
3F3 Example Paper 1
DFT, FFT, Digital Filters

1. (Revision). Show the following properties of the DFT of an N -point data
sequence {xn}:

(a) Periodic spectrum - i.e. XN+p = Xp

(b) Periodic data - i.e. xn+N = xn [Hint: use inverse DFT expression to
calculate both xn+N and xn. ]

(c) Conjugate symmetry for real-valued {xn}, i.e. Xk = X∗
N−k

2. Let Xk be the N−point DFT of the sequence xn, 0 ≤ n ≤ N − 1. What
is the N−point DFT of the sequence sn = Xn, 0 ≤ n ≤ N − 1?

3. Suppose that an FFT hardware unit is available for computing the DFT.
Show how the same unit may be used without modification to compute
an Inverse DFT (by performing suitable manipulations of the input and
output vectors).

4. Given that the N -point DFT Xk of a real-valued sequence xn, n =
0, 1, . . . , N has the conjugate symmetry property

XN−k = X∗
k

deduce how a single N -point FFT may be used to compute the N -point
DFTs of two length N real-valued data sequences yn and zn simultaneously
by first forming the complex sequence xn = yn + jzn.

5. Starting with the 3-point DFT k = 0, 1, 2,

Xk =

2∑
n=0

xne
−j 2π

3 kn

• derive a nine-point (3 x 3) FFT algorithm and draw its flow diagram.
Hint: use the same technique as the radix-2 derivation, but split the
9-point DFT into 3 interleaved 3-point DFTs, etc.

• calculate how many complex multiplications (excluding multiplica-
tions by unity) and additions are required, and compare this with
the number required for a direct evaluation of the 9-point DFT.
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6. Compute the frequency responses of the FIR filters with the following im-
pulse responses, exploiting symmetry to express each frequency response
as the product of a pure delay term and a frequency-dependent gain. State
what type of filter (eg. highpass, lowpass, etc.) each is

(a) 1, 2, 1
(b) -1, 2, -1
(c) -1, 0, 2, 0, -1
(d) 1, 2, 2, 1

7. It is required to design an FIR bandpass filter of order 200. Hd (ω) rep-
resents the ideal characteristic of the noncausal bandpass filter defined
by

Hd (ω) =

{
1 if 0.4π < |ω| < 0.5π
0 otherwise

(a) Determine the impulse response hd (n) corresponding to Hd (ω) .

(b) Explain how you would use the Hamming window

wn = 0.54 + 0.46 cos

(
2π

M − 1

)
, − M − 1

2
≤ n ≤ M − 1
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to design a causal FIR bandpass filter which approximates the ideal
bandpass filter, having an impulse response hn for 0 ≤ n ≤ 200

(c) Discuss the advantages/disadvantages of using a Hamming window
compared to a rectangular window, including ripple amplitude, tran-
sition bandwidth and stop-band attenuation.

8. For an audio system with sampling rate 44.1 kHz, a bandpath filter is
required with 3dB corner frequencies at 6.5084 kHz and 7.5861 kHz. An
analogue lowpass filter with the transfer function H (s) = 1

s+1 has a 3dB
corner frequency of 1 rad/sec. Using the lowpass to bandpass transforma-
tion s′ = s2+ωlωu

s(ωu−ωl)
, where ωll is the lower corner frequency and ωu the

upper corner frequency, together with the bilinear transform, design the
required digital filter. Calculate the poles and zeros of the digital filter
and show it gives the desired bandpass response.

9. A 4th order analogue Butterworth lowpass filter with cutoff frequency 1
rad/sec has poles at s = −0.3827±j0.9239 and −0.9239±j0.3827. Design
a 4th order lowpass digital filter with sampling rate 8kHz, unit DC gain,
and cutoff frequency 1kHz using the bilinear transform

s → 1− z−1

1 + z−1

Determine the coefficients of implementation using second order (biquadratic)
section(s).

10. A digital filter has the transfer function (1−bz−1)/(1−az−1), where a > 0,
b > 0, b < a. Determine the scale factors needed for l1 scaling, frequency
response scaling, and l2 scaling, assuming that the maximum magnitude
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which can be represented in the filter internal arithmetic is the same as the
maximum input magnitude. HINTS: for l1 and l2 scaling, use the standard
expression for the sum of a Geometric Progression; for frequency-response
scaling, note that you are only interested in the frequency at which the
frequency response of interest is maximum - which is simple to determine
in this case.

11. Consider the following system

y (n) = ay (n− 1)− ax (n) + x (n− 1) .

(a) Show that it is all-pass, i.e. that |H(exp(jΩ))| = 1 for all Ω

(b) Obtain the direct form II realization of the system and sketch a di-
agram showing the signal delays, multiplications and additions from
input to output.

(c) If you quantize the coefficients of the system in the direct form II, is
it still all-pass?

(d) Obtain a realization by rewriting the difference equation as

y (n) = a [y (n− 1)− x (n)] + x (n− 1) .

(e) If you quantize the coefficients of the system in this realization, is it
still all-pass?
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ANSWERS

1.

2. S0 = Nx0, S1 = NxN−1, ..., SN−2 = Nx2, SN−1 = Nx1.

3.

4. Yk = (Xk +X∗
N−k)/2 and Zk = −j(Xk −X∗

N−k)/2

5. The 3 x 3 FFT requires 28 multiplications, and 36 additions. The 9-point
DFT requires 64 complex mulltiplications, and 72 complex additions.

6. (a) delay = 1 sample; |H(exp(jΩ))| = 2 + 2cos(Ω); lowpass;

(b) delay = 1 sample; |H(exp(jΩ))| = 2− 2cos(Ω); highpass;

(c) delay = 2 samples; |H(exp(jΩ))| = 2− 2cos(2Ω); bandpass;

(d) delay = 1.5 samples; |H(exp(jΩ))| = 4cos(0.5Ω) + 2cos(1.5Ω); low-
pass

7. (a) 1
πn (sin (0.5πn)− sin (0.4πn))

(b)

(c)

8. H (z) = 0.1
1.4

1−z−2

1−z−1+0.857z−2 ;
zeros at ±1, poles at 0.9257e±j1.0; resonant frequency 7kHz

9. Section 1: FIR coeffs [1 2 1], feedback coeffs [-1.113, +0.5741]; section 2:
FIR coeffs [1 2 1], feedback coeffs [-0.8554, +0.2097].

10.

11.

E. Punskaya 2010, S. Godsill 2011
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