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1 Motivating Example

At a casino a fair die is used but occasionally switch to a

biased die

The fair die has prob. 1/6 for each number turning up
but the biased die has

(outcome,prob)={(1,0.1),(2,0.1),(3,0.1),(4,0.1),(5,0.1),(6,0.5)}

After each roll the next die to be used is selected with
probabilities:

Prob(next=fair|current=fair)=0.95,
Prob(next=biased|current=fair)=0.05,
Prob(next=fair|current=biased)=0.1,
Prob(next=biased|current=biased)=0.9,



Here are example outcomes of 20 throws of the fair die
15555321342421355115

and the unfair die
606446266665666632666

Problem: given the outcomes from throws 1 to 1', how
do we evaluate the probability of cheating?



2 Definition of a Hidden Markov
Model

1. Set of states: S ={1,2,...,n}
2. Set of observations: O = {1,2,...,m}

3. State transition probability matrix P with
[P]; j = p; j = Pr(next state j| current state 1)

4. Observation probability matrix () with
[Qli.; = i ; = Pr(of getting obs. j in state 7)

5. Initial state distribution at time O:
mo = (mo(1), m0(2), - - ., mo(n))

The HMM is now completely specified given ingredients
1tob

Main points: The hidden state process {3715}%2%1 is a
Markov chain. We don’t observe the realization of the
hidden state process directly but do so via an observation

process {yt}iilT



We would like to perform the following tasks ...

Filtering: compute 7¢(x+) = Pr(x¢|y1.+) at time ¢ recur-
sively where y1.; denotes the set of observations {y1 y2,...,y+}

Smoothing: given {y1 y2,...,yr} compute Pr(x¢|y;.7)
forall t = 0,1,...,7. This is solved by the forward-

backward algorithm

Maximum a posteriori (MAP) estimate

2. = arg max Pr(z. .
zo. = arg max Pr(zo.7[y1.7)

This is solved by the Viterbi algorithm



3 The Law of the HMM

The probability of getting hidden states xg.7 and observ-
INg Y1.7 1S

Pr(zo.7 y1.7)

= 7TO($O)pr’o,$1qw1,ylpwl,flfzqwz,yz © Pxp_q,xpqrpyr

We write this expression using the fact that the hidden
state process is Markov chain

Pr(a:0:T) — 7TO($O)POUO,$1P$1,$2 " Prp_q,xp

and the observation probability Pr(yq.7|xg-7) factors as



4 Filtering

To solve filtering problem, let (i) = Pr(z¢ = i|y1.¢)-
There are two main steps. The first is the prediction step

Prediction: Pr(zy11|y1:¢) = D Day,zpsymt(wt)
T

The second step is the update step

driy1,Yyt41 Pr(zii1ly1:t)
Z$t+1 driq 1,941 Pr(ajt—|—1|y1:t)

We can combine both steps and write it in matrix form.
Regard 7; as the vector [m4(1), 7(2), ..., m(n)]" and
let B(y¢11) be the diagonal matrix

Update: 7Tt—|—1(33t—|—1) =

91,9141 0 T 0
Blu)=| | P .
0 . 0 Gnypr
then
T m PB(yi41)

TT —
T R PB(y)1
where 1 =[1,1,...,1]T



5 Smoothing

To solve the smoothing problem, we need the following

result
Pr(yi41,Yei2,-- > yrlTt)
n
= Z Pr(yt42, Yt+3,- - - ayT|$t+1)qwt+1>yt+1pwt,wt+1
Ti41=1

We derive this result as follows:

Pr(yer1rlze) = > Pr(vert.r, Ter1lze)
Tt41

— Z Pr(yt—i—Z:Ta |yt+1,$t+1,$t2
e Pr(?Jt+2TT|£t—|—1)
X Pr(yip1leiyy, oe)Przeg1|ee)
9oy 11 Yt 41 Paypy




We call Bt(ajt) = Pr(yH_l, Yt+25 - - - ,yT|CEt) the back-
ward recursion

It is computed starting at T' — 1 in the following order

Br_1,B1—2,-..,80

It admits a recursion similar to the filter 7+ and can be
expressed as

Bt = PB(yi+1)Bi+1
with 87 = [1,...,1]T (initialized to the vector of ones)

Once we have computed 3,

mi(xt) Be(Tt)

) B

Pr(zi|y1.7) =



Additional Reading:
Rabiner, L.W., “A tutorial on hidden Markov models and

selected applications in speech recognition,” Proceedings
of the IEEE, vol. 77, no. 2, 1989. (availabe on course
website)
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