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Introduction: 2d Image Processing

An image can take many forms and is not restricted to visual
images.
Examples

1. Luminance of objects in a scene (ordinary camera)

2. Absorption characteristics of body tissue (x-ray camera)

3. Electron production of specimen scanned by electron beam
(scanning electron microscope)

4. Temperature profile of a region (infra-red imaging)

5. Sidescan sonar (acoustic reflectance)

6. Seismic surveying, Earthquakes and seismic charges (often 3
or even 4 dimensional)

7. Radio-telescope images
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Some examples

Some examples of the above are shown below:

Figure 1: Scanning electron microscope image of a mosquito’s head
illustrating the compound eye structure (x200)
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Figure 2: Image of a head and
shoulders taken by a 16× 16
thermal (IR) imaging array

Figure 3: The 16× 16 image
interpolated to 128× 128
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Figure 4: False colour image of
the cosmic microwave
background (CMB) radiation
measured with the Very Small
Array (VSA), Cambridge (2002)

Figure 5: Map of the CMB taken
with the WMAP telescope
(2003)
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Figure 6: Stack of scans from a seismic experiment – each trace is the
return over time at different distances from the initial source
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Applications

Given the importance of visual images to humans, the range of
applications is vast. The following list is a tiny subset of possible
applications.
Astronomical imaging systems: In the past, cameras mounted on
space-craft were limited in size, weight and power consumption so
that image quality was often relatively poor - low signal to noise
ratio, blurring, geometrical distortion.
Computationally intensive image processing was therefore routinely
applied to the images, and many sophisticated techniques were
thereby developed. Probably the best known ‘recent’ example of
this was the Hubble space telescope (HST) – next figure shows an
example of a picture of galaxy M87 in the early days of the HST
(before optical corrections were carried out by the shuttle) before
and after image processing and then the image after repair of the
telescope.
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Figure 7: M87 as observed from the Hubble Space Telescope, before and
after image processing and then repaired
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Medical applications are of great importance. One of the earliest
applications was enhancement of hairline fractures in x-ray images.
Computed tomography (CT) is a technique of major importance in
medicine and is based on the Projection-Slice Theorem which
enables a 2-D image to be reconstructed from 1-D images. The
image is reconstructed from the set of 1-D signals (projectors)
taken at angles. The figure below shows the ideas behind this
process

Figure 8: A simulated 2d image of the head and its
radon transform – given a radon transform made up
from 1d slices, the 2d image can be inferred.
R(L) =

∫
L f (x)ds(x), L line in 2D, s arclength.

Figure 9:
Abdominal CT
scan
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Forensic applications. Deblurring of photographs and still images,
fingerprint identification, etc. In a past case of the abduction of a
teenage girl, CCT footage of the last sighting of her underwent
image processing to remove not blur, but glare which was present
in the images. The difference glare can make is illustrated in the
pictures below:

Figure 10: Left hand image is with glare, right hand image is without
glare (in these pictures glare is actually removed with a polarizer)
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Movies and Television: flicker (interpolated frames - need motion
estimation), degradations etc. The figure below gives some idea of
removal of degradations from video footage.

Figure 11: Example of
degraded frame from video
footage

Figure 12: Restored frame,
using blotch and line removal
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Image coding for low bandwidth environments: we wish to
compress our image data in as lossless a way as is possible in order
to transmit the data efficiently (second half of course).
Computer vision – this deals with a sequence of images over time,
or multiple sequences of images from which we estimate the full 3d
reconstruction moving in time.

Figure 13: Three camera frames of a multiple camera setup observing a
marked moving subject

Disparity Images from stereo cameras are used widely in computer
vision to estimate depth and perform 3D reconstruction – following
images show left and right images and the resulting disparity map.
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Figure 14: Left, Right and Disparity Images

[images taken from http://vision.stanford.edu/]

This is a very small sample of applications – as cheap computing
becomes increasingly available, so image processing techniques will
impinge on many more areas of everyday life, being available on
mobile devices (this is already the case).
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Image Representation and Modelling

Image processing can be broken down into a number of
(overlapping) areas as shown below.

Perception Models

• visual perception
of contrast,
spatial frequencies
and colour

• image fidelity
models

• temporal/scene
perception

Local Models

• Sampling and
reconstruction

• image
quantisation

• deterministic
models

• statistical models

Global Models

• scene analysis/AI
model

• sequential and
clustering models

• image
understanding
models

We will concentrate on local models but some areas (image
coding) must take account of results obtained from perception
models. One can split our local model image processing up into
several ‘areas’.
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Image Enhancement

The objective of image enhancement is to accentuate particular
features of an image in such a way that subsequent display is
improved. The techniques do not introduce additional information.
Examples are:

• Edge enhancement

• Grey level histogram equalisation

• Pseudo-colour (eg Matlab)
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Figure 15: Original image (left) and application of adaptive histogram
equalisation/contrast enhancement (right)

See http://alex.mdag.org/improc.
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Image Restoration

The objective is to restore a degraded image to its original form.
An observed image can often be modelled as:

fobs(u1, u2) =
∫∫

h(u1−u′1, u2−u′2)ftrue(u
′
1, u′2) du

′
1 du

′
2+n(u1, u2)

where the integral is a convolution function and h is the impulse
response or point spread function of the imaging system and n is
additive noise. The objective of image restoration in this case
would be to estimate the original image ftrue from the observed
degraded image fobs .
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Figure 16: Original image (left) and deconvolved image (right)

See http://www.mirametrics.com/brief maxent lab.htm.
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Image Analysis

Image analysis is concerned with extracting features from an image
for subsequent analysis, or processing. Reading car number plates,
inspection of items on conveyor belts etc.

Figure 17: Extraction of corners from an indoor scene
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Another example of using feature extraction for subsequent
inference.

Figure 18: Dynamic surface reconstruction from grid point tracking
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Course Contents and books

• 2d continuous Fourier transform and its properties

• Linear spatially invariant systems (LSI)

• Image digitisation and sampling – sampling schemes

• The 2d discrete Fourier transform (and mention 2d z -transform)

• Ideal image filters – the importance of phase

• Digital filter design (2d)

• Deconvolution of images

• Image enhancement

• 1. Fundamentals of digital image processing: Anil Jain (Prentice
Hall) 2. Digital image processing: Gonzalez and Woods (Prentice
Hall) 3. Two-dimensional signal and image processing: J S Lim
(Prentice Hall)

J. Lasenby (2016)
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Course notes, Matlab programs and Example Sheet available for
download from
www-sigproc.eng.cam.ac.uk/ ˜jl

Now also available on the CUED Moodle site:
https://www.vle.cam.ac.uk/

IB Signal and Data Analysis notes available from
www-sigproc.eng.cam.ac.uk/ ˜jl

... and from Prof Simon Godsill’s website:
www-sigproc.eng.cam.ac.uk/ ˜sjg
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Multidimensional Signals and Systems

Will discuss 2-D signals and systems (but readily generalised to
higher dimensions). Consider the system below which has input
x(u1, u2) and output y(u1, u2)

Input image Output image

x(u1,u2) y(u1,u2)

F(.)

y(u1, u2) = F [x(u1, u2)]

Want to characterise the functional mapping F [·] between input
and output in terms of concepts such as impulse response and
frequency response. First need to generalise the concept of the
Fourier transform to multiple dimensions.

3

The 2d Fourier Transform

The 1-D Fourier transform G (ω) of a function g(t) is given by:

G (ω) =
∫ ∞

−∞
g(t) e−jωt dt

g(t) =
1

2π

∫ ∞

−∞
G (ω) e jωt dω

The 2-D Fourier transform of a spatial function g(u1, u2) is given
by:

G (ω1, ω2) =
∫ ∞

−∞

∫ ∞

−∞
g(u1, u2) e

−j(ω1u1+ω2u2) du1 du2

..with inverse 2DFT given by

g(u1, u2) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
G (ω1, ω2) e

j(ω1u1+ω2u2) dω1 dω2

4



Proving Inverse 2d Fourier Transform

Do this by direct substitution:

FT (g(u1, u2)) =

=
1

(2π)2

∫ ∫ [∫ ∫
G (ω′1,ω′2) e

j(ω′1u1+ω′2u2) dω′1 dω′2

]
e−j(ω1u1+ω2u2) du1 du2

=
1

(2π)2

∫ ∫
G (ω′1,ω′2)

[∫ ∫
e j((ω

′
1−ω1)u1+(ω′2−ω2)u2) du1 du2

]
dω′1 dω′2

=
1

(2π)2

∫ ∫
(2π)2G (ω′1,ω′2) δ(ω′1 −ω1)δ(ω

′
2 −ω2)dω′1 dω′2

= G (ω1,ω2)

Where we have used the result that
∫ ∞
−∞ exp(±jωt)dω = 2πδ(t)

– see later.
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Separability of 2d Fourier Transform

Note that the 2d Fourier transform can be rewritten as:

G (ω1, ω2) =
∫ ∞

−∞
e−jω1u1

{∫ ∞

−∞
g(u1, u2) e

−jω2u2 du2

}
du1

Inner integral is simply the FT of the waveform corresponding to
moving along a line in the u2-direction at some fixed position u1.
This gives a function of ‘vertical’ position u1 and ‘horizontal’
spatial frequency ω2. Outer integral is the Fourier transform of
this function in the u1 direction.
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Separability of 2d Fourier Transform – illustration

This may be illustrated by considering the 2-dimensional sinewave
g(x , y) = sin Ω1x sin Ω2y , which is shown in the figure for
Ω1 = 2πf1, f1 =

1
16Hz and Ω2 = 2πf2, f2 =

1
32Hz.
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2d sinewave example

If we first do the integration wrt y we get

F (x , ω2) = sin Ω1x

{∫ ∞

−∞
sin Ω2y e−jω2y dy

}
= jπ sin Ω1x [δ(ω2 + Ω2)− δ(ω2 −Ω2)]
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2d sinewave example cont...

If we now do the integration in the x direction we obtain

G (ω1, ω2) = jπ [δ(ω2 + Ω2)− δ(ω2 −Ω2)]
∫ ∞

−∞
sin Ω1x e−jω1x dx

= −(π)2 [δ(ω1 + Ω1)− δ(ω1 −Ω1)] [δ(ω2 + Ω2)− δ(ω2 −Ω2)]
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Illustration of spatial frequencies in images
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Figure 1: 1d sine wave
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Figure 2: Spectrum of the 1d
sine wave
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Figure 3: 1d sine wave – varying
frequency
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Figure 4: Spectrum of variable
frequency sine wave
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Figure 5: 2d sine wave Figure 6: Spectrum of the 2d
sine wave
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Figure 7: 2d sine wave – varying
frequency [spatial tilt]

Figure 8: Spectrum of variable
frequency 2d sine wave

11

20 40 60 80 100 120

20

40

60

80

100

120

Figure 9: 2d texture Figure 10: Spectrum of the
texture
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Figure 11: 2d texture – varying
frequency [spatial tilt]

Figure 12: Spectrum of variable
frequency 2d texture
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Example of using texture to extract shape

Figure 13: Texture laid onto
cylindrical pipe

Figure 14: Shape from
extraction of frequencies
from the texture

(Fabio Galasso, PhD Thesis, University of Cambridge 2009).
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Properties of 2d Fourier Transforms: Spatial Shift

Consider a spatially shifted version g(u1 − µ1, u2 − µ2) of the
image g(u1, u2). The FT of the shifted image is:

G
′
(ω1, ω2) =

∫∫ ∞

−∞
g(u1 − µ1, u2 − µ2) e

−j(ω1u1+ω2u2) du1 du2

Let u1 − µ1 = u
′
1 and u2 − µ2 = u

′
2

G
′
(ω1, ω2) =

∫∫ ∞

−∞
g(u

′
1, u

′
2) e

−j [(ω1(u
′
1+µ1)+ω2(u

′
2+µ2)] du

′
1 du

′
2

= e−j(µ1ω1+µ2ω2)
∫∫

g(u
′
1, u

′
2) e

−j(ω1u
′
1+ω2u

′
2) du

′
1 du

′
2

= e−j(µ1ω1+µ2ω2) G (ω1, ω2)

∴ g(u1 − µ1, u2 − µ2)⇔ e−j(µ1ω1+µ2ω2) G (ω1, ω2)
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Properties: Frequency Shift or Spatial Modulation

Consider a spatial-frequency shifted image transform
G (ω1 −Ω1, ω2 −Ω2). The FT is

G (ω1, ω2) =
∫ ∞

−∞

∫ ∞

−∞
g(u1, u2) e

−j(ω1u1+ω2u2) du1 du2

replace ω1 and ω2 by ω1 −Ω1 and ω2 −Ω2

G (ω1−Ω1, ω2−Ω2) =
∫∫ ∞

−∞
g(u1, u2) e

−j((ω1−Ω1)u1+(ω2−Ω2)u2) du1 du2

=
∫∫ ∞

−∞
e j(Ω1u1+Ω2u2) g(u1, u2) e

−j(ω1u1+ω2u2) du1 du2

∴ g(u1, u2)e
j(Ω1u1+Ω2u2) ⇔ G (ω1 −Ω1, ω2 −Ω2)

Again, exactly as in the 1d case. In both cases, a shift in one
domain causes multiplication by an exponential in the other
domain.
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Useful Fourier Transforms: Impulse function

The function δ(u1, u2) is an impulse occuring at the origin
u1 = 0, u2 = 0 and the function δ(u1 − µ1, u2 − µ2) is an impulse
occuring at u1 = µ1, u2 = µ2.
The impulse function is defined by:

lim
ε→0

∫ ε

−ε

∫ ε

−ε
δ(u1, u2) du1 du2 = 1 Unit area

∫∫ ∞

−∞
δ(u1−µ1, u2−µ2) f (u1, u2) du1 du2 = f (µ1, µ2) Sifting property

The Fourier transform of the 2-D impulse function is:

∆(ω1, ω2) =
∫ ∞

−∞

∫ ∞

−∞
δ(u1, u2) e

−j(ω1u1+ω2u2) du1 du2 = 1

∴ δ(u1, u2)⇔ 1
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Useful Fourier Transforms: Constant level

Let g(u1, u2) = k then

G (ω1, ω2) =
∫∫ ∞

−∞
k e−j(ω1u1+ω2u2) du1 du2

We saw in the IB course that we could write

lim
a→∞

sin at

t
→ πδ(t)

Exercise: Use the above identity to show that

lim
A→∞

∫ A

−A
exp(±jωt)dω = 2πδ(t)

We can now use this result:

G (ω1, ω2) =
∫∫ ∞

−∞
k e−j(ω1u1+ω2u2) du1 du2

= k(2πδ(ω1))(2πδ(ω2)) = k(2π)2δ(ω1, ω2)
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Useful Fourier Transforms: Constant level cont...

Indeed, physical intuition =⇒ spectrum of a constant image
would be zero at all spatial frequencies other than ω1 = ω2 = 0.
We can check our result by taking the inverse transform.

1

(2π)2

∫∫ ∞

−∞
k(2π)2 δ(ω1, ω2) e

j(ω1u1+ω2u2) dω1 dω2

= k

∴ k ⇔ k (2π)2 δ(ω1, ω2)
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Useful Fourier Transforms: Complex Exponential

Let g(u1, u2) = e j(Ω1u1+Ω2u2) then

G (ω1, ω2) =
∫∫ ∞

−∞
e j(Ω1u1+Ω2u2) e−j(ω1u1+ω2u2) du1 du2

=
∫ ∞

−∞

∫ ∞

−∞
e−j [(ω1−Ω1)u1+(ω2−Ω2)u2] du1 du2

= (2π)2δ(ω1 −Ω1, ω2 −Ω2)

Note that it is also possible to see this result directly using the
frequency shift theorem:

g(u1, u2)e
j(Ω1u1+Ω2u2) ⇔ G (ω1 −Ω1, ω2 −Ω2)

In this case: g(u1, u2) = 1 and G (ω1, ω2) = (2π)2δ(ω1, ω2)

∴ e j(Ω1u1+Ω2u2) ⇔ (2π)2δ(ω1 −Ω1, ω2 −Ω2)

19

Linear Systems

x(u1,u2) y(u1,u2)F(.)

y(u1, u2) = F [x(u1, u2)]

Here x(u1, u2) is the input to the linear system and y(u1, u2) is
the output. A system is linear if:

F [a x1(u1, u2) + b x2(u1, u2)] = aF [x1(u1, u2)] + bF [x2(u1, u2)]

If the input to the system is a 2-d impulse function
δ(u1 − µ1, u2 − µ2) positioned at u1 = µ1, u2 = µ2 then the
resulting output image is termed the impulse response
h(u1, u2; µ1, µ2) of the system. That is:

h(u1, u2; µ1, µ2) = F [δ(u1 − µ1, u2 − µ2)]
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Linear Systems: spatial invariance
If the system is spatially invariant then the shape of the impulse
response is independent of the position of the impulse function –
i.e. a translation of the input produces a translation of the output;

F [δ(u1 − µ1, u2 − µ2)] = h(u1 − µ1, u2 − µ2)

where:
h(u1, u2) = F [δ(u1, u2)]

The region of support Rh of the impulse response is the smallest
closed region in the output plane outside of which the impulse
response is zero. Finite impulse response (FIR) and infinite impulse
response (IIR) systems have finite and infinite regions of support
respectively.
When the 2-d signal is an image expressed in terms of greylevels it
is always positive and the impulse response is often referred to as
the point spread function
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Linear Systems: convolution

For a Linear Time Invariant (LTI) 1-d system we can write the
input x(t) as an integral x(t) =

∫ ∞
−∞ x(τ)δ(t − τ)dτ. If an

impulse δ(t) produces an output h(t), then by linearity, an input
x(t) will produce an output y(t) given by

y(t) =
∫ ∞

−∞
x(τ) h(t − τ) dτ

... the convolution integral (proper proof of this is more involved –
see IA Maths notes). The corresponding results in 2d are

x(u1, u2) =
∫∫ ∞

−∞
x(u

′
1, u

′
2) δ(u1 − u

′
1, u2 − u

′
2) du

′
1 du

′
2

y(u1, u2) =
∫∫ ∞

−∞
x(u

′
1, u

′
2) h(u1 − u

′
1, u2 − u

′
2) du

′
1 du

′
2

or y(u1, u2) =
∫∫ ∞

−∞
h(u

′
1, u

′
2) x(u1 − u

′
1, u2 − u

′
2) du

′
1 du

′
2

see convolution demo.m....
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Linear Systems: convolution theorem

Now take the 2-d Fourier transform of previous equation

Y (ω1, ω2) =
∫ ∞

−∞

∫ ∞

−∞
y(u1, u2) e

−j(ω1u1+ω2u2) du1 du2

=
∫∫ ∞

−∞

[∫∫ ∞

−∞
h(u

′
1, u

′
2) x(u1 − u

′
1, u2 − u

′
2) du

′
1 du

′
2

]
e−j(ω1u1+ω2u2) du1 du2

Interchange order of integration on RHS and use spatial shift theorem

=
∫∫ ∞

−∞
h(u

′
1, u

′
2)

[∫∫ ∞

−∞
x(u1 − u

′
1, u2 − u

′
2) e

−j(ω1u1+ω2u2) du1 du2

]
du
′
1 du

′
2

=
∫∫ ∞

−∞
h(u

′
1, u

′
2)

[
e−j(ω1u

′
1+ω2u

′
2) X (ω1, ω2)

]
du
′
1 du

′
2

∴ Y (ω1, ω2) = X (ω1, ω2)
∫∫ ∞

−∞
h(u

′
1, u

′
2) e

−j(ω1u
′
1+ω2u

′
2) du

′
1 du

′
2
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Linear Systems: convolution theorem cont...

The integral term is the FT of the impulse response, ie the system
frequency response H(ω1, ω2).

∴ Y (ω1, ω2) = X (ω1, ω2)H(ω1, ω2)

Thus, the FT of the output of any linear system can be obtained
from FT of the input and the frequency response. If ∗ denotes the
convolution operation and

y(u1, u2) = f (u1, u2) ∗ g(u1, u2)

then we know that the Fourier transforms of these functions are
related multiplicatively, i.e.

Y (ω1, ω2) = F (ω1, ω2)G (ω1, ω2)
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Summary of LSI system relationships

x(u1,u2) y(u1,u2)h(u1,u2)
H(ω1,ω2)X(ω1,ω2) Y(ω1,ω2)

The input-output relationships for a linear spatially-invariant (LSI)
system can be summarised as:
Spatial Domain

y(u1, u2) =
∫∫ ∞

−∞
x(u

′
1, u

′
2) h(u1 − u

′
1, u2 − u

′
2) du

′
1 du

′
2

=
∫∫ ∞

−∞
h(u

′
1, u

′
2) x(u1 − u

′
1, u2 − u

′
2) du

′
1 du

′
2

Frequency Domain

Y (ω1, ω2) = X (ω1, ω2)H(ω1, ω2)

25

where:

X (ω1, ω2) =
∫∫ ∞

−∞
x(u1, u2) e

−j(ω1u1+ω2u2) du1 du2 (Input spectrum)

x(u1, u2) =
1

(2π)2

∫∫ ∞

−∞
X (ω1, ω2) e

j(ω1u1+ω2u2) dω1 dω2 (Input signal)

Similarly for the output image y(u1, u2) and output spectrum
Y (ω1, ω2).

H(ω1, ω2) =
∫∫ ∞

−∞
h(u1, u2) e

−j(ω1u1+ω2u2) du1 du2 (Frequency response)

h(u1, u2) =
1

(2π)2

∫∫ ∞

−∞
H(ω1, ω2) e

j(ω1u1+ω2u2) dω1 dω2 (Impulse response)

J. Lasenby (2016)
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Image Digitisation

Most image processing is performed with a digital system; we must
therefore convert images into a finite set of sample values
(sampling) and each sample value must be represented as a finite
precision number (quantisation). We model digitized images as
bandlimited signals – a fairly good approximation to the truth in
most cases. A function f (u1, u2) is said to be bandlimited if its
Fourier transform, F (ω1, ω2), is zero outside some closed region in
the frequency plane: e.g.

F (ω1, ω2) = 0 if |ω1| > ω1c and |ω2| > ω2c

ω1c and ω2c are the u1 and u2 bandwidths of the image. If the
FT is circularly symmetric, such that F (ω1, ω2) = 0 for |ω| > ωc

(where |ω|2 = ω2
1 + ω2

2), then ωc is termed the bandwidth.
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Sampling

The purpose of sampling is to convert a 2-d continuous signal into
an array of sample values from the continuous signal. There are a
number of possible different grids which can be used as the basis
for sampling: we discuss 2 of these.

Rectangular sampling

Consider the following 2-d sampling function

s(u1, u2) =
∞

∑
n1=−∞

∞

∑
n2=−∞

δ(u1 − n1∆1, u2 − n2∆2)

which corresponds to a uniform rectangular grid of impulse
functions spaced at intervals of ∆1 in the u1 direction and intervals
of ∆2 in the u2 direction, as shown in figure 1.

3

∆1

∆2

u2

u1

Figure 1: Rectangular sampling grid
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Sampling on a rectangular grid

The sampled image gs(u1, u2) is given by:

gs(u1, u2) = s(u1, u2) g(u1, u2)

where g(u1, u2) is the continuous 2d function. s is periodic in u1
and u2 directions, with periods ∆1 and ∆2. Can therefore write as
a 2d Fourier series. Recall that a 1d periodic function f (x) (period
T ) can be written as

f (x) =
∞

∑
n=−∞

cnejnω0x with ω0 =
2π

T

Similarly we write the 2d Fourier series for s(u1, u2) as

s(u1, u2) =
∞

∑
p1=−∞

∞

∑
p2=−∞

c(p1, p2) e
j(p1Ω1u1+p2Ω2u2) (1)

where: Ω1 =
2π
∆1

and Ω2 =
2π
∆2

5

Fourier Coefficients of s

Recall, in 1D the Fourier coefficients are given by

cn =
1

T

∫ α+T

α
f (x)e−jω0nxdx

We find that the 2d Fourier coefficients, c(p1, p2) are given by

c(p1, p2) =
1

∆1 ∆2

∫ ∆2
2

− ∆2
2

∫ ∆1
2

− ∆1
2

s(u1, u2) e
−j(p1Ω1u1+p2Ω2u2) du1 du2

Now substitute for the sampling function s(u1, u2):

c(p1, p2) =
1

∆1 ∆2

∫ ∆2
2

− ∆2
2

∫ ∆1
2

− ∆1
2

[
∞

∑
n1=−∞

∞

∑
n2=−∞

δ(u1 − n1∆1, u2 − n2∆2)

]
×e−j(p1Ω1u1+p2Ω2u2) du1 du2

=⇒ c(p1, p2) =
1

∆1 ∆2
for all p1, p2
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FT of sampled signal

The sampled image may then be expressed as:

gs(u1, u2) = g(u1, u2)
1

∆1 ∆2

∞

∑
p1=−∞

∞

∑
p2=−∞

ej(p1Ω1u1+p2Ω2u2)

Using the frequency shift or spatial modulation theorem to take
the Fourier transform

g(u1, u2)e
j(p1Ω1u1+p2Ω2u2) ⇔ G (ω1 −Ω1p1, ω2 −Ω2p2)

gives:

Gs(ω1, ω2) =
1

∆1 ∆2

∞

∑
p1=−∞

∞

∑
p2=−∞

G (ω1 − p1Ω1, ω2 − p2Ω2)

It can therefore be seen that the Fourier transform or spectrum of
the sampled 2d signal is the periodic repetition of the spectrum of
the unsampled 2d signal (centred on the ‘grid’ points in frequency
space) – precisely analogous to the 1d case.

7

Example
Figures show amplitude of the spectrum of a 2d signal plotted as a
mesh plot and as a gray-scale plot – the spectrum here is a
truncated Gaussian (therefore implying a bandlimited signal).
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Figure 2: Spectrum of a 2D
signal: contour
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Figure 4: Spectrum
Gs(ω1, ω2) of sampled
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Figure 5: Spectrum
Gs(ω1, ω2) of sampled
2-dimensional signal
(greyscale)

9

Nyquist frequencies
If the image is spatially bandlimited to ΩB1 and ΩB2 then the
original continuous image can be recovered from the sampled
image by ideal low-pass filtering at ΩB1, ΩB2 if the samples are
taken such that ΩB1 <

1
2Ω1 and ΩB2 <

1
2Ω2 so that the periodic

repeats of the spectrum do not overlap – this can also be written
as:

2π

∆1
> 2ΩB1

2π

∆2
> 2ΩB2

2ΩB1 and 2ΩB2 are known as the 2d Nyquist frequencies. Thus
the 2d sampling theorem states that a bandlimited image sampled
at or above its u1 and u2 Nyquist rates can be recovered without
error by low-pass filtering the sampled spectrum.
Sampling below the Nyquist rates causes aliasing to occur, where
we have overlap of the repeated unsampled spectra in the
frequency plane. If aliasing occurs we are not able to recover the
true spectrum without error.
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Figure 6: Illustration of 2D aliasing

11

Example of Aliasing - I
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Example of Aliasing - II

Moire

13

Example of anti-aliasing in photography
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Recovering original signal

For sampling at or above the Nyquist frequency, we can recover
the unsampled spectrum exactly by low-pass filtering with
H(ω1, ω2) given by

H(ω1, ω2) = ∆1∆2 if ω1, ω2 ∈ R, 0 otherwise

where R is any area in the frequency plane completely containing
the spectrum of the unsampled signal – most usually we would
take R as [− π

∆i
< ωi <

π
∆i
] (since π

∆i
> ΩBi ).

The FT of our unsampled signal is thus

G (ω1, ω2) = H(ω1, ω2)Gs(ω1, ω2)

15

Multiplication in the spatial domain implies convolution in the
frequency domain, and vice versa; we therefore have (where h is
the inverse FT of H)

g(u1, u2) =
∫ ∞

−∞

∫ ∞

−∞
h(u1 − u′1, u2 − u′2)gs(u

′
1, u′2)du

′
1du
′
2

Since we can write gs as

gs(u
′
1, u′2) = ∑

n
∑
m

g(n∆1,m∆2)δ(u
′
1 − n∆1, u′2 −m∆2)

we can use this to write our signal g as

16



g (u1, u2) = ∑
n

∑
m

∫∫ ∞

−∞
h(u1 − u′1, u2 − u′2)g (n∆1,m∆2)δ(u

′
1 − n∆1, u

′
2 −m∆2)du

′
1du

′
2

= ∑
n

∑
m

h(u1 − n∆1, u2 −m∆2)g (n∆1,m∆2)

We can show that h, the inverse FT of H is [Exercise]:

h(u1, u2) = sinc
u1π

∆1
sinc

u2π

∆2

Thus we can now write our original image in terms of the samples
and the above sinc functions

g(u1, u2) = ∑
n

∑
m

g(n∆1,m∆2) sinc
(u1 − n∆1)π

∆1
sinc

(u2 −m∆2)π

∆2

17

We are effectively using these sinc functions to interpolate between
the samples.
You should recognise this result from 1D sampling theory, where
the reconstruction theorem, for signals sampled at or above the
Nyquist frequency, was cast in the form of a sum of interpolations
using sinc functions. It is intuitively obvious that 2D signals should
behave in the same way.
So, what we have derived here is fundamental to 2D sampling:
provided a signal is sampled at or above its 2D Nyquist
frequencies, we are able to perfectly reconstruct the signal
from its samples.
Of course, we could have chosen other sampling patterns.
Different patterns may have advantages under some circumstances
and we discuss another such pattern in the following section.
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Diamond Sampling Grid

The Diamond sampling scheme which is used in a number of
applications is shown below:

u
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u
1

∆
1

∆
2

Figure 7: Diamond sampling grid
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Diamond Sampling Grid
Represent the sampling grid by two separate 2d sampling functions
as illustrated below

u2

u1∆1

∆2

Figure 8: s1(u1, u2)

u
2

u
1

∆
1

∆
2

Figure 9: s2(u1, u2)

s1(u1, u2) =
∞

∑
n1=−∞

∞

∑
n2=−∞

δ[u1 − 2 n1∆1, u2 − 2 n2∆2]

s2(u1, u2) =
∞

∑
n1=−∞

∞

∑
n2=−∞

δ[u1 − (2 n1 + 1)∆1, u2 − (2 n2 + 1)∆2]
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Since s1 and s2 are periodic (with periods 2∆1 and 2∆2) we can
represent them as 2d Fourier series.

s1(u1, u2) =
∞

∑
p1=−∞

∞

∑
p2=−∞

c1(p1, p2) e
j(p1

Ω1
2 u1+p2

Ω2
2 u2)

s2(u1, u2) =
∞

∑
p1=−∞

∞

∑
p2=−∞

c2(p1, p2) e
j(p1

Ω1
2 u1+p2

Ω2
2 u2)

where Ω1 =
2π

∆1
and Ω2 =

2π

∆2

Thus the sampled function can be written as

gs(u1, u2) = g(u1, u2)[s1(u1, u2) + s2(u1, u2)]

=
∞

∑
p1=−∞

∞

∑
p2=−∞

[c1(p1, p2) + c2(p1, p2)] g(u1, u2) e
j(p1

Ω1
2 u1+p2

Ω2
2 u2)

21

Take the 2-D Fourier transform using the frequency shift theorem
to give:

Gs(ω1, ω2) =
∞

∑
p1=−∞

∞

∑
p2=−∞

[c1(p1, p2)+ c2(p1, p2)]G (ω1−p1
Ω1

2
, ω2−p2

Ω2

2
)

By the usual process we can determine the Fourier coefficients

c1(p1, p2) =
1

4 ∆1 ∆2

∫ ∆2

−∆2

∫ ∆1

−∆1

s1(u1, u2) e
−j(p1 Ω1

2 u1+p2
Ω2
2 u2) du1 du2

(2)

c2(p1, p2) =
1

4 ∆1 ∆2

∫ ∆2

−∆2

∫ ∆1

−∆1

s2(u1, u2) e
−j(p1 Ω1

2 u1+p2
Ω2
2 u2) du1 du2

(3)

Clearly the factor 1
4∆1 ∆2

comes from 1
T1T2

with Ti = 2∆i .
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Substitute for s1(u1, u2) in equation 2 and interchange integral and
summation operations to give:

c1(p1, p2) =
1

4 ∆1 ∆2

∞

∑
n1=−∞

∞

∑
n2=−∞

∫ ∆2

−∆2

∫ ∆1

−∆1

δ[u1− 2 n1∆1, u2− 2 n2∆2]

× e−j(p1
Ω1
2 u1+p2

Ω2
2 u2) du1 du2

Since the only contribution to the integral will come when
n1 = n2 = 0, we have

∴ c1(p1, p2) =
1

4 ∆1 ∆2

23

Similarly, substituting for s2(u1, u2) in equation 3 and
interchanging integral and summation operations gives

c2(p1, p2) =
1

4∆1 ∆2

∞

∑
n1=−∞

∞

∑
n2=−∞

∫ 2∆2

0

∫ 2∆1

0
δ[u1− (2 n1+1)∆1, u2− (2 n2+1)∆2]

× e−j(p1
Ω1
2 u1+p2

Ω2
2 u2) du1 du2

note here that we change our limits to take the period between
[0, 2∆1] and [0, 2∆2] (recall that we can take any interval covering
a whole period), so that the only contributions to the integral now
come from n1 = 0 and n2 = 0 giving u1 = ∆1 and u2 = ∆2. Since
(piΩi∆i )/2 = piπ we have

c2(p1, p2) =
1

4 ∆1 ∆2
e−j(p1+p2)π
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Thus

c1(p1, p2) =
1

4 ∆1 ∆2
(4)

c2(p1, p2) =
1

4 ∆1 ∆2
e−j(p1+p2)π (5)

Substituting for c1(p1, p2) and c2(p1, p2) in the equation for the
sampled signal spectrum gives:

Gs(ω1, ω2) =
1

4 ∆1 ∆2

∞

∑
p1=−∞

∞

∑
p2=−∞

[1+ e−j(p1+p2)π ]G (ω1−p1
Ω1

2
, ω2−p2

Ω2

2
)

25

Since 1 + e−j(p1+p2)π =

{
0, p1 + p2 = odd
2, p1 + p2 = even

Gs (ω1,ω2) =
1

2∆1 ∆2

∞

∑
p1=−∞

∞

∑
p2=−∞

G (ω1 − p1
Ω1

2
,ω2 − p2

Ω2

2
) for p1 + p2 even

(6)

It can be seen that the spectrum of the sampled signal is the
periodic repetition of the unsampled signal spectrum, where the
unsampled spectrum repeats itself at (even,even) and (odd,odd)
intervals of Ω1/2 and Ω2/2 as shown in figure 10.
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Figure 10: Spectrum of sampled signal with diamond sampling

27

Sometimes the diamond sampling grid offers an advantage over
rectangular sampling as may be seen in figure 11.

Figure 11: Signal which lends itself to diamond sampling regime

Here the unsampled spectrum can be tightly enclosed by a
diamond-shaped region; by sampling on a diamond grid we can
then reduce the sampling density by a factor of 2.
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The general rule is that if an image does not contain high
frequencies simultaneously in both dimensions, then we will be
better off sampling on a diamond grid.

For functions which are circularly symmetric or bandlimited over a
circular region, it can be shown that sampling on a hexagonal grid
is significantly better (requiring fewer samples) than rectangular
sampling.

29

Image Quantisation

Having determined the (spatial) rate at which a 2-D signal is
sampled, now look at how many bits are required to represent the
amplitude of each sample in a subjectively acceptable manner.

It appears that the eye is significantly less sensitive to quantisation
error in images than the sensitivity which the ear exhibits with
quantised audio signals.

The generally accepted criterion for image quantisation is a
resolution of 8 bits (0 to [28 − 1] = 255 or 1 to 256) whereas 16
bits are required for high quality audio.

Although 8 bits gives very adequate representation for images, 10
(0 to [210 − 1] = 1023 or 1 to 1024) or 12 (0 to [212 − 1] = 4095
or 1 to 4096) bits are sometimes used for the very highest quality
material.
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Figures 12 to 15 show an image with successively coarser
quantisation.

Quantised image  8  bits

Figure 12: Image quantised
to 8 bits: 256 grey levels (0
to 255)

Quantised image  6  bits

Figure 13: Image quantised
to 6 bits: 64 grey levels (0 to
63)

31

Quantised image  4  bits

Figure 14: Image quantised to
4 bits: 16 grey levels (0 to 15)

Quantised image  2  bits

Figure 15: Image quantised to
2 bits: 4 grey levels (0 to 3)
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The 2d Discrete Fourier Transform (DFT)

Have seen how digital images can be represented as sampled
versions of a continuous 2d function and how the Fourier transform
(FT) of this sampled image is the periodic repetition of the
spectrum of the original signal.

We now ask how to deal with real-life cases when we have a finite
2d array of numbers (constituting our image) and we want to
obtain the best approximation to the FT of this image given by a
finite array of the same size (so the two are fully invertible).
Recall that in 1d we periodically extended our finite set of N
samples, {f (nTs), n = 0, ..,N − 1} as shown in figure 16;

Figure 16: Periodic repetition of the finite set of samples, fs(t)
33

Revision 1d DFT

We know that the FT of a periodic function takes discrete values
and that the FT of a sampled signal repeats every interval of the
sampling frequency: =⇒ the FT of the above periodic extension
will be periodic (period NTs) and defined at discrete frequency
values. We therefore get precisely what we want and are able to
define the 1d DFT and the 1d inverse DFT as:

Fk =
N−1
∑
n=0

fne−j2π nk
N 0 ≤ k ≤ N − 1 (7)

fn =
1

N

N−1
∑
k=0

Fkej2π nk
N 0 ≤ n ≤ N − 1 (8)

where we start with a set of N samples, fn = f (nTs) and produce
a set of N frequency samples, Fk = F (kω0) where ω0 = 2π/T
and T = NTs .
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The 2d DFT

To get the 2d DFT, again we periodically extend our image to tile
the plane as shown in figure 17:

Figure 17: Periodic repetition of the Lenna image. The solid and dotted
white squares show two possible placings of the origin of the tiling

35

In 1d could take our period from any α to α + T ; in 2d can choose
any relevant part of the plane – Figure 17 shows the two most
common cases.

Solid rectangle shows the original image, dotted rectangle shows
an offset section where the 1st & 3rd and the 2nd & 4th quadrants
have been interchanged. This interchange is performed by the
command fftshift in Matlab.

36



For the image f (u1, u2), we can write the N1 ×N2 sampled image
as

fs(u1, u2) =
N2−1

∑
n2=0

N1−1

∑
n1=0

f (u1, u2)δ(u1 − n1∆1, u2 − n2∆2)

Let f̄s be the periodic extension of fs tiling the whole 2d plane. f̄s
periodic =⇒ write it as a Fourier series

f̄s(u1, u2) =
∞

∑
p2=−∞

∞

∑
p1=−∞

c(p1, p2)e
j(p1Ω1u1+p2Ω2u2)

where Ωi = 2π/Ti , Ti = Ni∆i . The Fourier coefficients are given
by

c(p1, p2) =
1

T1T2

∫ +T2/2

−T2/2

∫ +T1/2

−T1/2
fs(u1, u2)e

−j(p1Ω1u1+p2Ω2u2)du1du2

=
1

T1T2

N2−1

∑
n2=0

N1−1

∑
n1=0

f (n1∆1, n2∆2)e
−j(p1Ω1n1∆1+p2Ω2n2∆2)

37

Note that we can associate c(p1, p2)T1T2 with the Fourier
transform at (p1Ω1, p2Ω2) [recall the 1D case where kth fourier
coefficient of a sampled, periodic function fs was equivalent to
1
T F (kω0), where Fs is the FT of fs and ω0 =

2π
T ].

Now, using ∆iΩi = 2π/Ni , we are able to arrive at our definition
of the 2d DFT: Fp1p2 denotes the FT at frequencies (p1Ω1, p2Ω2)
and fn1n2 the image values at (n1∆1, n2∆2);

Fp1,p2 =
N2−1

∑
n2=0

N1−1

∑
n1=0

fn1n2e
−2πj(p1

n1
N1

+p2
n2
N2

)
(9)
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the inverse DFT (IDFT) is similarly given by

fn1,n2 =
1

N1N2

N2−1

∑
p2=0

N1−1

∑
p1=0

Fp1p2e
2πj(n1

p1
N1

+n2
p2
N2

)
(10)

∴ we can transform an image using the 2d DFT – note that the
form of this transform means that we can do it as 2 1d DFTs –
giving an array of complex numbers which gives the Fourier
transform of that image.
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2d DFT cont...

If we shift the image before transforming as shown below,

Figure 18: Original image and shifted image with 1st & 3rd and 2nd &
4th quadrants interchanged

then the effect of this is to put the ‘dc level’ (pixel (1, 1)) at the
centre of the image. In most cases, it does not matter if we shift
or do not shift, but it is important to understand what effect
changing the position of the dc level has on the DFT.

40



Effects of shifting

A shift in the spatial domain implies multiplication by a complex
exponential in the frequency domain. Thus if we shift our image
(modulo N1 and N2) the 2D-DFT is given by

f
n1+

N1
2 ,n2+

N2
2
=

1

N1N2

N2−1

∑
p2=0

N1−1

∑
p1=0

Fp1p2e
2πj([n1+

N1
2 ]

p1
N1

+[n2+
N2
2 ]

p2
N2

)

which we can rearrange to give

f
n1+

N1
2 ,n2+

N2
2
=

1

N1N2

N2−1

∑
p2=0

N1−1

∑
p1=0

(
Fp1p2eπjp1+πjp2

)
e
2πj(n1

p1
N1

+n2
p2
N2

)

Thus, in the frequency domain we are applying a ±1 factor across
the image (since eπjpi changes from +1 to −1 moving from even
to odd pixels). A one pixel shift, ie fn1,n2+1, gives an FT of

Fp1p2e
2πj

p2
N2 , giving a phase ramp across the image.

41

Effects of shifting – visualisation

Consider visualising our frequency data. Take a centred 2d
gaussian – Both the original image and the shifted image
(fftshift) have a Fourier transform which gives the DC
component ((0, 0) frequencies) in the top left-hand corner of the
image. If we want to visualise this so that the (0, 0) frequency
component is in the centre of the image then we fftshift our
transform.
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Figure 19: Gaussian
centred in the image
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Figure 20: 2D-DFT of
gaussian
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Figure 21: fftshift
applied to 2D-DFT
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Exercise
Here we see the same symmetric arrangement shifted to have its
centre at a different part of the image. Investigate the 2d DFT
of such an image, in particular, note how the phase of the DFT
differs between the three examples.

Figure 22: A symmetric image with the centre shifted to different parts of
the image plane. a) centre at position (N/2 + 1,N/2 + 1) of the grid,
b) centre at position (1, 1) of the grid and c) centre at position
(N/2 + 2,N/2− 1) of the grid

J. Lasenby (2016)
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1

Image Filters
In many applications of multi-dimensional signal processing it is
necessary to apply a spatial filtering operation. In some cases 3-D
filtering is required, operating in the 2 spatial coordinates and in
time. However, at this stage, consideration will be given only to
2D spatial filtering.

Figure 1: Original and filtered (convolved) versions of Lenna
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2d Digital Filters

Have seen that we can write the output, y(u1, u2), of a linear
system (with impulse response h(u1, u2)) and input x(u1, u2), as

y(u1, u2) =
∫ ∞

−∞

∫ ∞

−∞
h(u′1, u′2) x(u1 − u′1, u2 − u′2)du

′
1du
′
2

with Y (ω1, ω2) = H(ω1, ω2)X (ω1, ω2). Call this linear system a
2d digital filter and write the above in terms of discrete sums
(supposing a digitised image of infinite extent):

y(n1, n2) =
∞

∑
p2=−∞

∞

∑
p1=−∞

h(p1, p2) x (n1 − p1, n2 − p2)

3

Need to model h as discrete (again, assume infinite extent) =⇒
FT is periodic. Explicity, write the discrete form of h as hs where

hs(u1, u2) =
∞

∑
n2=−∞

∞

∑
n1=−∞

h(u1, u2)δ(u1 − n1∆1, u2 − n2∆2)

∆i is the sample spacing in the ui direction. We can then write its
FT, Hs(ω1, ω2), as∫∫ ∞

−∞

∞

∑
n2=−∞

∞

∑
n1=−∞

h(u1, u2)δ(u1 − n1∆1, u2 − n2∆2)e
−j(ω1u1+ω2u2)du1du2

=
∞

∑
n2=−∞

∞

∑
n1=−∞

h(n1∆1, n2∆2)e
−j(ω1n1∆1+ω2n2∆2)

Note that this is just the discrete time Fourier transform (DTFT).
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Hs(ω1, ω2) is periodic with periods Ωi = 2π/∆i ; note then that
previous expression is the Fourier Series expansion with
h(n1∆1, n2∆2) as the Fourier coefficients. Therefore

h(n1∆1, n2∆2) =
1

Ω1Ω2

∫ Ω2/2

−Ω2/2

∫ Ω1/2

−Ω1/2
Hs(ω1, ω2)e

j(ω1n1∆1+ω2n2∆2)dω1dω2

=
∆1∆2

(2π)2

∫ π/∆2

−π/∆2

∫ π/∆1

−π/∆1

Hs(ω1, ω2)e
j(ω1n1∆1+ω2n2∆2)dω1dω2

Letting ωi → (ωi∆i ), i.e. use normalised frequencies, such that
Ωi → 2π

∆i
∆i = 2π, we have (putting ω′i = ωi∆i and sampling intervals

of unity):

Hs(ω1, ω2) =
∞

∑
n2=−∞

∞

∑
n1=−∞

h(n1, n2) e
−j(ω1n1+ω2n2)

h(n1, n2) =
1

(2π)2

∫ π

−π

∫ π

−π
Hs(ω1, ω2)e

j(ω1n1+ω2n2) dω1 dω2

5

2d Digital Filter relations: summary

H(ω1, ω2) =
∞

∑
n2=−∞

∞

∑
n1=−∞

h(n1, n2) e
−j(ω1n1+ω2n2)

h(n1, n2) =
1

(2π)2

∫ π

−π

∫ π

−π
H(ω1, ω2)e

j(ω1n1+ω2n2) dω1 dω2

(where we have dropped the subscript s on Hs). h(n1, n2) = 0
outside the region of support Rh of the impulse response so that:

H(ω1, ω2) = ∑ ∑
(n1,n2∈Rh)

h(n1, n2) e
−j(ω1n1+ω2n2)

6



Importance of phase in images

In 1-D processing, particularly of audio signals, the phase response
(essentially how the phase is altered) of any filtering operation is of
relatively minor importance since the auditory system is insensitive
to phase.

However, perception of images is very much concerned with lines
and edges.

If the filter phase response is non-linear, then the various frequency
components which contribute to an edge in an image will be phase
shifted with respect to each other in such a way that they no
longer add up to produce a sharp edge (i.e. dispersion takes place).

7

Original image

Figure 2: ‘Lenna’ (256× 256) pixels: original image

Take FT of above and
(a) set phases to zero and take IDFT
(b) set amplitudes to 1 and take IDFT
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Image reconstructed from amplitude of spectrum Image reconstructed from phase of spectrum

Figure 3: Amplitude and Phase reconstruction

9

Zero-phase filters

If a filter frequency response is to be zero-phase then it is purely
real so that:

H(ω1, ω2) = H∗(ω1, ω2)

Using our previous expression for H

∑ ∑
(n1,n2∈Rh)

h(n1, n2) e
−j(ω1n1+ω2n2) = ∑ ∑

(n1,n2∈Rh)

h∗(n1, n2) e
+j(ω1n1+ω2n2)

The above equation is satisfied for all ω1 and ω2 if:

h∗(n1, n2) = h(−n1,−n2)

10



Usually only filters with real impulse response coefficients are
considered so:

h(−n1,−n2) = h(n1, n2)

=⇒ approximately half of the filter parameters are independent
variables.
Figure shows the independent parameters for a zero phase filter
with a square support region of 5 x 5.

= independent parameters h(n1,n2)

n1

n2

Figure 4: Region of support for 5x5 zero-phase FIR filter
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Ideal 2d Filters
Impulse response of ideal 2-D filters can be calculated by taking
the 2-D IFT of the ideal frequency response. But what might
constitute an ideal frequency response?

Ideal Rectangular Bandpass Filters
(Assume working with normalised frequencies). Here, the passband
of allowed frequencies lies in a rectangular band.

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

π

− π π

− π

ΩU1

ΩU2

ΩL1

ΩL2

ω1

ω2

Figure 5: Frequency response of ideal rectangular bandpass filter
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See that the frequency response can be expressed as the difference
of two lowpass filters, H = Hu −Hl where:

Hu(ω1, ω2) =

{
1 if |ω1| < ΩU1 and |ω2| < ΩU2

0 otherwise

Hl (ω1, ω2) =

{
1 if |ω1| < ΩL1 and |ω2| < ΩL2

0 otherwise

The filter impulse response is given by:

h(n1, n2) =
1

(2π)2

∫ π

−π

∫ π

−π
H(ω1, ω2)e

j(ω1n1+ω2n2) dω1 dω2

13

Evaluate this integral by writing H = Hu −Hl ;

h(n1, n2) =
1

(2π)2

∫ ΩU2

−ΩU2

∫ ΩU1

−ΩU1

e j(ω1n1+ω2n2) dω1 dω2−

1

(2π)2

∫ ΩL2

−ΩL2

∫ ΩL1

−ΩL1

e j(ω1n1+ω2n2) dω1 dω2

=
1

(2π)2

[
2 sin(ΩU2n2)

n2

2 sin(ΩU1n1)

n1
− 2 sin(ΩL2n2)

n2

2 sin(ΩL1n1)

n1

]

∴ h(n1, n2) =

1

π2
[ΩU2 ΩU1 sinc(ΩU2n2) sinc(ΩU1n1)−ΩL2 ΩL1 sinc(ΩL2n2) sinc(ΩL1n1)]

ImageFilter3Demo.m
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Note: if we do not work with normalised frequencies but instead
take into account the sampling intervals, ∆1 and ∆2 (where we
assume that ΩU1 and ΩU2 are less than π/∆1 and π/∆2

respectively, the previous expression is written as

h(n1∆1, n2∆2) =
∆1∆2

π2
[ΩU2 ΩU1 sinc(ΩU2n2∆2) sinc(ΩU1n1∆1)

−ΩL2 ΩL1 sinc(ΩL2n2∆2) sinc(ΩL1n1∆1)]

15

Alternative ideal rectangular bandpass filter
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Figure 6: Frequency response of ideal separable rectangular bandpass filter
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in this case H is defined by

H(ω1, ω2) =

{
1 if ΩL1 < |ω1| < ΩU1 and ΩL2 < |ω2| < ΩU2

0 otherwise

Note that this definition of the ideal filter is separable:

H(ω1, ω2) = H1(ω1)H2(ω2)

where Hi (ωi ) is an ideal 1-D bandpass filter with a lower cut-off
frequency of ΩLi and an upper cut-off frequency of ΩUi , i.e.

H1(ω1) =

{
1 if ΩL1 < |ω1| < ΩU1

0 otherwise

H2(ω2) =

{
1 if ΩL2 < |ω2| < ΩU2

0 otherwise

17

We can therefore write the impulse response of this filter as

h(n1, n2) =
1

(2π)

∫ π

−π
H1(ω1) e

jω1n1 dω1
1

(2π)

∫ π

−π
H2(ω2)e

jω2n2 dω2 =

1

(2π)

[∫ −ΩL1

−ΩU1

e jω1n1dω1 +
∫ ΩU1

ΩL1

e jω1n1dω1

]
1

(2π)

[∫ −ΩL2

−ΩU2

e jω2n2dω2 +
∫ ΩU2

ΩL2

e jω2n2dω2

]

=
1

(2π)

[
1

jn1

(
e−jΩL1 n1 − e jΩL1 n1

)
− 1

jn1

(
e−jΩU1 n1 − e jΩU1 n1

)]

× 1

(2π)

[
1

jn2

(
e−jΩL2 n2 − e−jΩL2 n2

)
− 1

jn2

(
e−jΩU2 n2 − e jΩU2 n2

)]

h(n1, n2) =

1

(π)
[ΩU1sinc(ΩU1n1)−ΩL1sinc(ΩL1n1)]

1

(π)
[ΩU2sinc(ΩU2n2)−ΩL2sinc(ΩL2n2)]

18



Ideal circularly symmetric bandpass filter

In some cases preferential treatment should not be given to
frequency components in any particular direction, =⇒ circularly
symmetric frequency responses required:
In this case our frequency response is given by

H(ω1, ω2) =

{
1 if ΩL < | ω| < ΩU

0 otherwise

where ω2 = ω2
1 + ω2

2.
π

− π

π
− π

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

ΩUΩL

ω1

ω2

Figure 7: Frequency response of ideal circular bandpass filter
19

The filter impulse response is then given by:

h(n1, n2) =
1

(2π)2

∫ π

−π

∫ π

−π
H(ω1, ω2)e

j(ω1n1+ω2n2) dω1 dω2

Transform to polar coordinates r , θ as follows:

ω1 = r cos(θ) and ω2 = r sin(θ)

r2 = ω2
1 + ω2

2 , tan(θ) =
ω2

ω1
and elemental area=r dr dθ

The exponent in the complex exponential of the integrand may be
written as:

j(ω1 n1+ω2 n2) = j r [n1 cos(θ)+n2 sin(θ)] = j r
√
(n21+n22) sin(θ +φ)

where: tan(φ) = n1
n2

20



The impulse response may then be written as:

h(n1, n2) =
1

(2π)2

∫ ΩU

ΩL

∫ π

−π
e j r
√
(n21+n22) sin(θ+φ) r dθ dr =

1

(2π)2

∫ ΩU

ΩL

r
∫ π

−π
{cos [rβ sin(θ + φ)] + j sin [rβ sin(θ + φ)]} dθdr

where β =
√
(n21 + n22). A little thought shows that the periodic

property of sin(θ) ensures that the imaginary part of the expression
for h(n1, n2) is zero. Thus we must now evaluate the following
integral:

1

(2π)2

∫ ΩU

ΩL

r
∫ π

−π

{
cos
[
r
√
(n21 + n22) sin(θ + φ)

]}
dθ dr

21

Substitute θ′ = θ + φ.

1

(2π)2

∫ ΩU

ΩL

r
∫ φ+π

φ−π

{
cos
[
r
√
(n21 + n22) sin(θ′)

]}
dθ′ dr

θ′integrand is clearly a periodic function with period 2π, and since
we know that for any function f (t) such that f (t) = f (t + nT ),
we have ∫ T

0
f (t)dt =

∫ α+T

α
f (t)dt

we can rewrite our integral as

1

(2π)2

∫ ΩU

ΩL

r
∫ π

−π

{
cos
[
r
√
(n21 + n22) sin(θ)

]}
dθ dr

= 2
1

(2π)2

∫ ΩU

ΩL

r
∫ π

0

{
cos
[
r
√
(n21 + n22) sin(θ)

]}
dθ dr

22



h(n1, n2) can now be directly written in terms of the 0th order
Bessel function, J0 where J0(x) =

1
π

∫ π
0 cos{x sin(θ)} dθ

h(n1, n2) =
1

(2π)

∫ ΩU

ΩL

r J0[r
√
(n21 + n22)] dr

Let r
√
(n21 + n22) = x then:

h(n1, n2) =
1

2π(n21 + n22)

∫ ΩU
√
(n21+n22)

ΩL
√
(n21+n22)

x J0(x) dx

Now if J1(.) is the 1st order Bessel function of the first kind where∫
x J0(x) dx = x J1(x) =⇒

h(n1, n2) =
1

2π
√
(n21 + n22)

{
ΩUJ1[

√
(n21 + n22)ΩU ]−ΩLJ1[

√
(n21 + n22)ΩL]

}

Thus, the IR is the difference of two first order Bessel functions.
There are many examples of the use of this, one such use is in
astronomy. 23

Impulse response for circularly symmetric bandpass filter

Figure 8: Inverse FT for four cases of circularly symmetric bandpass filters

J. Lasenby (2016)
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2-D Digital Filter Design

In designing and using digital filters we firstly specify the
characteristics of the filter, secondly we design the filter and thirdly
we implement the filter in a discrete setting.

Here we suppose that we are dealing only with real data and that
we therefore require a real impulse response, h(n1, n2) so that the
processed image is also real. We will also demand that the impulse
response is bounded, implying stability, i.e.

∞

∑
n1=−∞

∞

∑
n2=−∞

|h(n1, n2)| < ∞

An unbounded output will cause many difficulties in practice,
possible system overload being one of them.

2



Have seen that the impulse responses of linear systems can be
either finite or infinite =⇒ finite impulse response (FIR) or
infinite impulse response (IIR) filters. Since we require the
boundedness condition, we will restrict our attention to FIR filters.
Have also seen that a zero-phase 2d filter
(H(ω1, ω2) = H∗(ω1, ω2)) does not disturb the phase
characteristics of the image; important for visual perception. =⇒
limit our discussion to zero-phase FIR filters with real impulse
response.
In general a filter obtained by inverse Fourier transforming some
desired zero-phase 2-D frequency response will not have a finite
support. However a number of different techniques are available
for the design of 2-D digital filters in which the support is finite.
We will just look at one technique here, the windowing method
(another common technique is the frequency transformation
method – discussions of this can be found in the listed textbooks).

3

Figure 1: Frequency responses of circularly symmetric ideal filters:
lowpass, highpass, bandpass and bandstop

Ideal circularly symmetric filters are shown in figure 1. Ideally,
these regions are well delineated, i.e. a lowpass filter only has
passband and stopband regions.
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The Window Method

Assume that the desired frequency response Hd (ω1, ω2) is given –
have seen that the desired impulse response hd (n1, n2) can be
obtained by taking the inverse FT of Hd .

Idea of the window design method is to multiply the infinite
support filter by a window function w(n1, n2) which forces the
impulse response coefficients h(n1, n2) to zero for n1, n2 6∈ Rh

where Rh is the desired support region.

hd (n1, n2) =
1

(2π)2

∫ π

−π

∫ π

−π
Hd (ω1, ω2)e

j(ω1n1+ω2n2) dω1 dω2

The filter with finite support is given by:

h(n1, n2) = hd (n1, n2)w(n1, n2)

5

Have seen that if hd (n1, n2) and w(n1, n2) satisfy the zero-phase
requirement, i.e.

hd (−n1,−n2) = hd (n1, n2) and w(−n1,−n2) = w(n1, n2)

then the resulting filter will be zero-phase, since the above imply
that h(−n1,−n2) = h(n1, n2).
The frequency response H(ω1, ω2) of the resulting filter can be
expressed in terms of the desired frequency response Hd (ω1, ω2)
and the Fourier transform W (ω1, ω2) of the window function
w(n1, n2) as follows.

H(ω1, ω2) = ∑ ∑
(n1,n2∈Rh)

h(n1, n2) e
−j(ω1n1+ω2n2)

=
∞

∑
n2=−∞

∞

∑
n1=−∞

w(n1, n2) hd (n1, n2) e
−j(ω1n1+ω2n2)

6



Substituting for hd (n1, n2) gives:

H(ω1,ω2) =

∞

∑
n1,n2=−∞

w (n1, n2)

[
1

(2π)2

∫∫ π

−π
Hd (Ω1,Ω2)e

j(Ω1n1+Ω2n2)dΩ1dΩ2

]
e−j(ω1n1+ω2n2)

=
1

(2π)2

∫∫ π

−π
Hd (Ω1,Ω2)

∞

∑
n1,n2=−∞

w (n1, n2)e
j [(ω1−Ω1)n1+(ω2−Ω2)n2 ]dΩ1dΩ2

But the summation term is simply the 2-D FT of the window
function evaluated at frequencies ω1 −Ω1, ω2 −Ω2.

∴

H(ω1,ω2) =
1

(2π)2

∫∫ π

−π
Hd (Ω1,Ω2)W ((ω1 −Ω1), (ω2 −Ω2)) dΩ1 dΩ2

W (ω1,ω2) =
∞

∑
n2=−∞

∞

∑
n1=−∞

w (n1, n2) e
−j(ω1n1+ω2n2)

7

Thus the actual filter frequency response H(ω1, ω2) is given by
the convolution of the desired frequency response Hd (ω1, ω2)
with the window function spectrum W (ω1, ω2).

This is exactly as we should expect since we multiply in the spatial
domain and must therefore convolve in the frequency domain.

Thus the effect of the window is to smooth Hd – clearly we would
prefer to have the mainlobe width of W (ω1, ω2) small so that Hd

is changed as little as possible. We also want sidebands of small
amplitude so that the ripples in the (ω1, ω2) plane outside the
region of interest are kept small.

Next – look at methods of producing window functions.

8



Product of 1-D Windows

One popular method for obtaining a 2-D window is to simply take
the product of two 1-D windows:

w(n1, n2) = w1(n1) w2(n2)

If the above holds, it is not hard to see that the FT of W is also
separable, i.e.

W (ω1, ω2) = W1(ω1) W2(ω2)

Note also that if the desired frequency response Hd (ω1, ω2) is
separable then the desired impulse response hd (n1, n2) is also
separable (clear from previous equations).
Thus the windowed impulse response is also separable and the
whole design process may reduce essentially to that of designing
two 1-D filters. 9

Rectangular Window

We now investigate the spectra of a number of window functions
formed from the product of 1-D windows.

First consider a rectangular window function given simply by

w(u1, u2) =

{
1 if |u1| < U1 and |u2| < U2

0 otherwise

or, since w is separable we have w = w1w2 where

wi (ui ) =

{
1 if |ui | < Ui

0 otherwise

10
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Spectrum of product of rectangular windows, N= 15*15

Figure 2: Spectrum of product of rectangular windows, support = 15×15

Figure 2 is formed by taking the inverse FT of a zero-padded
version of the array/image w(n1, n2).

11

Cosine Window
Consider a 1-d cosine function window,

w(u1) =

{
cos(π u1

U1
) if |u1| < U1

0 otherwise

Taking the FT of this can be shown to give

W1(ω1) = U1{sinc(π −ω1U1) + sinc(π + ω1U1)}

Figure 3: Spectrum of a 1d cosine window

This is hardly ideal!
12



Hamming Window

The 1d Hamming window function is simply

w(u1) =

{
0.54 + 0.46 cos(π u1

U1
) if |u1| < U1

0 otherwise

Note, that when u1 = 0, w = 1, when u1 = U1/2, w = 0.54 and
when u1 = U1, w = 0.54− 0.46 = 0.08. Thus the 1d Hamming
window decays relatively slowly down to a value of 0.08 at
u1 = U1. The 2d Hamming window is therefore defined as

w (u1, u2) =

{[
0.54+ 0.46 cos(π u1

U1
)
] [

0.54+ 0.46 cos(π u2
U2

)
]

if |u1| < U1 |u2| < U2

0 otherwise

13
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Figure 4: Spectrum of product of Hamming windows,support = 15×15

Again, Figure 4 is formed by taking the FT of a zero-padded
version of array/image w(n1, n2) given on previous slide.
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Kaiser Window

The 1d Kaiser window function is given by

w(u1) =


Io (β
√
(1−( u1

U1
)2)

Io (β)
if |u1| < U1

0 otherwise

Here I0(.) is the modified Bessel function of the 1st kind of order
zero. The parameter β allows the spectral mainlobe performance
to be traded against spectral sidelobe performance.

Increasing β widens the mainlobe and increases the attenuation of
the sidelobes.
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Figure 5: Spectrum of product of Kaiser windows, β = 3, support =
15×15

We see that the rectangular window has a good mainlobe behaviour
(small width) but a poor sidelobe behaviour (large peaks); the Hamming
window has a moderate mainlobe behaviour but fairly good sidelobe
behaviour; for the Kaiser window the relative behaviour of the main and
side-lobes can be controlled by the parameter β.
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Windowing ideal circularly symmetric filters

Now consider ideal circularly symmetric lowpass filters – use the
bandpass filters we have derived previously with ΩL = 0. We have
seen that the desired impulse response, hd (n1, n2) of such a filter
is given by

h(n1, n2) =
1

2π
√
(n21 + n22)

{
ΩU J1[

√
(n21 + n22)ΩU ]

}

We now apply the separable 2d window functions to this impulse
response – again, use rectangular, Hamming and Kaiser. To find
the new impulse response, we multiply by the window and to find
the new frequency response we convolve Hd with the FT of the
window.

17

Rectangular window

The impulse and frequency responses of an ideal circular low-pass
filter, with a normalised cut-off frequency of Ω = 0.25, designed
using a rectangular window are shown below
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Figure 6: LP filter impulse
response, rectangular window
product, support = 15×15
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Figure 7: LP filter frequency
response, rectangular window
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Hamming window

The impulse and frequency responses of an ideal circular low-pass
filter, with a normalised cut-off frequency of Ω = 0.25, designed
using a Hamming window are shown below
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Figure 8: LP filter impulse
response, Hamming window
product, support = 15×15
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Figure 9: LP filter frequency
response, Hamming window
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Kaiser window

The impulse and frequency responses of an ideal circular low-pass
filter, with a normalised cut-off frequency of Ω = 0.25, designed
using a Kaiser window are shown below
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Figure 10: LP filter impulse
response, Kaiser window
(β = 3), support = 15×15
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Figure 11: LP filter frequency
response, Kaiser (β = 3)
window, support = 15×15
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Rotation of 1-D Windows

A second approach to implementing the window design method is
to obtain a 2-D continuous window function w(u1, u2) by rotating
a 1-D continuous window w1(u).

w(u1, u2) = w1(u)|u=√(u21+u22)

The continuous 2-D window is then sampled to produce a discrete
2-D window w(n1, n2):

w(n1, n2) = w(u1, u2)|u1=n1 ∆1, u2=n2 ∆2

The spectrum Ws(ω1, ω2) of the 2-D discrete window is given by:
(see derivation of 2-D sampling theorem)

21

Ws(ω1, ω2) =
1

∆1∆2

∞

∑
p2=−∞

∞

∑
p1=−∞

W (ω1 − p1Ω1, ω2 − p2Ω2)

where:

Ω1 =
2π

∆1
, Ω2 =

2π

∆2

and W (ω1, ω2) is the Fourier transform of the continuous 2-D
window w(u1, u2). Note that W is in general not equivalent to the
rotated form of the 1d FT.

Note that even if W (ω1, ω2) has circular symmetry the resulting
Ws(ω1, ω2) will not necessarily be symmetric as a result of
possible aliasing.

Following figures show the spectra of a number of window
functions formed by rotating 1-D window functions.
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Spectrum of rotated rectangular window

-0.5

0

0.5

-0.5

0

0.5
0

50

100

150

Spectrum of rotated rectangular window, N= 15*15

Figure 12: Spectrum of rotated rectangular window, support = 15×15
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Spectrum of rotated Hamming window
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Figure 13: Spectrum of rotated Hamming window, support = 15×15
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Spectrum of rotated Kaiser window
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Figure 14: Spectrum of rotated Kaiser window (β = 3), support = 15×15
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Impulse and Frequency response of windowed circular LP
filters

As we did with the separable windows, we can now look at the
impulse and frequency responses of circular low-pass filters, with a
normalised cut-off frequency of Ω = 0.25, designed using the
various rotated windows.

Once again to obtain the impulse response we simply multiply the
ideal impulse response with the window and to obtain the
frequency response, we convolve the ideal frequency response with
the FT of the window. The derived frequency responses for the
three types of windowing functions we are considering here are
shown in the following figures.
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h and H of a windowed LP filter – rectangular window

0

5

10

15

0

5

10

15
-0.05

0

0.05

0.1

0.15

0.2

Rotated rectangular window, N= 15*15

Figure 15: LP filter impulse
response, rotated rectangular
window, support = 15×15
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Figure 16: LP filter frequency
response, rotated rectangular
window, support = 15×15
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h and H of a windowed LP filter – Hamming window
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Figure 17: LP filter impulse
response, rotated Hamming
window, support = 15×15
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Figure 18: LP filter frequency
response, rotated Hamming
window, support = 15×15
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h and H of a windowed LP filter – Kaiser window
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Figure 19: LP filter impulse
response, rotated Kaiser
window, support = 15×15
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1

Introduction to Deconvolution

We are often concerned with estimating an image x from data y
measured with an imperfect instrumentation system. Typically,
blurring is introduced as a result of an imperfect optical system
and noise d as a result of an imperfect imaging device.
The observed image y(u1, u2) may be expressed as:

y(u1, u2) = f [x(u1, u2)] + d(u1, u2)

where f (.) is, in general, a nonlinear function of the original image
x(u1, u2). However we first consider only the case of linear
distortion.

y(u1, u2) = L [x(u1, u2)] + d(u1, u2)

where the linear operator is a 2-dimensional convolution:
2



L [x(u1, u2)] =
∫ ∫

h(v1, v2)x(u1 − v1, u2 − v2)dv1dv2

where h is the impulse response or point spread function.
Assume a discrete space model:

y(n1, n2) = L [x(n1, n2)] + d(n1, n2)

where:

L [x(n1, n2)] =
∞

∑
m2=−∞

∞

∑
m1=−∞

h(m1,m2)x(n1 −m1, n2 −m2)

Consider first the case where there is no noise and the objective is
to recover the image x(n1, n2) from the observations. Assume that
the impulse response of the distorting system is known.

3

Deconvolution of Noiseless Images

Problem: given observations y(n1, n2) and knowledge of the
function h(m1,m2) obtain an estimate of the original image
x(u1, u2) where:

y(n1, n2) = ∑
m1

∑
m2

h(m1,m2)x(n1 −m1, n2 −m2)

x and y are convolved =⇒ take the Fourier transform of each
side of the above to give:

Y (ω1, ω2) = H(ω1, ω2)X (ω1, ω2)

where: H(ω1, ω2) = ∑∞
n2=−∞ ∑∞

n1=−∞ h(n1, n2)e−j(ω1n1+ω2n2)

∴ X (ω1, ω2) =
Y (ω1, ω2)

H(ω1, ω2)

=⇒ x(n1, n2) =
1

(2π)2

∫ π

−π

∫ π

−π
X (ω1, ω2)e

j(ω1n1+ω2n2)dω1dω2

4



Note: If H(ω1, ω2) has zeros, then the inverse filter, 1/H, will
have infinite gain. i.e. if 1/H is very large (or indeed infinite),
small noise in the regions of the frequency plane where these large
values of 1/H occur can be hugely amplified. To counter this we
can threshold the frequency response, leading to the so-called,
pseudo-inverse or generalised inverse filter Hg (ω1, ω2) given by

Hg (ω1, ω2) =

{
1

H(ω1,ω2)
1

|H(ω1,ω2| < γ

0 otherwise
(1)

or

Hg (ω1, ω2) =

{
1

H(ω1,ω2)
1

|H(ω1,ω2| < γ

γ |H(ω1,ω2|
H(ω1,ω2)

otherwise
(2)

Clearly for 1
|H(ω1,ω2| ≥ γ in equation 2, the modulus of the filter is

set as γ, whereas in previous equation it is set as 0.

5

Although the pseudo-inverse filter may perform reasonably well on
noiseless images, the performance is unsatisfactory with even
mildly noisy images due to the still significant noise gain at
frequencies where H(ω1, ω2) is relatively small; =⇒ investigate
the possibility of taking the additive noise into account in a more
formal manner.

Now look at two examples of inverse filtering.

First use the inverse filtering method on an image which has been
convolved with a gaussian (assuming knowledge of the blurring
gaussian).

Then use the same inverse filtering operation when the original
image has been convolved with the same gaussian and then
subjected to additive noise.
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Results of Inverse Filterng

zero padded original image

Figure 1: 192× 192 original image;
central 128× 128 of Lenna padded
with zeros

blurred image

Figure 2: Previous image blurred
with a gaussian

7

Results of Inverse Filtering

Figure 3: Inverse filter applied to
noiseless blurred image

Figure 4: Inverse filter applied to
blurred image plus noise (0.01)
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Results of Inverse Filtering

Figure 5: Inverse filter applied to
blurred image plus noise (0.1)

Figure 6: Inverse filter applied to
blurred image plus noise (0.5)

9

Note: in giving the above examples of the inverse filter in action
we used a zero-padded image. We do this because if we don’t, the
convolution operator (depending on the particular algorithm we are
using) may convolve pixels near the edge of the image with other
parts of the image (via the periodic tiling of the plane).

The easiest way of avoiding this is to put a guard band of zeros
(the width of the guard band will depend upon the width of the
convolving function) around the image.

The whole of the theory of 2d Fourier Transforms requires periodic
boundary conditions (ie repeating the image to form a tiling of the
plane); when we convolve with a blurring function, this ruins the
periodic boundary conditions unless there is an adequate edge
padding of zeros.
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Notation

Mathematical development of optimal image processing algorithms
requires a significant amount of manipulation of convolution
expressions:

y(n1, n2) =
∞

∑
m2=−∞

∞

∑
m1=−∞

h(m1,m2) x(n1 −m1, n2 −m2) (3)

This may be rewritten more compactly using vectors:

n =

[
n1
n2

]
and m =

[
m1

m2

]
The range of the convolution limits can be expressed in terms of
the set Z = {n : −∞ ≤ n ≤ ∞, n = integer} =⇒ the
convolution equation, 3, becomes:

y(n) = ∑
m∈Z2

h(m) x(n−m)

11

We will of course be constantly using Fourier transforms:

H(ω1, ω2) =
∞

∑
n2=−∞

∞

∑
n1=−∞

h(n1, n2) e
−j(ω1n1+ω2n2)

h(n1, n2) =
1

(2π)2

∫ π

−π

∫ π

−π
H(ω1, ω2)e

j(ω1n1+ω2n2) dω1 dω2

which may be expressed in vector notation as:

H(ω) = ∑
n∈Z2

h(n) e−jω
T n

h(n) =
1

(2π)2

∫
ω∈Ω

H(ω) e jω
T n dω

ω =

[
ω1

ω2

]
and Ω = {ω1, ω2 : −π ≤ ω1 ≤ π, −π ≤ ω2 ≤ π}

Note that notation is not limited to 2-D analysis. (Above is
assuming normalised frequencies).
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Some revision

Let us regard our arrays of (possibly complex) numbers x(n1, n2)
(or x(n)) and y(n1, n2) (or y(n)) as random variables. The cross
correlation function of x and y is defined as Rxy where

Rxy (a1, a2; b1, b2) = E [x(a1, a2)y
∗(b1, b2)]

or
Rxy (a, b) = E [x(a)y ∗(b)]

where E [.] is the expectation and ∗ denotes complex conjugate.
The autocorrelation function of x is Rxx where

Rxx (a, b) = E [x(a)x∗(b)]

13

For spatially stationary processes x(n), y(n), the correlation
function is ‘translationally invariant’, i.e.

Rxy (0, n) ≡ Rxy (n) = E [x(k)y ∗(k− n)] ∀k

i.e. the cross-correlation between the origin in the x image and the
point n in the y image is independent of where the origin is taken.
The cross-power spectrum of two jointly stationary processes x(n)
and y(n) is written as Pxy (ω) and is given by the FT of the
cross-correlation function

Pxy (ω) = FT (Rxy (n))

Note here that we could have chosen the following convention for
the cross correlation (denote as R+

xy )

R+
xy (n) ≡ Rxy (−n) = E [x(k)y ∗(k + n)] ∀k

14



Let us look at how the two forms are related.

Rxy (−n) = {E [y(k+n)x∗(k)]}∗ = {E [y(p)x∗(p−n)]}∗ = R∗yx (n)

Thus we see that R+
xy (n) = Rxy (−n) = R∗yx (n). For the

autocorrelation this becomes

Rxx (−n) = R∗xx (n)

Since the power spectrum is the FT of the autocorrelation we see
that

P∗xx (ω) = ∑
p

R∗xx (p)e
jωT p = ∑

p

Rxx (−p)e jω
T p

so that
P∗xx (ω) = ∑

q

Rxx (q)e
−jωT q = Pxx (ω)

which indicates that Pxx (ω) is therefore real.
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The Wiener Filter

Using the vector notation, the image model:

y(n1, n2) =
∞

∑
m2=−∞

∞

∑
m1=−∞

h(m1,m2)x(n1−m1, n2−m2)+d(n1, n2)

may be rewritten as:

y(n) = ∑
m∈Z2

h(m) x(n−m) + d(n)

Assume that an estimate x̂(n) of the image x(n) is to be obtained
by linear spatially-invariant filtering of the observed image y(n).

x̂(n) = ∑
q∈Z2

g(q) y(n− q)

16



It is now required to choose the filter impulse response g(q) such
that the expectation of the squared error is minimised.

Minimise Q = E{[x(n)− x̂(n)]2}

= E


[
x(n)− ∑

q∈Z2

g(q) y(n− q)

]2
Differentiate the objective function with respect to g(p)

∂Q

∂g(p)
= E

2

x(n)− ∑
q∈Z2

g(q) y(n− q)

 [−y(n− p)]

 = 0 ∀ p ∈ Z2

∴ E{x(n) y(n− p)} = ∑
q

g(q)E{y(n− q) y(n− p)} (4)

17

Assuming that the images are spatially stationary (with x and y
real), we can then write:

E{x(n) y(n− p)} = Rxy (p)

If we rewrite y(n− p) as y(n− q + q− p), the expectation in
the RHS of equation 4 becomes

E{y(n− q) y(n− p)} = E{y(n− q) y(n− q + q− p)}

= E{y(k) y(k + q− p)} = Ryy (p− q)

∴ Rxy (p) = ∑
q

g(q)Ryy (p− q) ∀ p ∈ Z2 (5)

18



These are the Normal or Wiener-Hopf equations and can, in
principle, be solved for filter impulse response g(q). Take the FT
of this equation

∑
p∈Z2

Rxy (p)e
−jωT p = ∑

p∈Z2

{
∑
q

g(q)Ryy (p− q)

}
e−jω

T p

= ∑
q

g(q)∑
p

Ryy (p− q) e−jω
T p

Let p− q = k, and write the FTs of Rxy and g(q) as Pxy (ω) and
G (ω) then:

Pxy (ω) = ∑
q
g(q)∑

k

Ryy (k) e
−jωT (q+k) = ∑

q
g(q) e−jω

T q ∑
k

Ryy (k) e
−jωT k

∴ Pxy (ω) = G (ω)Pyy (ω) =⇒ G (ω) =
Pxy (ω)

Pyy (ω)

This is the optimum linear filter for recovering the original image
x(n) from the noisy measurements y(n). Note that we must
estimate Pxy from the data. 19

Uncorrelated observation noise

Consider W-H equations when the observation noise d(n) is
uncorrelated with the image.

Ryy (p) = E{y(n) y(n−p)} where y(n) = ∑
m

h(m) x(n−m)+d(n)

If signal and noise are uncorrelated and noise is zero mean:

Ryy (p) = E

{
∑
m

∑
q
h(m) x(n−m) h(q) x(n− p− q)

}
+E {d(n) d(n− p)}

= ∑
m

∑
q

h(m) h(q)E {x(n−m) x(n− p− q)}+ Rdd (p)

∴ Ryy (p) = ∑
m

∑
q

h(m) h(q)Rxx (p + q−m) + Rdd (p)

as

E {x(n−m)x(n− p− q)} = E {x(n−m)x(n−m− (p + q−m))}
20



Now take the Fourier transform of each side to give:

Pyy (ω) = ∑
p

{
∑
m

∑
q

h(m) h(q)Rxx (p + q−m)

}
e−jω

T p +Pdd (ω)

where Pdd is the FT of the autocorrelation function of the noise.
Interchange order;

Pyy (ω) = ∑
m

∑
q

h(m) h(q) ∑
p

Rxx (p + q−m) e−jω
T p + Pdd (ω)

Let k = (p + q−m), then:

Pyy (ω) = ∑
m

∑
q

h(m) h(q) ∑
k

Rxx (k) e
−jωT (k−q+m) + Pdd (ω)

∴ Pyy (ω) =

{
∑
m

h(m) e−jω
T m

}{
∑
q

h(q) e jω
T q

}{
∑
k

Rxx (k) e
−jωT k

}
+ Pdd (ω)

∴ Pyy (ω) = |H(ω)|2 Pxx (ω) + Pdd (ω) (6)

as h is real.
21

The other term in the Wiener-Hopf equation is:

Rxy (p) = E{x(n) y(n− p)}

= E

{[
∑
m

h(m) x(n− p−m) + d(n)

]
x(n)

}
The image x(n) and the noise d(n) are uncorrelated and the noise
has zero mean (as before):

∴ Rxy (p) = E

{
∑
m

h(m) x(n− p−m) x(n)

}
= ∑

m

h(m)E {x(n) x(n− [p + m])}

= ∑
m

h(m)Rxx (p + m)
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Taking the Fourier transform of each side gives:

Pxy (ω) = ∑
p

{
∑
m

h(m)Rxx (p + m)

}
e−jω

T p = ∑
m

h(m) ∑
p
Rxx (p+m) e−jω

T p

Let p + m = k, then:

= ∑
m

h(m) e jω
T m ∑

k

Rxx (k) e
−jωT k

∴ Pxy (ω) = H∗(ω)Pxx (ω)

Substituting back into the W-H equation gives:

G (ω) =
H∗(ω)Pxx (ω)

|H(ω)|2 Pxx (ω) + Pdd (ω)
(7)

This is the most commonly used form of the Wiener Filter.
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NOTES on the Wiener Filter

1. At frequencies where:

|H(ω)|2 Pxx (ω)� Pdd (ω)

the Wiener filter becomes the inverse filter 1/H(ω).

2. If the noise is large there will be little deconvolution (ie.
inverse filtering)

3. If the blurring function is unity (ie no blurring) then the
Wiener filter simply recovers the image from the noise; the
filter frequency response is then:

G (ω) =
Pxx (ω)

Pxx (ω) + Pdd (ω)

24



NOTES continued

We should also address the question of how one might actually go
about estimating Pxx (the power spectrum of the original image)
and Pdd (the power spectrum of the noise).

1. to estimate Pdd we might choose a section of the image
which is effectively featureless and form its power spectrum –
we are then forming the PS of the noise. Generally this works
well in many cases (note that if we have white noise the
power spectrum, Pdd , is constant).

2. estimating Pxx is clearly harder as we are actually trying to
recover the real image – so what might we do in practice?
One common method is to approximate Pxx with a constant,
K . K can be chosen interactively to produce the empirically
best results.

25

The FIR Wiener Filter

Note, in general, we get a filter with an infinite region of support.
Can derive an FIR approximation but this would not be the
optimum FIR filter.

Repeating derivation of W-H equations shows that they are also
valid for a finite support region RG :

Rxy (p) = ∑
q

g(q)Ryy (p− q) ∀ p, q ∈ RG

Specifically if the region of support is:
RG = {p1, p2; −M ≤ p1 ≤ M, −M ≤ p2 ≤ M} the filter has
(2M + 1)2 taps or impulse response coefficients and W-H
equations are

26



Rxy (p1, p2) =
M

∑
q2=−M

M

∑
q1=−M

g(q1, q2)Ryy (p1 − q1, p2 − q2)

∀ p ∈ −M ≤ p1 ≤ M, −M ≤ p2 ≤ M}

Can express in matrix form and solve for the filter weights
g(q1, q2) if we can estimate Rxy (and perhaps measure Ryy ).
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Results

Blurred image + noise

Figure 7: Blurred image with small
additive noise

Restored image

Figure 8: Image restored by Wiener
filter
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Blurred image + noise

Figure 9: Blurred image with
increased additive noise

Restored image

Figure 10: Image restored by Wiener
filter

29

It is apparent that the Wiener filter only works well when there is a
small amount of noise – if the image is significantly noisy the
method does not provide sufficient regularisation resulting in
artefacts in the restored image.

Note that the above images have been created using the Wiener
filter where Pxx and Pdd were known because we had knowledge of
both our original image and our noise – in cases where we do not
have this knowledge, we must form the Wiener filter using
estimated values of Pxx and Pdd , and the results are generally poor.
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Despite the often poor results of the Wiener filter when used on
images which have significant blurring and noise, it is one of the
basic image processing techniques which has provided a starting
point for many more sophisticated methods.

We showed that the Wiener filter was the optimal filter, why then
is its performance so poor? The answer is that it is optimal over
the space of linear filters, we will show that by extending our space
to non-linear filters, we can often do much better.

316 SAMPLE RECONSTRUCTIONS FROM THE INVENTORS
Original Image Blurred and Noisy Image 

Pixon Result Wiener Result 

Figure 7: Comparison of the performance of the Pixon method to Wiener FilteredFourier Deconvolution for the famous \Lenna" test image. The original image hasbeen blurred with a Gaussian blurring function with an FWHM of 6 pixels beforebeing added with Gaussian noise.
29Figure 11: Page taken from The Pixon Method of Image Reconstruction

R. C. Puetter & A. Yahil, in Astronomical Data Analysis Software and
Systems VIII, D. M. Mehringer, R. L. Plante & D. A. Roberts, eds., ASP
Conference Series, 172, pp. 307-316, (1999).

J. Lasenby (2016)
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1

Spectral Estimation

We note that the Wiener filter relies on the fact that we know or
can accurately estimate the power spectra of the original signal
and the noise, Pxx and Pdd .

A reasonable estimate of the power spectrum of the noise can
often be achieved by isolating a portion of the image that we think
contains only noise (for example where the original signal is
uniform, if such a region exists)

– we can then take the FT of that region (suitably windowed) and
form the power spectrum from |FT |2.

2



Estimating the power spectrum of the signal is not such a simple
matter; one method would be as follows: assume we have
estimated Pdd .

y(n) = Lx(n) + d(n)

then taking FTs gives

Y (ω) = H(ω)X (ω) +D(ω)

where H = FT (L). Thus, if we have an estimate of D, we can
estimate Y −D to be approximately the FT of the signal. Or, if
our blurring function is known we can obtain a better estimate of
X by pseudo-inverse filtering, i.e.

X (ω) =
Y (ω)−D(ω)

Hg (ω)

where Hg is the pseudo-inverse filter formed from H (handout 5).

3

What we would really like is an iterative method whereby we could
make initial guesses/estimates of our signal and noise power
spectra, do the deconvolution and then from the results (looking at
residuals etc.) modify our power spectra estimates.

However, since the Wiener filter is a linear method, it does not
lend itself to such an iterative minimisation

– to do a better job we need to go to non-linear filters. By way of
introduction to one of the main types of non-linear methods, we
now look at deriving the Wiener filter from a Bayesian perspective.

4



Bayesian derivation of Wiener Filter

Now sketch an alternative derivation of the Wiener filter – can then
extend the method to indicate how we might construct non-linear
filters which will do a much better job than the Wiener filter.

Suppose, as before, that our observed image, y , the original image,
x , the linear distortion L, and the noise d , are related by

y(n) = Lx(n) + d(n)

Write this equation in vector form –

y = Lx + d

For simplicity in the derivations we shall assume that E [x] = 0 and
E [d] = 0, i.e. that both the signal and the noise are zero mean.

5

To find an estimate of x, we choose to maximise Pr(x|y), i.e. the
probability of the original image given the observed data. When
dealing with conditional probabilities we use Bayes’ Theorem:

Pr(x|y) = 1

Pr(y)
Pr(y|x)Pr(x)

sometimes also written as Pr(x|y)Pr(y) = Pr(y|x)Pr(x). In
words we write

Posterior probability =
1

evidence
[likelihood][prior probability]

Can regard Pr(y), the probability of the data, simply as a
normalising factor, which therefore implies that we wish to
maximise

Pr(x|y) ∝ Pr(y|x)Pr(x)

6



Assume gaussian noise (although there is no problem in including a
knowledge of the noise – for example, Poisson noise is common in
optical problems – we will here derive our equations for gaussian
noise). Can write the probability of the noise, which is proportional
to the likelihood as

Pr(y|x) ∝ e−
1
2dTN−1d = e−

1
2 (y−Lx)TN−1(y−Lx)

where N = E [ddT ] is the noise covariance matrix. The dTN−1d
term is the vector equivalent of the 1

σ2 term in the 1d gaussian – if

N is diagonal then N−1 will be diagonal with elements 1
σ2
i

.

Usually write

Pr(y|x) ∝ e−
1
2χ2

where χ2 = (y− Lx)TN−1(y− Lx).
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Now have to decide on the assignment of the prior probability
Pr(x) – this probability incorporates any prior knowledge we may
have about the distribution of the data.
Assume an ideal world in which x is a gaussian random variable,
described by a known covariance matrix C = E [xxT ] so that

Pr(x) ∝ e−
1
2xTC−1x

Thus we can now write the posterior probability as

Pr(x|y) ∝ Pr(y|x)Pr(x) ∝ e−
1
2 (χ

2+xTC−1x)

which one must maximise wrt x to obtain the reconstruction.
This is equivalent to minimising F = 1

2 (χ
2 + xTC−1x) .
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In fact, completing the square in x enables us to write the posterior
as

Pr(x|y) ∝ e−
1
2 (x−x̂)TM−1(x−x̂) (1)

where

x̂ = W y = the image reconstruction

W = (C−1 + LTN−1L)−1LTN−1 (2)

this is in fact the Wiener filter matrix! and

M = (C−1 + LTN−1L)−1 (3)

is the reconstruction error matrix E [(x− x̂)(x− x̂)T ].
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Below we verify that the above results are correct by first
substituting for W into equation 1

(x−W y)TM−1(x−W y) = xTM−1x− xTM−1W y− yTWTM−1x+ yTWTM−1W y
(4)

Now show that the terms containing x in the above can be
equated to the terms containing x in F

F = (yT − xTLT )N−1(y− Lx) + xTC−1x

This implies that

xTM−1x = xTLTN−1Lx + xTC−1x

Verifying that
M = (C−1 + LTN−1L)−1 (5)
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Next, equating the terms in xT (..)y gives us

M−1W = LTN−1

and similarly equating the terms in yT (..)x gives

N−1L = W TM−1

These expressions are consistent with equations 2,3 provided
(N−1)T = N−1 and (M−1)T = M−1. It is easy to see that
(N−1)T = N−1 is indeed true from the fact that N = E (ddT ),
and as it is also clear that (C−1)T = C−1 since C = E (xxT ),
equation 5 tells us that (M−1)T = M−1.
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If we write our previous form of the Wiener filter as

G (ω) =
H∗(ω)(Pdd (ω))−1

|H(ω)|2(Pdd (ω))−1 + (Pxx (ω))−1

and compare this to

W = (C−1 + LTN−1L)−1LTN−1

we are able to see the equivalence of G (ω) and W .
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Thus we have recovered the optimal linear method via a Bayesian
analysis whereas previously we had obtained it by minimising
residual variances.

Now note the remarkable feature of this: original problem was

y = Lx + d

In general L will not be invertible. e.g. may be a blurring (beam)
function in which higher spatial frequencies are strongly suppressed.

However, the estimate x̂ = W y can still be computed no matter
how singular L is — only needs LT to be evaluated!

This is an example of Regularization.

Notice how if the C−1 were not present in W we would just have
W = L−1 [since with no C−1 we can write
W = (LTN−1L)−1(LTN−1L)L−1 = L−1]

— we say we have regularized the inverse; effectively we have
added on another term in order to avoid singlularities.
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Maximum Entropy Method (MEM) deconvolution

The Wiener solution is ‘easy’ to calculate and has known
reconstruction errors. However, it is certainly by no means the best
in real problems. It depends on the assumption of gaussianity and
knowledge of the covariance structure a priori.

Since the world this not so simple, we are forced to consider
alternative priors. One such prior which has been widely and
successfully used is the entropy prior.

Usually MEM is applied to positive, additive distibutions (PADS).
Let x be the (true) pixel vector we are trying to estimate. A
consideration of the following general conditions;

• subset independence
• coordinate invariance
• system independence

leads to the following prior.....
14



Pr(x) ∝ eαS

where the cross entropy S of the image is given by

S(x, m) = ∑
i

[
xi −mi − xi ln

(
xi
mi

)]
where m is the measure on an image space (the model) to which
the image x defaults in the absence of data. (Can see global
maximum of S occurs at x = m.)

Must then maximise the posterior distribution with the above
entropic prior for Pr(x).

As this is a complicated non-linear equation, the optimization must
be performed via some sort of iterative technique. The results are
often impressive and the MEM method has been used extensively
in astronomy, medical imaging and general image processing.
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The Pixon Method

The Pixon method is another recently established deconvolution
technique – derived initially to deconvolve astronomical images.

We will not look at this in any detail but will state that it can also
be derived in a Bayesian manner as outlined above using a different
prior. The aim of the pixon method is to first find a distribution of
pixons across the image – a pixon is a box of varying size, the
smallest being a single pixel. We will have large pixons where the
image has little detail and small pixons where there is fine detail.

These pixons are then our basis elements of our image and we set
up and minimise our posterior distribution in terms of them. The
results of the Pixon method have been very impressive (but note
that when the figures below compare with MEM it is generally a
poor version of MEM).

16



Figure 1: A comparison of three deconvolution techniques on simulated
data

Figure taken from
http://casswww.ucsd.edu/personal/puetter/pixonpage.html.

17

Figure 2: The Pixon method deconvolution of galaxy data

Figure taken from
http://casswww.ucsd.edu/personal/puetter/pixonpage.html.
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Figure 3: The Pixon method deconvolution of x-ray data

Figure taken from
http://casswww.ucsd.edu/personal/puetter/pixonpage.html.
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Figures 1,2,3 show various applications of the Pixon method on
real and simulated images. Figure 1 is particularly interesting as it
shows that the pixon reconstruction not only produces a good
likeness of the original, but also produces residuals which appear to
have the same statistics as the added noise.

Looking at the statistics of the residuals is a very good way of
determining how well the deconvolution technique is performing
(although in practice we may not of course know the statistics of
the noise). We would like to see as little structure in the residuals
as possible.

20
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The hardest deconvolution is blind deconvolution when we do not
know the point spread function.

This can be attacked in a number of ways. In MEM and Pixon
techniques we can assume a form for the PSF but give it a variable
width (e.g. gaussian with a variance which becomes a parameter
we search over).

Another ‘recent’ development in blind deconvolution is the
ensemble learning method – this too adopts a Bayesian approach
and can produce impressive results (if interested see Miskin and
Mackay, Ensemble learning for blind image separation and
deconvolution. Advances in independent component analysis, (Ed
Girolami), Springer Verlag, July 2000).
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Compressed Sensing – in a compressed form

A currently very fashionable area of Signal Processing is known as
compressed sensing.

Look briefly at what this is:

• Suppose we have underlying real data x̄ and that x̄ is sparse in
some basis

• Let x be the sparse representation in some basis Ψ, x = Ψx̄.

• Take another random or incoherent basis Φ, and form
y = Φx.

• Task is to reconstruct the signal x from these
random/incoherent projections

22



Compressed Sensing, continued

• We look for the sparsest solution – the x for the smallest l0
norm. But this is hard.

• Some clever maths then tells us we can recover the signal via
minimising the l1 norm

• ...and if we do this, and if some conditions are satisfied, we
recover the original signal with high probability.

• So, this seems as though we can redefine our sampling criteria
if we know something about our signal.

• But very little to date which is impressive in the deconvolution
of images field using compressed sensing.
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Contrast

Consider the illustrations in the figure.
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Figure 4: Illustration of contrast: inner squares have equal
luminances/intensities but do not appear equally bright
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Now consider the figure below:

0 100 200 300

0

50

100

150

200

250

300
0 100 200 300

0

50

100

150

200

250

300

Figure 5: Illustration of contrast: inner squares have unequal
luminances/intensities but appear equally bright
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Weber’s Law states that for the intensity of an object, f0 to be
such that it changes from being indiscernible from the background
to just noticeably different to the background, which has intensity
fb, the ratio of the difference to the object’s intensity must be of a
particular constant value

|fb − f0|
fo

= constant

If f0 = f and fb = f + ∆f where ∆f is the small change to
produce the noticeable difference in intensity, then

∆f

f
' d(log f ) = ∆c

since d(log f )
df = 1

f . ∆c is a constant (empirically taking value of
0.02).
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Previous equation =⇒ equal increments in the log of the
intensity should be perceived as equal increments in contrast
(∆(log f ) ∝ ∆c).

Thus dc
d log f = k1, k1 constant, so that

c = k1 log f + k2

This is the logarithmic law of intensity to contrast. The other
widely used law is a power law, where the relationship between the
contrast and the intensity can be written as

c = αnf
1
n or f ∝ cn

where n is often taken to be 3.
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Histogram Equalisation

In some cases images may exhibit poor use of the available grey
levels; may result from poor illumination of the scene or
non-linearity in the imaging system.

To examine this, plot a histogram of frequency of occurrence of
grey level against grey level as shown below.

white black

Grey level

Number of
occurences

Here most of the image pixels are concentrated around the
mid-range grey levels and little use is made of the extreme black
and white levels. 28



An intuitively appealing idea would be to apply a transformation or
mapping to the image pixels such that the probability of
occurrence of the various grey levels should be constant

i.e. all grey levels are equiprobable, which would correspond to a
constant amplitude histogram.

Assume that the image pixel levels are mapped by the function

y = g(x)

where x is an image pixel level and y is the transformed level.

Let the probability density of the pixels in the image be pX (x) and
the probability density of the output image be pY (y). (X ,Y ,
random variables).

29

Note that the probability of X lying between x and x + δx , must
be the same as the probability of g(X ) = Y lying between y and
y + δy ,

X
x x+dx

p (x)X

 y  =g(x)

y
y+dy

Figure 6: Sketch showing the equivalence of probabilities over intervals in
the original and transformed frames.
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Pr {x ≤ X < x + dx} = Pr {y ≤ Y < y + dy}

pY (y)dy = pX (x)dx =⇒ pY (y) =
pX (x)

dy
dx

It is required that the output image probability density pY (y) be
constant over the grey level range O to L.

∴ pY (y) =
1

L

dy

dx
= LpX (x) =⇒ y = g(x) =

∫ x

0
L pX (u)du

In practice the input image probability density is not known and is
approximated by the image histogram and the integral is
approximated by a sum.

31

Let the input image by quantised into NL levels xi spaced by ∆xi
then NL∆xi = L and

yk =
k

∑
i=1

LpX (xi )∆xi for k = 1, ..,NL

Now
pX (xi )∆xi = Pr {xi ≤ X ≤ xi + ∆xi}

so if the histogram of the image has Ni occurrences in the bin xi
to xi + ∆xi then

pX (xi )∆xi = Pr {xi ≤ X ≤ xi + ∆xi} =
Ni

N ×M

where N and M are the dimensions of the image in pixels. Thus
the mapping rule becomes:

yk =
k

∑
i=1

L
Ni

NM
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Note that if k = NL, yNL
= L as required. This may be considered

as a look-up table –i.e. the above values of yk are formed and
stored so that we can scan our image x and when the value of
pixel i in x falls within the kth greylevel bin, we map it to yk .

Practical Notes

1. Matlab has a function hist which will perform the histogram
operation and a function cumsum which forms the cumulative
sum required in evaluating the mapping.

2. If relatively few bins are used for the histogram then the
look-up table may require interpolation to give a smoother
function.
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Figure 7: Image with poor distribution of brightness levels
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In figure 7 we have the Lenna image with a poor distribution of
brightness levels. This image has been formed by contrast mapping
according to the following formula:

y = f (x) = k + sign(x − k)|x − k |
[
|x − k |

a

]p
where k = 1

2 (xmin + xmax ) is the average value of the image
intensity, a = 1

2 (xmax − xmin) and sign is +1, 0,−1 if (x − k) is
positive, zero or negative.
The exponent p was taken as 2. Note that this mapping preserves
both the maximum, minimum and average values of the image.
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Figure below shows the previous figure after histogram equalisation
using 64 greylevels. We can see that the greylevels have been
’evened out’ so that the image is now more aesthetically pleasing.

Figure 8: Contrast mapped Lenna image with Histogram Equalisation
36



Example: Taken from Part IIB Tripos 2006

2. (a) Explain, qualitatively, the concept of histogram equalisation in
images. In what situations would histogram equalisation be useful? [10%]

Assuming that we have a range of greyscale values from 1 to 8, consider
the 4× 4 image given in figure 6

1 1 2 2

3 2 4 3

2 4 3 2

2 3 1 1

Sketch and comment on the histogram of this image.
Perform histogram equalisation on this image by finding the set of
transformed values {yk}, k = 1, .., 8 onto which the original greylevels
are mapped.

Sketch the new equalised image and its histogram, commenting on how

well the process has worked. [40%]
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Median Filtering
Median filtering is essentially a method for detecting and replacing
pixels which are “unlikely” in some sense.

Each pixel in the image is replaced by the median value of the
pixels in a window containing the pixel under consideration. If the
input image is x(n1, n2) then the median filtered image y(n1, n2) is
given by:

y(n1, n2) = median
m1,m2∈Rw

{x(n1 −m1, n2 −m2)}

where Rw is the support region for the median filter.
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The window is scanned over the whole image and the pixel
x(n1, n2) at the centre of the window is replaced by the median
value of the pixels contained in the window surrounding pixel
x(n1, n2).
To form the median, order window pixels in ascending (or
descending) brightness and choose centre value.
e.g. if the pixel values were as shown below, then the pixel at the
centre of the window, value 7, would be replaced with a level of 3
which is the median.
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Figure 9: Image with binary valued impulsive noise

Note that this type of degradation can be performed by the Matlab
command J = imnoise(I,‘salt & pepper’, D), where binary valued
noise is added to image I at a noise density of D to form new image J.
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Figure 10: Image after median filtering with 3× 3 window

Figure 10 shows the previous image after application of a median filter

with 3× 3 window. Note that the impulsive noise has disappeared but

that there is a loss of detail due to the smoothing effects of the filter.
41

The 2d z-transform

We have discussed the 2d Fourier transform in some detail.
However, we should note that the FT converges uniformly only for
stable sequences. As an illustration, let us look at the 1d unit step:
h(t) = 1 if t ≥ 0, h(t) = 0 if t < 0.

H(ω) =
∫ +∞

−∞
h(t)e−jωtdt =

∫ ∞

0
e−jωtdt

which does not converge. Thus the spectrum of the step function
cannot rigorously be expressed as a FT.
The z-transform converges for a much wider class of signals – it is
also very useful (as you will have seen in the 3rd year courses) in
studying difference equations and stability.
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The 2d z-transform of an image or 2d function x(u1, u2) is denoted
by X (z1, z2) and defined as a straightforward extension of the 1d
z-transform as

X (z1, z2) =
+∞

∑
n1=−∞

+∞

∑
n2=−∞

x(n1, n2)z1
−n1z2

−n2

where z1 and z2 are complex variables. The space of (z1, z2) is
therefore 4-dimensional. It is easy to see that if we restrict zi to lie
on the unit circle, i.e. zi = ejωi , then the z-transform reduces to
the Fourier transform:

X (z1, z2)|z1=ejω1 ,z2=ejω2 =
+∞

∑
n1=−∞

+∞

∑
n2=−∞

x(n1, n2)e
−jn1ω1e−jn2ω2 = FT (ω1, ω2)

the z-transform is therefore a generalisation of the Fourier
transform. The 2d surface in the 4d space on which the FT lies
(zi = ejωi ) is called the unit surface.
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An important concept when looking at z-transforms is that of the
region of convergence or RoC.
Consider evaluating X (z1, z2) along zi = rie

jωi , where ri , ωi are
radius and argument in the zi planes. So, we therefore have

X (z1, z2)|zi=rie
jωi = ∑

n1
∑
n2

x(n1, n2)r
−n1
1 r−n22 e−jn1ωi e−jn2ωi

which we recognise as the FT of x(n1, n2)r
−n1
1 r−n22 .

Recall that uniform convergence of our FT, FT (ω1, ω2), requires
the absolute summability of x(n1, n2), i.e.

∑
n1

∑
n2

|x(n1, n2)| < ∞
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An absolutely summable sequence is a stable sequence: stable
implies; bounded input =⇒ bounded output.
Similarly, uniform convergence of the z-transform requires the
absolute summability of x(n1, n2)r

−n1
1 r−n22 , i.e.

∑
n1

∑
n2

|x(n1, n2)|r−n11 r−n22 < ∞

absolute summability will therefore depend upon the values of r1
and r2.
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One of the motivations for studying the z-transform is that it is a
useful tool for the investigation of discrete-time, sampled data
systems. In particular, it easily handles up and down sampling. To
illustrate this look at the 1d z-transform of a signal x(n);

X (z) =
+∞

∑
n=−∞

x(n)z−n

Since X (z
1
2 ) = ∑+∞

n=−∞ x(n)z−
n
2 and

X (−z 1
2 ) = ∑+∞

n=−∞ x(n)(−z)− n
2 , then we can see that

1

2

(
X (z

1
2 ) + X (−z 1

2 )
)

contains only the even terms, so that

1

2

(
X (z

1
2 ) + X (−z 1

2 )
)
=

+∞

∑
n=−∞

x(2n)z−n

which is the z-transform of the downsampled signal.
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Similarly,

X (z2) = ∑
n

x(n)z−2n ∑
n′ even

x(n′/2)z−n
′
=

+∞

∑
n=−∞

xup(n)z−2n

where

xup(n) =

{
x(n/2) if n = 0, 2, 4, ...

0 otherwise

X (z2) is therefore the z-transform of the upsampled signal. Thus
we are able to express a series of upsampling and downsampling
operations very easily in the z-domain.
Often 2d z-transforms on an image can be brought about by a
series of 1d z-transforms. The ability of the z-transform to easily
encode up- and down-sampling means that it is useful in the
analysis of systems used for hierarchical decompositions of images
for use in image coding and analysis.

J. Lasenby (2016)
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