4F5: Advanced Communications and Coding Handout 1: Introduction, Entropy, Typicality, AEP

Ramji Venkataramanan

Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk

Michaelmas Term 2015

Course Information

- **16** Lectures in three parts:
 - Information Theory (5L, Ramji)
 - Coding (6L, Jossy Sayir)
 - Modulation and Wireless Communication (5L, Ramji)
- Main pre-requisite: good background in probability
 - 1B Paper 7, 3F1 highly recommended
 - 3F4 useful, but not required

Handouts, examples sheets, announcements on Moodle https://www.vle.cam.ac.uk

Drop-in 'supervision' hours (Ramji): Tuesdays 2:00-3:30pm in BE3-12: e-mail me if you cannot make these times

Questions and active participation in lectures encouraged!

Useful References

T. M. Cover and J. A. Thomas,
Wiley Series in Telecommunications, 2nd Edition, 2006.
D. J. C. MacKay,
Information theory, inference, and learning algorithms, Cambridge University Press, 2003. (free online version)
R. G. Gallager,
Principles of Digital Communications, Cambridge University Press, 2008.
T. Richardson, R. Urbanke
Modern Coding Theory,
Cambridge University Press, 2008. (free online version)
D. Tse and P. Viswanath,
Fundamentals of Wireless Communication,
Cambridge University Press, 2005. (free online version)

An End-to-End Communication System

Two Fundamental Limits

Claude Shannon (1948: A Mathematical Theory of Communication) Posed and answered two fundamental questions:

- Given a source of data, how much can compress it?
- Given a channel, at what rate can you transmit data?

How do you *model* sources and channels? Using probability distributions.

Probability Review

A random variable (rv) X:

- Is a function that maps outcome of experiment to value in set *X*. This definition is not completely rigorous, but suffices.
- Can be discrete (e.g. $\mathcal{X} = \{0,1\}$) or continuous (e.g. $\mathcal{X} = \mathbb{R}$)

Discrete Random Variables

- Characterised by a probability mass function (pmf): $P_X(x) = Pr(X = x)$. $x \in \mathcal{X}$ is a *realisation* of the rv X
- Cumulative distribution function (cdf) : $F_X(a) = Pr(X \le a) = \sum_{x \le a} P_X(x)$
- Expected value: $\mathbb{E}[X] = \sum_{a} a P_X(a)$
- A function g(X) of an rv X is also an rv
- We will often take expectations of functions of rvs, e.g. $\mathbb{E}[g(X)] = \sum_{a} g(a) P_X(a)$

We sometimes drop the subscript and write P(x) — need to be careful!

Jointly distributed discrete rvs X, Y:

- Joint pmf $P_{XY}(x, y), x \in \mathcal{X}, y \in \mathcal{Y}$
- Conditional distribution of Y given X:

$$P_{Y|X}(y|x) = rac{P_{XY}(x,y)}{P_X(x)}$$
 for x such that $P_X(x) > 0$.

Two key properties: For rvs X, Y, Z:
Product rule:

$$P_{XYZ} = P_X P_{Y|X} P_{Z|YX}$$

= $P_Y P_{X|Y} P_{Z|XY}$
= $P_Z P_{X|Z} P_{Y|XZ}$ etc.

Sum rule (marginalisation):

$$P_{XY}(x,y) = \sum_{z} P_{XYZ}(x,y,z)$$
$$P_X(x) = \sum_{y,z} P_{XYZ}(x,y,z) = \sum_{y} P_{XY}(x,y) \quad \text{etc.}$$

7	/	23
	/	

Continuous random variables X, Y:

• Joint *density* function $f_{XY}(x, y), x \in \mathbb{R}, y \in \mathbb{R}$

•
$$Pr(a \le X \le b, c \le Y \le d) = \int_{x=a}^{b} \int_{y=c}^{d} f_{XY}(x, y) dx dy$$

- Important example: (X, Y) jointly Gaussian rvs.
 In this case, f_{XY} is fully specified by the mean vector <u>μ</u> and covariance matrix Σ
- Conditional density, product and sum rule analogous to discrete case, with density replacing the pmf and integrals instead of sums

Independence

Discrete random variables X_1, X_2, \ldots, X_n are statistically *independent* if

$$P_{X_1...X_n}(x_1,...,x_n) = P_{X_1}(x_1) P_{X_2}(x_2) \dots P_{X_n}(x_n) \quad \forall (x_1,...,x_n).$$

Recall the product rule: we can *always* write

$$P_{X_1...X_n}(x_1,...,x_n) = P_{X_1}(x_1) P_{X_2|X_1}(x_2|x_1) \dots P_{X_n|X_{n-1}...X_1}(x_n|x_{n-1},...,x_1)$$

Thus when X_1, \ldots, X_n are independent, we have

$$P_{X_i|\{X_j\}_{j\neq i}} = P_{X_i}$$

We will often consider independent and *identically distributed* (i.i.d.) random variables, i.e., $P_{X_1} = P_{X_2} = \ldots = P_{X_n} = P$

Review your notes from 1B Paper 7 and 3F1!

9 / 23

Weak Law of Large Numbers (WLLN)

Roughly: "Empirical average converges to the mean"

Formal statement Let $X_1, X_2, ...$ be a sequence of i.i.d. random variables with finite mean μ . Let $S_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then, for any $\epsilon > 0$ $\lim_{n \to \infty} Pr(|S_n - \mu| < \epsilon) = 1.$

Much of information theory is a (very clever) application of WLLN!

Entropy

The entropy of a discrete random variable X with pmf P is

$$H(X) = \sum_{x} P(x) \log \frac{1}{P(x)}$$
 bits

- "log" in this course will mean log₂
- For x such that P(x) = 0, " $0 \log \frac{\overline{1}}{0}$ " is the limiting value 0
- Can be written as $\mathbb{E}[\log \frac{1}{P(X)}]$
- H(X) is the **uncertainty** associated with the rv X.

Example

 Let rv X represent the event of England winning the World Cup. Let

X = 1 with probability 0.2, and X = 0 with probability 0.8

- 2 Let the rv Y represent the event of rain tomorrow.
 - Y = 1 with probability 0.4, and Y = 0 with probability 0.6

Which event has greater entropy?

11 / 23

Binary Entropy Function

Bernoulli RVs:

X is called a Bernoulli(p) random variable if takes value 1 with probability p and 0 with probability 1 - p. Its entropy is

Exercise

Suppose that we have a horse race with 4 horses. Assume that the probabilities of winning for the 4 horses are $(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8})$. What is the entropy of the race? Answer: $\frac{7}{4}$ bits

Properties of Entropy

For a discrete random variable X taking values in \mathcal{X} :

- $H(X) \ge 0$ (because $\frac{1}{P(x)} \ge 1$ implies $\log \frac{1}{P(x)} \ge 0$)
- 2 If we denote the alphabet size by $|\mathcal{X}|$, then $H(X) \leq \log |\mathcal{X}|$ *Proof*: Use the inequality $\ln x \leq (x - 1)$ for $x \geq 0$. Also note that $\log x = \frac{\ln x}{\ln 2}$. (In 3F1 examples paper)
- Solution Among all random variables taking values in \mathcal{X} , the equiprobable distribution $(\frac{1}{|\mathcal{X}|}, \ldots, \frac{1}{|\mathcal{X}|})$ has the maximum entropy, equal to $\log |\mathcal{X}|$.

Joint and Conditional Entropy

The *joint* entropy of discrete rvs X, Y with joint pmf P_{XY} is

$$H(X,Y) = \sum_{x,y} P_{XY}(x,y) \log \frac{1}{P_{XY}(x,y)}$$

The conditional entropy of Y given X is

$$H(Y|X) = \sum_{x,y} P_{XY}(x,y) \log \frac{1}{P_{Y|X}(y|x)}$$

• H(Y|X) is the *average* uncertainty in Y given X:

$$H(Y|X) = \sum_{x} P_X(x) \underbrace{\sum_{y} P_{Y|X}(y|x) \log \frac{1}{P_{Y|X}(y|x)}}_{H(Y|X=x)}$$

• H(X, Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)(verify using product and sum rule of probability)

Example

Let X be the event that tomorrow is cloudy; Y be the event that it will rain tomorrow. Joint pmf P_{XY} :

	Rain	No Rain
Cloudy	3/8	3/8
Not cloudy	1/16	3/16

$$H(X, Y) = \frac{3}{8} \log \frac{8}{3} + \frac{3}{8} \log \frac{8}{3} + \frac{1}{16} \log 16 + \frac{3}{16} \log \frac{16}{3}$$

= 1.764 bits

 $P(X = \text{cloudy}) = \frac{3}{8} + \frac{3}{8} = \frac{3}{4}, P(X = \text{not cloudy}) = \frac{1}{4}$ H(X) = 0.811 bits H(Y|X) = H(X, Y) - H(X) = 0.953 bits

Exercise: Compute H(Y|X) directly; Compute H(Y), H(X|Y)

15 / 23

Joint Entropy of Multiple RVs

The *joint* entropy of X_1, \ldots, X_n with joint pmf $P_{X_1...X_n}$ is

$$H(X_1, X_2, ..., X_n) = \sum_{x_1, ..., x_n} P_{X_1...X_n}(x_1, ..., x_n) \log \frac{1}{P_{X_1...X_n}(x_1, ..., x_n)}$$

Chain Rule of Joint Entropy:

The joint entropy can be decomposed as

$$H(X_1, X_2..., X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, ..., X_1)$$

where the conditional entropy

$$H(X_i|X_{i-1},\ldots,X_1) = \sum_{x_1,\ldots,x_i} P_{X_1,\ldots,X_i}(x_1,\ldots,x_i) \log \frac{1}{P_{X_i|X_1,\ldots,X_{i-1}}(x_i|x_1,\ldots,x_{i-1})}$$

(The chain rule is a generalisation of H(X, Y) = H(X) + H(Y|X).)

Proof of Chain Rule

Recall that

$$P(x_1,...,x_n) = P(x_1)P(x_2|x_1)...P(x_n|x_{n-1},...,x_1) = \prod_{i=1}^n P(x_i|x_{i-1},...,x_1)$$

(For brevity, we drop the subscripts on $P_{X_1...X_n}$)

$$H(X_1, X_2, ..., X_n) = -\sum_{x_1, ..., x_n} P(x_1, ..., x_n) \log P(x_1, ..., x_n)$$

= $-\sum_{x_1, ..., x_n} P(x_1, ..., x_n) \log \prod_{i=1}^n P(x_i | x_{i-1}, ..., x_1)$
= $-\sum_{x_1, ..., x_n} \sum_{i=1}^n P(x_1, ..., x_n) \log P(x_i | x_{i-1}, ..., x_1)$
= $-\sum_{i=1}^n \sum_{x_1, ..., x_n} P(x_1, ..., x_n) \log P(x_i | x_{i-1}, ..., x_1)$
= $-\sum_{i=1}^n \sum_{x_1, ..., x_i} P(x_1, ..., x_i) \log P(x_i | x_{i-1}, ..., x_1) = \sum_{i=1}^n H(X_i | X_{i-1}, ..., X_1)$

Joint Entropy of Independent RVs

If X_1, X_2, \ldots, X_n are independent random variables, then

$$H(X_1, X_2, \ldots, X_n) = \sum_{i=1}^n H(X_i)$$

Proof.

Due to independence, $P_{X_i|X_{i-1},...,X_1} = P_{X_i}$ for i = 2, ..., n. Use this to show that for all i

$$H(X_i|X_{i-1},\ldots,X_1)=H(X_i).$$

The result then follows from the chain rule.

Typicality – a simple example

Consider an i.i.d. Bernoulli $(\frac{1}{4})$ source. It produces symbols X_1, X_2, \ldots according to

$$P(X_i = 1) = \frac{1}{4}, P(X_i = 0) = \frac{3}{4}$$
 for $i = 1, 2, ...$

One of the following sequences is a "real" output of the source.

1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	1	0	0	0	0	0	0	1	1	0	0	0	1	0	0
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Which sequence is a real output?

19/23

1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	1	0	0	0	0	0	0	1	1	0	0	0	1	0	С
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

• Each sequence has 16 bits.

• The probability of a sequence with k ones and 16 - k zeros is

$$\left(\frac{1}{4}\right)^k \left(\frac{3}{4}\right)^{16-k}$$

- Probability of source emitting first sequence $= \left(\frac{3}{4}\right)^{16}$
- Probability of source emitting second sequence $= \left(\frac{1}{4}\right)^4 \left(\frac{3}{4}\right)^{12}$

The *first* sequence is 3^4 times more likely that the second!

Typical sequences

0 0

- Though less likely than the first sequence, the second sequence seems more "typical" of the $(\frac{1}{4}, \frac{3}{4})$ source.
- We will make this idea precise via the notion of a typical set.

We will show that if X_1, \ldots, X_n are chosen $\sim i.i.d$. Bernoulli(p), then for large n:

- With high probability, the fraction of ones in the observed sequence will be close to *p*
- Equivalently: with high probability, the observed sequence will have probability close to $p^{np}(1-p)^{n(1-p)}$
- Note that any number *a* can be written as 2^{log *a*}. Hence

$$p^{np}(1-p)^{n(1-p)} = (2^{\log p})^{np} (2^{\log(1-p)})^{n(1-p)} = 2^{-nH_2(p)}$$

An *operational* meaning of entropy: For large *n*, almost all sequences have probability close to $2^{-nH_2(p)}!$

21 / 23

Asymptotic Equipartition Property

- We will prove such a "concentration" result for i.i.d. discrete sources, specifying exactly what "with high probability" means
- The main tool: Asymptotic Equipartition Property (AEP)

AEP
If
$$X_1, X_2, \dots$$
 are i.i.d. $\sim P_X$, then for any $\epsilon > 0$

$$\lim_{n \to \infty} \Pr\left(\left| \frac{-1}{n} \log P_X(X_1, X_2, \dots, X_n) - H(X) \right| < \epsilon \right) = 1.$$

Remarks:

- -1/n log P_X(X₁, X₂,..., X_n) is a random variable

 (Note the capitals; A function of the rvs (X₁,..., X_n) is a rv)
- AEP says this rv converges to H(X), a **constant**, as $n \to \infty$.

Proof of the AEP

Simple application of Weak Law of Large Numbers (WLLN). Let

 $Y_i = -\log P_X(X_i), \quad \text{ for } i = 1, \dots, n.$

- Functions of independent rvs are also independent rvs
 ⇒ Y₁,..., Y_n are i.i.d.
- WLLN for Y_i 's says that for any $\epsilon > 0$

$$\lim_{n\to\infty} \Pr(|\frac{1}{n}\sum_{i}Y_i - \mathbb{E}[Y_1]| < \epsilon) = 1.$$
 (1)

Note that

$$\sum_{i} Y_{i} = -\sum_{i} \log P_{X}(X_{i}) = -\log \left[P_{X}(X_{1}) P_{X}(X_{2}) \dots P_{X}(X_{n}) \right]$$

$$\stackrel{\text{why?}}{=} -\log P_{X}(X_{1}, X_{2}, \dots, X_{n})$$
(2)

Substitute (2) in (1), and note that 𝔼[Y₁] = H(X) to get the AEP.

23 / 23