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Question 1

Differential entropy : Evaluate the differential entropy h(.) for the following distributions:

(a) The exponential density, f(x) = λe−λx, x ≥ 0

(b) The Laplacian density, f(x) = 1
2λe
−λ|x|, x ∈ R

(c) The sum of X1 and X2, where X1 and X2 are independent Gaussian random variables distributed
as N (µ1, σ

2
1) and N (µ2, σ

2
2), respectively.

Question 2

The Gaussian maximises differential entropy : Let X be any continuous random variable with mean 0
and variance σ2. Then show that

h(X) ≤ 1

2
log 2πeσ2

with equality if and only if X is distributed as N (0, σ2).
Hint : Use 0 ≤ D(f ||φ), where f is the density of X, and φ is the density of a N (0, σ2) random

variable.

Question 3

Multipath Gaussian channel with no delays: Consider a discrete-time Gaussian noise channel with input
power constraint P , where the each input symbol takes two different paths and the received noisy signals
are added together at the receiver antenna, as shown below.

+

+
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Z1

Z2

+ Y

(a) Verify that the channel above reduces to the following channel: Y = 2X + Z1 + Z2
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(b) Find the capacity of this channel if Z1 and Z2 are jointly Gaussian with zero mean and covariance
matrix given by

KZ1Z2 =

[
σ2 ρσ2

ρσ2 σ2

]
(c) What is the capacity when ρ = 0, ρ = 1, ρ = −1?

Question 4

Detection with non-uniform symbol probabilities: Consider BPSK modulation with symbols {+A,−A}
over the discrete-time AWGN channel

Y = X +N

where N is Gaussian noise ∼ N (0, N0/2). Suppose that P (X = A) = p and P (X = −A) = 1− p.

(a) Derive the detection rule that that minimises the probability of detection error. Sketch the decision
regions when p = 2/3 and A/N0 = 4.

(b) Obtain the average probability of detection error, first in terms of p,A,N0, then express in terms of
p and Eb/N0.

Question 5

M -ary Pulse Amplitude Modulation (PAM): Consider the M -ary PAM constellation shown in the figure
below. It consists of M symbols {p1, . . . , pM} on the real line, symmetric around 0 and with equal
spacing d between symbols. That is,

pi = (2i− 1−M)
d

2
, i = 1, . . . ,M

p1 0

d

pM

Suppose that we use this constellation to signal over the discrete-time AWGN channel

Y = X +N

where the Gaussian noise N is distributed ∼ N (0, N0/2). Assuming all the constellation symbols are
equally likely:

(a) Sketch the decision regions that minimise the probability of detection error.

(b) Obtain the probability of error when p1 or pM is sent.

(c) Obtain the probability of error when pi is sent, for 2 ≤ i ≤ M − 1. Combine this with part (b) to
obtain an expression for the overall probability of error Pe.

(d) Show that the average symbol energy Es is (M2−1)d2
12 . (Induction may be useful)

(e) Express the probability of error Pe in terms of Eb
N0

. For fixed Eb/N0, how does Pe vary as M increases?
Is this what you’d expect?
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Question 6

Quadrature Phase Shift Keying : Consider QPSK modulation over an AWGN channel

Y = X +N

where the noise N is a complex random variable distributed as CN (0, N0), i.e., the real and imaginary
parts of N are i.i.d Gaussian ∼ N (0, N0/2). X is a symbol drawn uniformly from the QPSK constellation
below.

A

p1 = (A/
√
2, A/

√
2)

p2 = (A/
√
2,−A/

√
2)p3 = (−A/

√
2,−A/

√
2)

p4 = (−A/
√
2, A/

√
2)

Sketch the optimal decision regions, and show the probability of detection error Pe ≤ 2Q
(√

2Eb
N0

)
.

(Handout 7, slide 27 may be helpful.)

Question 7

Quadrature Amplitude Modulation: Consider the 16-QAM constellation shown in the figure below, with
adjacent symbols in the vertical and horizontal directions spaced d apart.

d

d

p1
p2 p3 p4 = (3d2 ,

3d
2 )

p5 p8

p9 p12

p13 p16 = (3d2 ,
−3d
2 )

p14 p15

p6

This constellation is used for signalling (with uniform distribution on the symbols) over the AWGN
channel

Y = X +N.

The noise N is a complex random variable distributed as CN (0, N0), i.e., the real and imaginary parts
of N are i.i.d Gaussian ∼ N (0, N0/2).

(a) Derive an upper bound for the probability of error when X = p1 (or X = p4/ p13/ p16, one of the
corner points of the constellation).

(b) Derive an upper bound for the probability of error when X = p2.

(c) Derive an upper bound for the probability of error when X = p6.

3



(d) Using the union bound show that the average probability of error satisfies

Pe ≤ 3Q
(

d√
2N0

)
= 3Q

(√
4Eb
5N0

)
where Eb is the average energy per bit of the constellation. (For the last equality, you’ll first need
to show that Es = 2.5d2)

Question 8

BPSK over a Rayleigh Flat Fading channel : In Handout 9, we showed that the probability of error for
BPSK over a fading channel with coherent detection is given by

Pe = E
[
Q
(√

2|h|2 snr
)]

where snr =
Eb
N0

. (1)

Recall that |h|2, the squared-magnitude of the fading coefficient h has an exponential density f :

f(x) = exp (−x) , x ≥ 0.

Show that the average error probability in (1) is equal to 1
2

(
1−

√
snr

1+snr

)
.

(Hint: Write the expression in (1) as a double integral and interchange the order of integration.)

Question 9

Diversity via Repetition coding : Consider the fading channel

Y = hX +N

In Handout 9, we saw how repetition coding can be used to improve the error performance of BPSK
on the fading channel. Here we explore repetition coding with QPSK symbols. Consider L uses of the
channel above to transmit a symbol x drawn uniformly from the QPSK constellation shown in Question
6. The output vector is

Y = hx+ N

where h = (h[1], . . . , h[L])T is a vector of complex Gaussian rvs that are i.i.d ∼ CN (0, 1). (We assume
that there is interleaving so that the L uses of the channel are over different coherence periods.) N =
(N [1], N [2], . . . , N [m])T is a vector of complex Gaussian rvs that are i.i.d ∼ CN (0, N0).

We now perform coherent detection.

(a) Project Y along the direction of h, and observe that the problem reduces to an instance of QPSK
detection in AWGN. Write down or sketch the decision regions.

(b) Show that the probability of error conditioned on h is upper bounded by 2Q
(√

2‖h‖2Eb

N0

)
.

(c) The Q function can be upper bounded as Q(x) < 1
2e
−x2/2 for x > 0. Use this to show that

Pe|h ≤
L∏

m=1

e
−Eb

N0
|h[m]|2

(d) Show that the average probability of error is

Pe <

(
1 +

Eb
N0

)−L
Hint: Use the fact that the rvs |h[m]|2 for m = 1, . . . , L are i.i.d with exponential density f(x) =
e−x, x ≥ 0
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(e) (Extra) Repeat the steps above assuming x came from a 4-PAM constellation
{
−3d

2 ,−d
2 ,

d
2 ,

3d
2

}
.

Show that the average probability of error is upper bounded by

Pe <
3

4

(
1 +

2

5

Eb
N0

)−L
.

(Your calculations for Question 5 will be useful)

Thus QPSK has better error performance than 4-PAM as Eb/N0 gets large though both transmit
2 bits per symbol. This is because QPSK uses two dimensions, while PAM packs all four symbols
along the same dimension.

Answers

Q1. (a) log
(
e
λ

)
bits; (b) log

(
2e
λ

)
bits; (c) 1

2 log
(
2πe(σ21 + σ22)

)
bits

Q3. (b) C = 1
2 log

(
1 + 2P

σ2(1+ρ)

)
; (c) When ρ = 0, C = 1

2 log
(
1 + 2P

σ2

)
. When ρ = 1, C = 1

2 log
(
1 + P

σ2

)
.

When ρ = −1, C =∞.

Q4. (a) Decode X̂ = A when Y ≥ T and X̂ = −A when Y < T , where the threshold T = 4N0
A ln

(
1−p
p

)
.

Note that T = 0, when p = 1
2 .

(c) Pe = pQ
(

A−T√
N0/2

)
+ (1− p)Q

(
A+T√
N0/2

)
; Eb = A2

Q5. (b) Q
(

d√
2N0

)
; (c) 2Q

(
d√
2N0

)
, overall Pe = 2(M−1)

M Q
(

d√
2N0

)
Q7. (a) 2Q

(
d√
2N0

)
; (b) 3Q

(
d√
2N0

)
; (c) 4Q

(
d√
2N0

)
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