

=

∑
QXX′ U

ij
QXX′√

Var
(∑

QXX′ U
ij
QXX′

) . (25)

We note that U ij
QXX′ satisfies

E[U ij
QXX′ ] = 0, (26)∑

QXX′

E[(U ij
QXX′ )

2] = |Tn(X × X )|. (27)

We next define a suitable set Vij for each pair of random
codewords Xi and Xj as the choice of V in Lemma 1, i.e.,

Vij =
{
{aQXX′}QXX′ : the only n-joint type QXX′

such that a∗QXX′ = 1 is Q∗XX′ = QXQX

}
, (28)

where {aQXX′}QXX′ is the set of all possible realizations
of {Aij

QXX′}QXX′ in (22). Observe that Zij(n) expressed as
in (21) is the sum of |Tn(X ×X )| Bernoulli RVs whose joint
probability distribution can be shown to be bounded as

(1− ξn)
∏

QXX′∈Tn(X×X )

P
[
Aij

QXX′ = aQXX′

]
≤ P

[ ⋂
QXX′∈Tn(X×X )

{Aij
QXX′ = aQXX′}

]
≤ (1 + ξn)

∏
QXX′∈Tn(X×X )

P
[
Aij

QXX′ = aQXX′

]
, (29)



for any sequence {aQXX′} ∈ Vij and some positive sequence
ξn → 0. Furthermore, since V ij

QXX′ is bounded for all QXX′ ,
we have that, in analogy to (27)∑

QXX′

E[(V ij
QXX′ )

2] = Θ
(
|Tn(X × X )|

)
. (30)

For any sequence {aQXX′} ∈ Vij , it can be shown that

P[{Aij
QXX′} ∈ V

c
ij ] =

|T (QX)|2 − |T (Q∗XX′)|
|T (QX)|2

(31)

PΠ[{Aij
QXX′} ∈ V

c
ij ] = P[{Aij

QXX′} ∈ V
c
ij ] + hn2−nImin , (32)

where Imin is a positive constant and hn is sub-exponential in
n. Since V ij

QXX′ is linear in Aij
QXX′ (cf. (24)), the existence of a

set V as in Lemma 1 is guaranteed (via a linear transformation
of the set Vij), i.e., P[Vc] = P[{Aij

QXX′} ∈ V
c
ij ], PΠ[Vc] =

PΠ[{Aij
QXX′} ∈ V

c
ij ].

On the other hand, for all {aQXX′} ∈ Vc
ij , V ij

QXX′ is
bounded for all QXX′ ∈ Tn(X × X ). Hence, all the terms
inside the max operator in (11) applied to the sequence of
random variables Aij

QXX′ are bounded such that

gn = O
(∣∣Tn(X × X )

∣∣). (33)

From (31), (32), and (33), under the regular condition on
the type QX given in (3), the condition (12) in Lemma 1
is attained.

Similarly, we can check all the conditions of Lemma 1 for
the sum Sn =

∑
QXX′ U

ij
QXX′ of |Tn(X ×X )| terms. Hence,

we conclude that for the constant-composition ensemble, as
well as for the i.i.d. ensemble, the random variable Tij(n)
defined in (20) converges in distribution to a normal:

Tij(n)
(d)−→N (0, 1). (34)

It only remains to relate the asymptotic distribution of
En(Cn) in (18) to that of Tij(n) in (34). We first note that,
since for any sequence of real numbers {αij}i 6=j , the linear
combination

∑
i6=j αijTij(n) is asymptotically Gaussian, it

follows that the sequence of RVs {Tij(n)}i 6=j is asymp-
totically jointly Gaussian for both ensembles. Finally, since
En(Cn) in (18) is a bounded and continuous function of
Zij(n), the continuous mapping theorem [12] implies (7). See
[11] for a detailed proof.

IV. PROOF OF THEOREM 2

Unlike the constant number of messages case, the bound-
edness assumption used in the continuous mapping argument
is not valid for a sub-exponentially increasing number of
codewords. Instead, we shall consider probability metrics to
measure the distance between two distributions. We start by
revising the standard probability metrics and arguing that they
are not refined enough for our proof.

Definition 1: Let H be a family of real-valued test functions
h(x). For two RVs X and Y , we define the probability metric
dH(X,Y ) as

dH(X,Y ) = sup
h∈H

∣∣E[h(X)]− E[h(Y )]
∣∣. (35)

By properly choosing the family of test functions h(x)
in (35), we recover some of the standard probability metrics
used in the results relative to convergence in distribution [10].
For example, taking H as the set of indicator functions
h(x) = 1{x ≤ u} for u ∈ R, dH(X,Y ) becomes the
Kolmogorov metric , while the set of functions satisfying the
condition |h(x) − h(y)| ≤ |x − y| leads to the Wasserstein
metric in (35).

Bounds on the Kolmogorov and Wasserstein metrics,
e.g. [10, Prop. 1.2] turn out to be not tight enough to
prove the convergence in distribution to the normal random
variable of the minimum of an infinite number of sums of
random variables (as n → ∞). We propose the following
variation of the Wasserstein probability metric by modifying
the probability metric (35) and further constraining the family
of test functions.

Definition 2: For two RVs X and Y , we define the modified
Wasserstein probability metric d̄W (X,Y ) as

d̄W (X,Y ) = sup
h∈H

min

{∣∣E[h(X)]− E[h(Y )]
∣∣,

∣∣E[h(−X)]− E[h(Y )]
∣∣}, (36)

where H is the set of test functions h(x) given, for all values
a ∈ R and all bounded c such that 0 < c ≤ 4

√
2π, by

h(x) =


c x ≤ a
0 x ≥ a+ c

linear, otherwise.
(37)

Our modified Wasserstein metric d̄W in Definition 2 allows
to upper bound the absolute difference of cumulative distri-
bution functions of a standard Gaussian random variable and
any random variable as follows (see [11] for a detailed proof).

Lemma 2: For any random variable T it holds that∣∣P[T ≤ x]− P[Z ≤ x]
∣∣ ≤

2(8π)−1/4
√
d̄W (T,Z) +

∣∣P[T ≤ x]− P[T ≥ −x]
∣∣, (38)

for all x ∈ R and where Z ∼ N (0, 1).
Inspecting Lemma 2, we note that a vanishing upper bound

on d̄W will imply convergence in probability of T to a
standard Gaussian. In the following lemma, we obtain an
upper bound to d̄W that is tighter than the standard bounds
to the Wasserstein metric in [10, Prop. 1.2]. By using this
new bound, we can later prove the convergence in distribution
to the normal random variable of the minimum of an infinite
number of sums of of random variables where the bound of
the Wasserstein metric in [10, Prop. 1.2] fails to work.

Lemma 3: For a given test function h(x) ∈ H and a
random variable Z, let fh(x) be the the function that satisfies
the differential equation f ′h(x) − xfh(x) = h(x) − E[h(Z)].
Let T = min{T1, T2, . . . , TL} for some L ∈ N, where
(T1, T2, . . . , TL) is a sequence of identically distributed RVs,



and let Z be a standard Gaussian. Then, our modified Wasser-
stein metric in (36) is upper bounded as

d̄W (T,Z) ≤ µn +

sup
h∈H

min
{
E[h(T )− h(T1)],E[h(−T1)− h(−T )]

}
, (39)

where for convenience we defined µn as

µn = max
{

sup
h∈H

∣∣E[f ′h(T1)− T1fh(T1)]
∣∣,

sup
h∈H

∣∣E[f ′h(−T1) + T1fh(−T1)]
∣∣}. (40)

Before starting the main part of the proof of Theorem 2, we
state next that the term µn in the upper bound (39) is properly
bounded when T1 is a sum of independent RVs.

Lemma 4: [10, Theorem 3.2] Let X1, X2, · · · , Xn be a
sequence of independent zero-mean RVs satisfying E[|Xi|4] <
∞ and E[X2

i ] = 1. If T1 =
∑n

i=1Xi/
√
n and fh(x) satisfies

the conditions in Lemma 3 for a standard Gaussian Z, then
the parameter µn in (40) is upper bounded as

µn ≤
1√
n3

n∑
i=1

E[|Xi|3] +

√√√√ 2

πn2

n∑
i=1

E[X4
i ]. (41)

Using the former results, we are now ready to prove
Theorem 2. As in Theorem 1, for a sub-exponential number
of codewords, the error exponent (2) of a randomly generated
code Cn converges almost surely as (18), where Zij(n) is again
given in (19). Similarly, we define Tij(n) as the normalized
version of Zij(n) given in (20). Since the error exponent
En(Cn) is related to the minimum over i 6= j of Zij(n), we
start by studying the convergence in probability of the random
variable mini6=j Tij(n) as n→∞.

The arguments used to show that Tij(n) converges in
distribution to the standard Gaussian distribution, that is (34)
are also valid for a sub-exponential number of codewords.
In contrast to Theorem 1, the main difficulty now is that we
face a minimization of Mn(Mn − 1) random variables where
each random variable converges in distribution to the standard
normal random variable.

Let Vn be the sequence of RVs given by the normalized
sum of the terms involved in mini 6=j Tij(n),

Vn =
1

Mn(Mn − 1)

∑
i6=j

Tij(n). (42)

and consider the probability that such sequence is bounded
away from zero, that is, P[|Vn| ≥ ε] for ε > 0. If condition (8)
in Theorem 2 is met, then the sum of the probability of such
events is finite, that is,

∞∑
n=1

P[|Vn| ≥ ε] ≤
1

ε2

∞∑
n=1

1

Mn(Mn − 1)
<∞. (43)

As a result of (43), the Borel–Cantelli lemma implies a
vanishing probability that infinitely many Vn are away from
zero, or equivalently, that almost surely (with probability one),

we have |Vn| < ε for all but finitely many n. Using the same
arguments for the sequence of RVs given by

Un =
1

Mn(Mn − 1)

∑
i 6=j

Tij(n)− T12(n), (44)

for some k 6= l in k ∈ {1, . . . ,M} and l ∈ {1, . . . ,M},
almost surely (with probability one), we have |Un| < ε
for all but finitely many n. In addition, we can show that
{Tij(n)−T12(n)}i 6=j are asymptotically pairwise independent.
Combining both results, the probability that infinitely many
events {|Vn| ≥ ε}∩{|Un| ≥ ε} occur vanishes, or equivalently,
that almost surely (with probability one), as n→∞, we have

−ε < Vn < ε; −ε < Un < ε. (45)

Using (45), the structure of the test functions (37) in Defini-
tion 2, and the bounded convergence theorem [12] as n→∞
(and ε → 0), it can be shown that the second term in the
right-hand side of (39), applied to the sequence of RVs Tij(n),
vanishes as n→∞ (see [11] for a proof), i.e.:

lim
n→∞

min

{
E
[
h
(
min
i 6=j

Tij(n)
)
− h
(
T12(n)

)]
,

E
[
h
(
−T12(n)

)
− h
(
−min

i 6=j
Tij(n)

)]}
= 0. (46)

Using that Tij(n), defined in (20), is a sequence of indepen-
dent zero-mean RVs, Lemma 4 implies that the parameter µn

in the right-hand side of (39) also vanishes,

lim
n→∞

µn = 0. (47)

Combining (46) and (47) back in Lemma 3, we obtain that
the distance between the distribution of mini 6=j Tij(n) and
that of a standard Gaussian Z, measured with our modified
Wasswestein metric in (36), vanishes, that is

lim
n→∞

d̄W
(
min
i 6=j

Tij(n), Z
)

= 0. (48)

It can be shown that the distribution of mini 6=j Tij(n)
is tight. Thanks to this fact, we can prove that
limn→∞ |P(mini6=j Tij(n) ≤ x) − P(mini6=j Tij(n) ≥
−x)

∣∣ = 0 for all x ∈ R and x is a continuous point of
the limiting distribution of mini 6=j Tij(n) (see [11, Proof of
Theorem 6]). Hence, by Lemma 2, for all continuous points
x in the limiting distribution of mini6=j Tij(n), we have a
vanishing limn→∞

∣∣P[minij Tij(n) ≤ x]− P[Z ≤ x]
∣∣ = 0 or,

equivalently, convergence in distribution

min
i 6=j

Tij(n)
(d)−→N (0, 1). (49)

In addition, using the relations between Tij(n) and Zij(n)
in (20), it can be shown [11] that the mean and variance of
mini 6=j Zij(n) are related to that of Z12 as

E
[
min
i 6=j

Zij(n)
]

= E[Z12] + o(1) (50)

Var
(
min
i 6=j

Zij(n)
)

= (1 + o(1)) Var(Z12(n)). (51)

Finally, from En(Cn) in equations (18), and applying Slutsky’s
theorem [12], we obtain (9), concluding the proof.
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“Concentration of random-coding error exponents,” in IEEE Information
Theory Workshop (ITW), Kanazawa, Japan, oct 2021, pp. 1317–1321.

[8] R. Durrett, Probability: Theory and Examples, 4th ed. Cambridge Univ.
Press, 2010.

[9] R. Tamir, N. Merhav, N. Weinberger, and A. Guillén i Fàbregas, “Large
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