4F7 Adaptive Filters (and Spectrum Estimation)

Estimation for Hidden Markov Models

Sumeetpal Singh

Engineering Department

Email: sss40@eng.cam.ac.uk

Course website:

www-sigproc.eng.cam.ac.uk/~sss40/teaching.html

1 Motivating Example

At a casino a fair die is used but occasionally switch to a biased die

The fair die has prob. 1/6 for each number turning up but the biased die has

$$(outcome, prob) = \{(1,0.1), (2,0.1), (3,0.1), (4,0.1), (5,0.1), (6,0.5)\}$$

After each roll the next die to be used is selected with probabilities:

Prob(next=fair|current=fair)=0.95,

Prob(next=biased|current=fair)=0.05,

Prob(next=fair|current=biased)=0.1,

Prob(next=biased|current=biased)=0.9,

Here are example outcomes of 20 throws of the fair die 1 5 5 5 5 3 2 1 3 4 2 4 2 1 3 5 5 1 1 5 and the unfair die 6 6 4 4 6 2 6 6 6 6 5 6 6 6 6 3 2 6 6 6

Problem: given the outcomes from throws 1 to T, how do we evaluate the probability of cheating?

2 Definition of a Hidden Markov Model

- 1. Set of states: $S = \{1, 2, ..., n\}$
- 2. Set of observations: $O = \{1, 2, \dots, m\}$
- 3. State transition probability matrix P with $[P]_{i,j} = p_{i,j} = \Pr(\text{next state } j | \text{current state } i)$
- 4. Observation probability matrix Q with $[Q]_{i,j} = q_{i,j} = \Pr(\text{of getting obs. } j \text{ in state } i)$
- 5. Initial state distribution at time 0: $\pi_0 = (\pi_0(1), \pi_0(2), \dots, \pi_0(n))$

The HMM is now completely specified given ingredients 1 to 5

Main points: The hidden state process $\{x_t\}_{t=0}^{t=T}$ is a Markov chain. We don't observe the realization of the hidden state process directly but do so via an observation process $\{y_t\}_{t=1}^{t=T}$

We would like to perform the following tasks ...

Filtering: compute $\pi_t(x_t) = \Pr(x_t|y_{1:t})$ at time t recursively where $y_{1:t}$ denotes the set of observations $\{y_1, y_2, \dots, y_t\}$

Smoothing: given $\{y_1, y_2, \dots, y_T\}$ compute $\Pr(x_t|y_{1:T})$ for all $t=0,1,\dots,T$. This is solved by the forward-backward algorithm

Maximum a posteriori (MAP) estimate

$$x_{0:T}^* = \arg\max_{x_{0:T}} \Pr(x_{0:T}|y_{1:T})$$

This is solved by the Viterbi algorithm

3 The Law of the HMM

The probability of getting hidden states $x_{0:T}$ and observing $y_{1:T}$ is

$$\Pr(x_{0:T,y_{1:T}}) = \pi_0(x_0)p_{x_0,x_1}q_{x_1,y_1}p_{x_1,x_2}q_{x_2,y_2}\cdots p_{x_{T-1},x_T}q_{x_T,y_T}$$

We write this expression using the fact that the hidden state process is Markov chain

$$Pr(x_{0:T}) = \pi_0(x_0) p_{x_0, x_1} p_{x_1, x_2} \cdots p_{x_{T-1}, x_T}$$

and the observation probability $\Pr(y_{1:T}|x_{0:T})$ factors as

$$\prod_{i=1}^T \Pr(y_i|x_i) = \prod_{i=1}^T q_{x_i,y_i}$$

4 Filtering

To solve filtering problem, let $\pi_t(i) = \Pr(x_t = i|y_{1:t})$. There are two main steps. The first is the *prediction* step

Prediction:
$$Pr(x_{t+1}|y_{1:t}) = \sum_{x_t} p_{x_t, x_{t+1}} \pi_t(x_t)$$

The second step is the update step

Update:
$$\pi_{t+1}(x_{t+1}) = \frac{q_{x_{t+1},y_{t+1}} \Pr(x_{t+1}|y_{1:t})}{\sum_{x_{t+1}} q_{x_{t+1},y_{t+1}} \Pr(x_{t+1}|y_{1:t})}$$

We can combine both steps and write it in matrix form. Regard π_t as the vector $[\pi_t(1), \pi_t(2), \dots, \pi_t(n)]^\mathsf{T}$ and let $B(y_{t+1})$ be the diagonal matrix

$$B(y_{t+1}) = \begin{bmatrix} q_{1,y_{t+1}} & 0 & \cdots & 0 \\ 0 & q_{2,y_{t+1}} & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & q_{n,y_{t+1}} \end{bmatrix}$$

then

$$\pi_{t+1}^{\mathsf{T}} = \frac{\pi_t^{\mathsf{T}} PB(y_{t+1})}{\pi_t^{\mathsf{T}} PB(y_{t+1}) \mathbf{1}}$$

where $\mathbf{1} = [1, 1, \dots, 1]^\mathsf{T}$

5 Smoothing

To solve the smoothing problem, we need the following result

$$\Pr(y_{t+1}, y_{t+2}, \dots, y_T | x_t)$$

$$= \sum_{x_{t+1}=1}^{n} \Pr(y_{t+2}, y_{t+3}, \dots, y_T | x_{t+1}) q_{x_{t+1}, y_{t+1}} p_{x_t, x_{t+1}}$$

We derive this result as follows:

$$\Pr(y_{t+1:T}|x_t) = \sum_{x_{t+1}} \Pr(y_{t+1:T}, x_{t+1}|x_t)$$

$$= \sum_{x_{t+1}} \underbrace{\Pr(y_{t+2:T}, |y_{t+1}, x_{t+1}, x_t)}_{\Pr(y_{t+2:T}|x_{t+1})}$$

$$\times \underbrace{\Pr(y_{t+1}|x_{t+1}, x_t) \Pr(x_{t+1}|x_t)}_{q_{x_{t+1}, y_{t+1}}} \underbrace{\Pr(x_{t+1}|x_t)}_{p_{x_t, x_{t+1}}}$$

We call $\beta_t(x_t) = \Pr(y_{t+1}, y_{t+2}, \dots, y_T | x_t)$ the backward recursion

It is computed starting at T-1 in the following order $\beta_{T-1}, \beta_{T-2}, \dots, \beta_0$

It admits a recursion similar to the filter π_t and can be expressed as

$$\beta_t = PB(y_{t+1})\beta_{t+1}$$

with $\beta_T = [1, \dots, 1]^\mathsf{T}$ (initialized to the vector of ones)

Once we have computed β_t ,

$$\Pr(x_t|y_{1:T}) = \frac{\pi_t(x_t)\beta_t(x_t)}{\pi_t^\mathsf{T}\beta_t}$$

Additional Reading:

Rabiner, L.W., "A tutorial on hidden Markov models and selected applications in speech recognition," *Proceedings of the IEEE*, vol. 77, no. 2, 1989. (availabe on course website)