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Course Information

1 16 Lectures in three parts:

Information Theory (5L, Ramji)
Coding (6L, Jossy Sayir)
Modulation and Wireless Communication (5L, Ramji)

2 Main pre-requisite: good background in probability

1B Paper 7, 3F1 highly recommended
3F4 useful, but not required

3 Handouts, examples sheets, announcements on Moodle
https://www.vle.cam.ac.uk

4 Drop-in ‘supervision’ hours (Ramji): Tuesdays 2:00-3:30pm in
BE3-12: e-mail me if you cannot make these times

Questions and active participation in lectures encouraged!
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Useful References

T. M. Cover and J. A. Thomas,
Elements of Information Theory,
Wiley Series in Telecommunications, 2nd Edition, 2006.

D. J. C. MacKay,
Information theory, inference, and learning algorithms,
Cambridge University Press, 2003. (free online version)

R. G. Gallager,
Principles of Digital Communications,
Cambridge University Press, 2008.

T. Richardson, R. Urbanke
Modern Coding Theory,
Cambridge University Press, 2008. (free online version)

D. Tse and P. Viswanath,
Fundamentals of Wireless Communication,
Cambridge University Press, 2005. (free online version)
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Two Fundamental Limits

Claude Shannon (1948: A Mathematical Theory of Communication)

Posed and answered two fundamental questions:

Given a source of data, how much can compress it?

Given a channel, at what rate can you transmit data?

How do you model sources and channels?
Using probability distributions.
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Probability Review
A random variable (rv) X :

Is a function that maps outcome of experiment to value in set
X . This definition is not completely rigorous, but suffices.

Can be discrete (e.g. X = {0, 1}) or continuous (e.g. X = R)

Discrete Random Variables

Characterised by a probability mass function (pmf):
PX (x) = Pr(X = x). x ∈ X is a realisation of the rv X

Cumulative distribution function (cdf) :
FX (a) = Pr(X ≤ a) =

∑
x≤a PX (x)

Expected value: E[X ] =
∑

a aPX (a)

A function g(X ) of an rv X is also an rv

We will often take expectations of functions of rvs, e.g.
E[g(X )] =

∑
a g(a)PX (a)

We sometimes drop the subscript and write P(x) — need to be careful!
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Jointly distributed discrete rvs X ,Y :

Joint pmf PXY (x , y), x ∈ X , y ∈ Y
Conditional distribution of Y given X :

PY |X (y |x) =
PXY (x , y)

PX (x)
for x such that PX (x) > 0.

Two key properties: For rvs X ,Y ,Z :
1 Product rule:

PXYZ = PXPY |XPZ |YX
= PYPX |YPZ |XY
= PZPX |ZPY |XZ etc.

2 Sum rule (marginalisation):

PXY (x , y) =
∑

z

PXYZ (x , y , z)

PX (x) =
∑

y ,z

PXYZ (x , y , z) =
∑

y

PXY (x , y) etc.
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Continuous random variables X ,Y :

Joint density function fXY (x , y), x ∈ R, y ∈ R

Pr(a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ b
x=a

∫ d
y=c fXY (x , y)dxdy

Important example: (X ,Y ) jointly Gaussian rvs.
In this case, fXY is fully specified by the mean vector µ and
covariance matrix Σ

Conditional density, product and sum rule analogous to
discrete case, with density replacing the pmf and integrals
instead of sums
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Independence

Discrete random variables X1,X2, . . . ,Xn are statistically
independent if

PX1...Xn(x1, . . . , xn) = PX1(x1)PX2(x2) . . .PXn(xn) ∀(x1, . . . , xn).

Recall the product rule: we can always write

PX1...Xn(x1, . . . , xn)

= PX1(x1)PX2|X1
(x2|x1) . . .PXn|Xn−1...X1

(xn|xn−1, . . . , x1)

Thus when X1, . . . ,Xn are independent, we have

PXi |{Xj}j 6=i
= PXi

We will often consider independent and identically distributed
(i.i.d.) random variables, i.e., PX1 = PX2 = . . . = PXn = P

Review your notes from 1B Paper 7 and 3F1!
9 / 23

Weak Law of Large Numbers (WLLN)

Roughly: “Empirical average converges to the mean”

Formal statement

Let X1,X2, . . . be a sequence of i.i.d. random variables with finite
mean µ. Let Sn = 1

n

∑n
i=1 Xi . Then, for any ε > 0

lim
n→∞

Pr(|Sn − µ| < ε) = 1.

Much of information theory is a (very clever) application of WLLN!
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Entropy

The entropy of a discrete random variable X with pmf P is

H(X ) =
∑

x

P(x) log
1

P(x)
bits

“log” in this course will mean log2
For x such that P(x) = 0, “0 log 1

0 ” is the limiting value 0
Can be written as E[log 1

P(X ) ]

H(X ) is the uncertainty associated with the rv X .

Example
1 Let rv X represent the event of England winning the World

Cup. Let
X = 1 with probability 0.2, and X = 0 with probability 0.8

2 Let the rv Y represent the event of rain tomorrow.
Y = 1 with probability 0.4, and Y = 0 with probability 0.6

Which event has greater entropy?
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Binary Entropy Function
Bernoulli RVs:
X is called a Bernoulli(p) random variable if takes value 1 with
probability p and 0 with probability 1− p. Its entropy is

H2(p) = p log
1

p
+ (1− p) log

1

1− p
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As p approaches 1
2 , more uncertainty about the outcomes of X
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Exercise

Suppose that we have a horse race with 4 horses. Assume that the
probabilities of winning for the 4 horses are (12 ,

1
4 ,

1
8 ,

1
8). What is

the entropy of the race? Answer: 7
4 bits

Properties of Entropy

For a discrete random variable X taking values in X :

1 H(X ) ≥ 0 (because 1
P(x) ≥ 1 implies log 1

P(x) ≥ 0)

2 If we denote the alphabet size by |X |, then H(X ) ≤ log|X |
Proof: Use the inequality ln x ≤ (x − 1) for x ≥ 0. Also note
that log x = ln x

ln 2 . (In 3F1 examples paper)

3 Among all random variables taking values in X , the
equiprobable distribution ( 1

|X | , . . . ,
1
|X |) has the maximum

entropy, equal to log|X |.
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Joint and Conditional Entropy
The joint entropy of discrete rvs X ,Y with joint pmf PXY is

H(X ,Y ) =
∑

x ,y

PXY (x , y) log
1

PXY (x , y)

The conditional entropy of Y given X is

H(Y |X ) =
∑

x ,y

PXY (x , y) log
1

PY |X (y |x)

H(Y |X ) is the average uncertainty in Y given X :

H(Y |X ) =
∑

x

PX (x)
∑

y

PY |X (y |x) log
1

PY |X (y |x)
︸ ︷︷ ︸

H(Y |X=x)

H(X ,Y ) = H(X ) + H(Y |X ) = H(Y ) + H(X |Y )
(verify using product and sum rule of probability)
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Example
Let X be the event that tomorrow is cloudy; Y be the event that it
will rain tomorrow. Joint pmf PXY :

Rain No Rain

Cloudy 3/8 3/8

Not cloudy 1/16 3/16

H(X ,Y ) =
3

8
log

8

3
+

3

8
log

8

3
+

1

16
log 16 +

3

16
log

16

3
= 1.764 bits

P(X = cloudy) = 3
8 + 3

8 = 3
4 , P(X = not cloudy) = 1

4

H(X ) = 0.811 bits

H(Y |X ) = H(X ,Y )− H(X ) = 0.953 bits

Exercise: Compute H(Y |X ) directly; Compute H(Y ), H(X |Y )
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Joint Entropy of Multiple RVs

The joint entropy of X1, . . . ,Xn with joint pmf PX1...Xn is

H(X1,X2, . . . ,Xn) =
∑

x1,...,xn

PX1...Xn(x1, . . . , xn) log
1

PX1...Xn(x1, . . . , xn)

Chain Rule of Joint Entropy:
The joint entropy can be decomposed as

H(X1,X2 . . . ,Xn) =
n∑

i=1

H(Xi |Xi−1, . . . ,X1)

where the conditional entropy

H(Xi |Xi−1, . . . ,X1) =
∑

x1,...,xi

PX1,...,Xi
(x1, . . . , xi ) log 1

PXi |X1,...,Xi−1
(xi |x1,...,xi−1)

(The chain rule is a generalisation of H(X ,Y ) = H(X ) + H(Y |X ).)
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Proof of Chain Rule
Recall that

P(x1, . . . , xn) = P(x1)P(x2|x1) . . .P(xn|xn−1, . . . , x1) =
n∏

i=1

P(xi |xi−1, . . . , x1)

(For brevity, we drop the subscripts on PX1...Xn)

H(X1,X2 . . . ,Xn) = −
∑

x1,...,xn

P(x1, . . . , xn) logP(x1, . . . , xn)

= −
∑

x1,...,xn

P(x1, . . . , xn) log
n∏

i=1

P(xi |xi−1, . . . , x1)

= −
∑

x1,...,xn

n∑

i=1

P(x1, . . . , xn) logP(xi |xi−1, . . . , x1)

= −
n∑

i=1

∑

x1,...,xn

P(x1, . . . , xn) logP(xi |xi−1, . . . , x1)

= −
n∑

i=1

∑

x1,...,xi

P(x1, . . . , xi ) logP(xi |xi−1, . . . , x1) =
n∑

i=1

H(Xi |Xi−1, . . . ,X1)
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Joint Entropy of Independent RVs

If X1,X2, . . . ,Xn are independent random variables, then

H(X1,X2, . . . ,Xn) =
n∑

i=1

H(Xi )

Proof.

Due to independence, PXi |Xi−1,...,X1
= PXi

for i = 2, . . . , n. Use this
to show that for all i

H(Xi |Xi−1, . . . ,X1) = H(Xi ).

The result then follows from the chain rule.
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Typicality – a simple example

Consider an i.i.d. Bernoulli(14) source. It produces symbols
X1,X2, . . . according to

P(Xi = 1) = 1
4 , P(Xi = 0) = 3

4 for i = 1, 2, . . .

One of the following sequences is a “real” output of the source.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Which sequence is a real output?
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Each sequence has 16 bits.

The probability of a sequence with k ones and 16− k zeros is

(
1

4

)k (3

4

)16−k

Probability of source emitting first sequence =
(
3
4

)16

Probability of source emitting second sequence =
(
1
4

)4 (3
4

)12

The first sequence is 34 times more likely that the second!
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Typical sequences
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0

Though less likely than the first sequence, the second
sequence seems more “typical” of the (14 ,

3
4) source.

We will make this idea precise via the notion of a typical set.

We will show that if X1, . . . ,Xn are chosen ∼ i.i.d. Bernoulli(p),
then for large n:

With high probability, the fraction of ones in the observed
sequence will be close to p
Equivalently: with high probability, the observed sequence will
have probability close to pnp(1− p)n(1−p)

Note that any number a can be written as 2log a. Hence

pnp(1− p)n(1−p) = (2log p)np (2log(1−p))n(1−p) = 2−nH2(p)

An operational meaning of entropy: For large n, almost all
sequences have probability close to 2−nH2(p)!
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Asymptotic Equipartition Property

We will prove such a “concentration” result for i.i.d. discrete
sources, specifying exactly what “with high probability” means

The main tool: Asymptotic Equipartition Property (AEP)

AEP

If X1,X2, . . . are i.i.d. ∼ PX , then for any ε > 0

lim
n→∞

Pr

( ∣∣∣∣
−1

n
logPX (X1,X2, . . . ,Xn)− H(X )

∣∣∣∣ < ε

)
= 1.

Remarks:
−1
n logPX (X1,X2, . . . ,Xn) is a random variable

(Note the capitals; A function of the rvs (X1, . . . ,Xn) is a rv)

AEP says this rv converges to H(X ), a constant, as n→∞.
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Proof of the AEP
Simple application of Weak Law of Large Numbers (WLLN). Let

Yi = − logPX (Xi ), for i = 1, . . . , n.

Functions of independent rvs are also independent rvs
⇒ Y1, . . . ,Yn are i.i.d.

WLLN for Yi ’s says that for any ε > 0

lim
n→∞

Pr( | 1n
∑

i

Yi − E[Y1]| < ε) = 1. (1)

Note that∑

i

Yi = −
∑

i

logPX (Xi ) = − log [PX (X1)PX (X2) . . .PX (Xn)]

why?
= − logPX (X1,X2, . . . ,Xn)

(2)

Substitute (2) in (1), and note that E[Y1] = H(X ) to get the
AEP.

23 / 23


