3F3 — Digital Signal Processing
(DSP)

Simon Godsill

WWW-sigproc.eng.cam.ac.uk/~sjg/teaching/3F3

Course QOverview

11 Lectures
Topics:

— Digital Signal Processing
— DFT,FFT

— Digital Filters
— Filter Design
— Filter Implementation

— Random signals
— Optimal Filtering
— Signal Modelling

Books:
— J.G. Proakis and D.G. Manolakis, Digital Signal Processing 3rd edition, Prentice-Hall.
— Statistical digital signal processing and modeling -Monson H. Hayes —Wiley

Some material adapted from courses by Dr. Malcolm Macleod, Prof. Peter Rayner and Dr.
Arnaud Doucet

Digital Signal Processing - Introduction

 Digital signal processing (DSP) is the generic term for techniques such as
filtering or spectrum analysis applied to digitally sampled signals.

» Recall from 1B Signal and Data Analysis that the procedure is as shown
below:

Analogue .- S Analogue
input Analogue/ Digital Digital/ output
—_— Digital — 1g1ta — Analogue
x(t) Converter xnT) Processor y(nT) Converter V(1)

« [is the sampling period
. fO —]_/T is the sampling frequency

* Recall also that low-pass anti-aliasing filters must be applied before A/D
and D/A conversion in order to remove distortion from frequency
components higher than fo/2 Hz (see later for revision of this).

« Digital signals are signals which are sampled in time (“discrete time”) and
guantised.

« Mathematical analysis of inherently digital signals (e.g. sunspot data, tide
data) was developed by Gauss (1800), Schuster (1896) and many others
since.

« Electronic digital signal processing (DSP) was first extensively applied in
geophysics (for oil-exploration) then military applications, and is now
fundamental to communications, mobile devices, broadcasting, and most
applications of signal and image processing.

There are many advantages in carrying out digital rather than analogue
processing; among these are flexibility and repeatability.

The flexibility stems from the fact that system parameters are simply numbers
stored in the processor. Thus for example, it is a trivial matter to change the cut-
off frequency of a digital filter whereas a lumped element analogue filter would
require a different set of passive components. Indeed the ease with which
system parameters can be changed has led to many adaptive techniques
whereby the system parameters are modified in real time according to some
algorithm. Examples of this are adaptive equalisation of transmission systems,
adaptive antenna arrays which automatically steer the nullsin the polar diagram
onto interfering signals. Digital signal processing enables very Digital signal
processing enables very complex linear and non-linear processes to be
implemented which would not be feasible with analogue processing. For
example it is difficult to envisage an analogue system which could be used to
perform spatial filtering of an image to improve the signal to noise ratio.

DSP has been an active research area since the late 1960s but applications
tended to be only in large and expensive systems or in non real-time where a
general purpose computer could be used. However, the advent of d.s.p chips
enable real-time processing to be performed at very low cost and already this
technology is commonplace in domestic products.

Sampling Theorem (revision from 1B)

For a continuous time signal g(t) with Fourier transform G(w), the Fourier
transform of the corresponding sampled signal g.(¢), sampled at a rate wy =
27 /T rad.s™! is given by:

Gs(w) :% Z G(w — nwy) (1)

n—=——0<

i.e. The Fourier transform of the sampled signal is simply a sum-
mation of shifted versions of the original Fourier transform of the
continuous signal G(w)

Implications:

Spectrum of sampled signal is always periodic.

Can reconstruct an analogue signal perfectly from its digital samples pro-
vided its bandwidth is < wg /2.

For signals with bandwidth > wy/2 we must pre-filter with an ideal lowpass
filter having cut-off frequency wgy/2 to prevent aliasing

Practical considerations - design of anti-aliasing filters with finite transi-
tion bandwidth, ...

Sampled Signal Spectra:

Continuous signal g(t) —

A

- -\\ |

Sampled signal gs(t)<
(various values of wq)

-

—_ Glw)
-lg g

No Aliasing

Gs(c:y
-0y . -(g g ' g o ——

-y + oy g/
€X(0)
| 1 1 1 1 1
-0 -0g g [0}

w —=

p- g AI i aSi ng

WWMW\
1 1 1 1 1 1 1 1

1-0p O ®

-(!.)0 0)0; [OF ('!JO

Sketch of proof: [revision, see 1B]
Define a mathematical representation of the sampled signal gs(t) using a train of
d-functions:

gs(t) =g(t) > o(t—nT)

n=—0oco

= g(t)op(1)

Fourier series representation of periodic function d,(¢) =>°7 _ §(t —nT'):

o0

1 .
_ Jnwot
(Sp(t) — T n_ZOOe
where wg = 27 /7.
Hence:

() = gL 3 e

) T n——oo
1 - Jnwot

— Z g(t)e

Take Fourier Transform of g(¢):

Gs(w) = % Z G(w — nwo)

n=-—oo

Sampling Theorem: Summary

Theorem shows us that we may represent a signal perfectly in the
digital domain, provided the sampling rate is at least twice the
maximum frequency component (‘bandwidth’) of the signal

Denote the sampled values of a signal/function using the shorthand:
xn = x(nT)

1" is the sampling period
fo = %Hz is the sampling frequency, or sampling ‘rate’
wo = 2w forad/s is the sampling frequency in radians

The DFT and the FFT

« The Discrete Fourier Transform is the standard way to transform a
block of sampled data into the frequency domain (see IB)

« The Fast Fourier Transform (FFT) is a fast algorithm for
Implementation of the DFT

« The FFT revolutionised Digital Signal Processing. It is an elegant and
highly effective algorithm that is still the building block used in many
state-of-the-art algorithms in speech processing, communications,
frequency estimation, ...

The Discrete Time Fourier Transform (DTFT)

The DTFT is defined as the Fourier transform of the sampled signal. Define

the sampled signal in the usual way:

Take Fourier transform directly

Gs(w) = /OO gs(t) e ¢t dt

=/ g(t) Z §(t —pT) e 7t dt
—oo

- i g(pT)e_jpr: i gpe—jpr

p=—00 p=—00

using the ‘sifting’ property of the d-function to reach the last line.

Note that this expression, known as the DTFT, is a periodic function of
frequency, usually written as:

G(ed“T) = Z gpe P (%)

p=—00

The signal sample values may be expressed in terms of the DTFT by noting
that the equation above has the form of a Fourier series (as a function of w)
and hence the sampled signal can be obtained directly as:

1 27T

_ % G(eng) +inwT dwT

9n

[You can show this for yourself by first noting that (*) is a complex Fourier
series with coeflicients g,

The Discrete Fourier Transform (DFT)

The DFT is the fundamental building block of many modern signal process-
ing systems. We will later derive a fast algorithm for DF'T computation, known
as the Fast Fourier Transform (FFT). The FFT is possibly the most widely
used digital signal processing algorithm ever invented.

The Discrete Time Fourier Transform (DTFT):

00
G(eij): Z gpe—jpr
p=—00

expresses the spectrum of a sampled signal in terms of the signal samples but
is not computable on a digital computer for two reasons:

1. The frequency variable w is continuous.

2. The summation involves an infinite number of samples

These problems can be overcome by:

1. evaluating the DTF'T at a finite collection of discrete frequencies

2. Performing the summation over a finite number of data points.

Step 1. has no undesirable consequences since we can always include any
frequency of interest in the collection .

Step 2. does have consequences, since signals are generally not of finite
duration. These consequences can be rigorously analysed by windowing analysis.

The discrete set of frequencies chosen is arbitrary. However, since the DTFT
is peritodic we generally choose a uniformly spaced grid of NV frequencies covering
the range wT" = 0 — 2m. If the summation is then truncated to just N data
points, we get the DFT:

N—-1
Gp — G(e.’]—%ﬁp) — Z Gn e—jzﬁnp (1)
n=0

The inverse DFT can be used to obtain the sampled signal values from the
DFT:

Multiply each side of equation (1) by e NP4 and sum over p=0to N —1:

N—1 N—1N-1
E G, ej%pq = E E 9n e_jz%np ej%pq
p=0 p=0 n=0

N—-1

N-1
_ Z In Z el 7 (g—n)p
n=0

p=0

Note the orthogonality property of the complex exponentials:

N-1
Z o 5 (q—n)p _ N n=gq
0 n#gq

p=0

Hence:

The above equations for GG, and g,, are the Discrete Fourier Transform pair,
summarised as:

N—-1
_g2m
Gp= Y gne /X"
n=0

1 N—-1

;2T

g 3G
p=0

Properties of the DFT

e (5, is periodic, i.e.
Gpyn = Gy, for each p

e g, is periodic, i.e.
gn+N = gn, for each n

[This may seem strange since we defined the DFT by truncating the signal.
However, the inverse DFT formula implies that the data are periodic if
we calculate values of x,.ny where p + NN lies outside the usual range

{0,1,..., N —1}].
e For real data g, we have conjugate symmetry, i.c.

_ * . %k

['You should check that you can show these results from first principles]

Rewriting in terms of a sequence of sampled values x, and transformed
values X, the Discrete Fourier Transform (DFT) of a sequence of data {x,} is
given by:

N—1
X, = Z T, e_j%”p, pe{0,1,...N—1} (1)
n=0
; V-l
- 27
Ty = » Xped ¥ nef0,1,2,...,N -1} (2)
p=0

Can think of this as a vector operation:
» Take a vector of samples as input:

x = [z0, 1, .., xny_1]L) Canwritethisas:
X = Mx

 Get a vector of frequency values as output: where M s the
X = [Xp, X1, ---»XN—l]T appropriate (NxN)

_ matrix

The Fast Fourier Transform (FFT)

e The discovery of the FFT was ‘first’” announced by Cooley and Tukey in
1965 - their paper is the most cited mathematical paper ever written

e They were actually over 150 years late - the principle of the FFT was later
discovered in an obscure section of Gauss’ (as in Gaussian) own notebooks
in 1806

e Computation of X, for p = 0,1,..., N — 1 requires on the order of N?
complex multiplications and additions [assuming that the complex expo-
nentials have been pre-computed and stored].

e The Fast Fourier Transform reduces the required number of arithmetic
operations to the order of £ log,(N) when N is a power of 2.

e This speed-up is dramatic for large N - for N = 1024 the speed-up is a
factor of 205, for N = 8192 the speed-up is 1260, ...

e There are many different types of FFT algorithm, and many different
derivations possible, including some which operate for N not a power of
2.

e Here we consider the most basic ‘radix-2’ algorithm which requires N to
be a power of 2.

Derivation

« The FFT derivation relies on redundancy in the calculation of the basic
DFT

« A recursive algorithm is derived that repeatedly rearranges the problem
Into two simpler problems of half the size

« Hence the basic algorithm operates on signals of length a power of 2,
le.

N — 2M (for some integer M)
« At the bottomof the tree, we have the classic FFT “butterfly’ structure

(details later):
A \ A+BwW"
B

A -BW"

First, take the basic DFT equation:

N—-1 o
Xp= > ape /N
n=0

Now, split the summation into two parts: one for even n and one for odd n:

N_1 N_q
2 2
—j2m (9 —j 2T (2n+1
XP — E Top €7 ~ (2n)p + E Loan41€ iw (@n+lp (*)
N N
5 —1 5 —1

Z — 2T _ _ ;2 Z _i_2m
n=0 n=0

_ p
= A, +WP'B,
where
41
A, = E Tone N/ "P
n=0
J1
By = E Topyre * /D"
n=0

e Notice now that A, and B, are themselves DFTs each of length N/2:

— A, is the DFT of a sequence {z2,} = {x0, 2, ...xN_4, TN_2}

— B, is the DFT of a sequence {x2,4+1} = {z1, 3, ...oN_3, TN_1}

e We know, however that the DFT is periodic in the frequency domain (in
this case with period N/2). This leads to further simplifications, as follows.

To see how this simplifies, look at the original DFT in (*) above, but evalu-
ated at frequencies p + N/2:

__1 %—1
. . s 2
Xp—|—N/2 — § Loy, € J(N/z)n(p+N/2) + e X (p+N/2) E Toni1 € J(N/Q)R(P‘F)
n=0 n=0

Now, simplify terys as fol

eI M PtN/2) _ I iR EN/2) — _mi P
Hence
57— N_
27
Xpynyj2 = E Top € TN/ —eTINP E Topp1 e /A"

n=0 n=0

— _ WP

=A,-WPB,

with A, WP and B, defined as before

Now, compare the equations for X, /o with that for X,

X,=A,+WPB, X

p

+N/2 — Ap - Wpo

This defines the FFT butterfly structure:

- X
A (TN 3 A+ BWP p
Two complex Two complex

data in data out

B—»{%} » D> A-BW =Xp N/2

Multiplication by WP

A+BW"

Or, In more compact form: (‘Butterfly’)

A -BW

Computational load:

Look at the two required terms (WP assumed precomputed and stored):

N _1 N_q
2 .92 2 2
_ § : —J ™73y P _ § : —J N/ P
Ap — Tope ° (N/2) 9 Bp — Lon+1€ (N/2))
n=0 n=0

e The terms A, and B, need only be computed for p = 0,1,..., N/2 — 1,
since X, n/2 has been expressed in terms of A, and B, - hence we have
uncovered redundancy in the DFT computation.

e Thus calculate the A, and B, for p = 0,1,..., N/2 — 1 and use them for
calculation of both X, and X, n/o

e The number of complex multiplies and additions is:

— A, requires N/2 complex multiplies and additions; so does B,. The
total for all p = 0,1, ..., N/2 — 1 is then 2(/N/2)? multiplies and addi-
tions for the calculation of all the A, and B,, terms.

— N/2 multiplies for the calculation of WPB,, forallp =0,1,2,..., N/2—

1
— N = N/2 + N/2 additions for calculation of A, + W?PB,, and A, —
WPB,

e Thus total number of complex multiplies and additions is approximately
N?/2 for large N

e The computation is approximately halved compared to the direct DFT
evaluation

A flow diagram for a N=8 DFT is shown below:

Input: Ay= Y eI

[CL’O]

1, J—
4-point
x>, terms 9 DFT > Xp terms

'CU4 X, = A, +WPB,

\ TH —T]

[L1——
L — .

Top41 terms < 3 4?;;%“ >Xp_|_N/2 terms

:U 5_ Xpinj2 =Ap —WPBy

\ 513‘7—

Assuming that (%) is even, the same process can be carried out on each

of the (%) point DFTs to further reduce the computation. The flow diagram

for incorporating this extra stage of decomposition into the computation of the
N = 8 point DFT is shown below.

L0 2-point XO
DFT
T4 | X1
x X
2 2-point we . 8 2
Te DFT X3
X 1 2-point X4
DFT
Is X5
*3 2-point X o
DFT
L7 X 7

It can be seen that if N = 2™ then the process can be repeated M times to
reduce the computation to that of evaluating N single point DFTs. Thus the
flow chart for computing the N = 8 point DF'T is as shown below.

L0 X0

L4 V\f o X1

o ? X2
. -

L6 WO \Wa ‘®‘. ’ X3

T ‘.’ X4
.

Ty X5

T3 X6

L7 X7

Examination of the final chart shows that it is necessary to shuffle the order
of the input data. This data shuffle is usually termed bit-reversal for reasons
that are clear if the indices of the shuffled data are written in binary.

Binary Bit Decimal
Reverse
000 000 0
001 100 4
010 010 2
011 110 §)
100 001 1
101 101 5
110 011 3
111 111 7

Computational Load of full FFT algorithm:

The type of FFT we have considered, where N =2M is called a radix-2 FFT. It has
M =log, N stages, each using N / 2 butterflies

Since a complex multiplication requires 4 real multiplicationsand 2 real additions, and
a complex addition/subtraction requires 2 real additions, a butterfly requires 10 real
operations. Hence the radix-2 N-point FFT requires 10(N / 2)log, N real operations
compared to about 8N? real operations for the DFT.

This is a huge speed-up in typical applications, where N is 128 — 4096:

Direct DFT
\

Real arithmetic Operations

FFT

The FFT algorithm has a further significant advantage over direct evaluation of
the DFT expression in that computation can be performed in-place. This is best
illustrated in the final flow chart where it can be seen that after two data values have
been processed by the butterfly structure, those data are not required again in the
computation and they may be replaced, in the computer or in the chip memory, with
the values at the output of the butterfly structure.

Input Output

=
g

Thelnverse FFT (IFFT)

Apart from the scale factor 1 /N, the Inverse DFT has the same form as the DFT, except that the
conjugate W* replaces W. Hence the computation algorithm is the same, with a final scaling by 1/ N.

Other types of FFT

There are many FFT variants. The form of FFT we have described is called “decimation in time”; there is
a form called “decimation in frequency” (but it has no advantages).

The "radix 2" FFT must have length N a power of 2. Slightly more efficient is the "radix 4" FFT, in which 2-
input 2-output butterflies are replaced by 4-input 4-output units. The transform length must then be a power
of 4 (more restrictive).

A completely different type of algorithm, the Winograd Fourier Transform Algorithm (WFTA), can be used
for FFT lengths equal to the product of a number of mutually prime factors (e.g. 9*7*5 = 315 or 5*16 = 80).
The WFTA uses fewer multipliers, but more adders, than a similar-length FFT.

Efficient algorithms exist for FFTing real (not complex) data at about 60% the effort of the same-sized
complex-data FFT.

The Discrete Cosine and Sine Transforms (DCT and DST) are similar real-signal algorithms used in
image coding.

Applications of the FFT

There FFT is surely the most widely used signal processing algorithm of all
It is the basic building block for a large percentage of algorithms in current usage
Specific examples include:

 Spectrumanalysis — used for analysing and detecting signals

 Coding— audio and speech signals are often coded in the frequency domain using FFT
variants (MP3, ...)

» Another recent applicationis in a modulation scheme called OFDM, which is used for
digital TV broadcasting (DVB) and digital radio (audio) broadcasting (DAB).
 Background noise reduction for mobile telephony, speech and audio signals is often
Implemented in the frequency domain using FFTs

Case Study: Spectral analysis of a Musical Signal

g Sample rate is
E 10.025 kHz

(T=1/10,025 s)

Load this into Matlab as a vector x

St

Take an FFT, N=512:
Note: Iook almost

] X=fft(x(1:512));
Periodic over short timgere =~ = ~
Interval

Modulus | Xp|

FFT, N=512

_ Symmetric o

X

UUUU) 1 J R AJUUU
100 150 200 0 50 400

0 250 . 308 3
Frequency index, p

Real Part R(X
) (p) FFT, N=512

s Symmetric\
)

ReaI(Xp)

200 250 300 350
Frequency Index, p

Note Conjugate symmetry
as data are real:

Imaginary Part (X))
FFT, N=512

Anti-Symmetric

Imag(Xp)

200 250 . 300 350
Frequency index, p

-

=19 x 10,025/512 = 372H >

/ FFT, N=512

10 / |
o N .
| _ .f=74x10,025/512 = 1449H> |

2o :

= | =100 x 10,025/512 |

juJ Y LJUULUMM MMJ |

0 20 100 150 200 250 300 350 400 450

f=0 (DC) Frequency index, p

Frequency index corresponds to true frequency

f_p_fo_i
=N T NT

500

3F3 — Digital Signal Processing
The Effect of data length, N

FFT

e 13 ———
0 : .
o1 ‘.
|
/
ol [
!
ol [[
wf / |
f : / / I
al | \ / [bon I o
/ \ Ja . / iRy RIS
— / \ \ | [1A A
- am| | \ / | /! [z |00/ | [
— / \/ \ /A | TR L\
/ \ { \ f \ A " /
\ [y /0 f { oA A Y
our \ / VoSN | 1 o2l A JAN B B
| / N/ : / | | Vol [, f
\ / / y Y fo |
o | / N \ VoL oy
| NS o1 \/ . — \/
Que ‘\,' 4 ¥ h ~ N - v
5 4 = 0 O [g Ez =
ST———

FFT

il f .‘"\I i
! I\ . ' r i \
) \ AN | |
=TEAA I AW [WS
[ERWATY Vo L VoA AV
N_128 A A Y AV A I IR VIR T 4
i VAL VR " Vi pu |
o) VA AV LV JI I‘u <l 1l |
o0 | V) 1 | .‘I \ i | b [
7 "‘.." v/ \,‘ 7 ‘_I‘ i
A

N=1024 '* W)PI'J i M’MP]'W“‘”‘

H i;_
H —
A ————

uuuuuuuuuuuu

. Low
resolution

High

resolution

The DFT approximation to the DTFT

2
DTFT at frequency w = il DFT:
NT
N-—-1 o .
— —J15n
X(eij Z n E_JN np Xp = ngo rpe 7N

e Ideally the DFT shouldbe a 'good’ approximation to the DTFT

 Intuitively the approximation gets better as the number of data points
N increases

« This is illustrated in the previous slide — resolution gets betteras N
Increases (more, narrower, peaks in spectrum).
How to evaluate this analytically?

— View the truncation in the summation as a multiplication by a rectangle
window function

— Then, in frequency domain, multiplication becomes convolution

Analysis:
Consider DTFT:

eij E : T, € —jan

n=—oo

Truncate the summation, as for the DFT:

eng E :xne jnwT

Now, note that this is equivalent to an infinite summation, but with x,
pre-multiplied by a rectangle window function:

GJWT E Wy Ty € —gan

n=—oo

with
{1, n=01,2, .., N—1
W, =

0, otherwise

05t

051

-100

-50

50

100

15

05¢

-50

50

100

15

0.5

05

1.5

-50

50

100

Xw (eij)

DTFT of w, is W(e’?)

Z {x,w,}e gnwT

> 1 [L .

Z T {— W(eje)ejnede} e Inwl
= 21 Jo

1 [0 (WT—6)
% W(el”) n_z_oo T, e’ do

1 27])
o W (%) X (e7T=9)) dp

We see that the spectrum of the windowed signal is the convolution of the
infinite duration signal spectrum and the window spectrum.

What is the DTFT of the window w,,”

[Subst. 8 = wT' - makes no difference to form of results]:

N—1
W) = > 1e
n=0

o~ (N=1)0/2 sin(IN6/2)
sin(60/2)

[Check you can get this result yourself as an extra examples question]

N=32

N=16

Rectangular Window Spectrum

Central "Lobe’|
Sidelobes

!
2 1 0 1
T T T T T T T
L W L
3 2 K 0 1 2 3

Lobe width
Inversely
proportional
to N

Now, imagine what happens when the sum of two frequency components is DFT-ed:
zn, = exp(jwinT) + exp(jwanT)
The DTFT is given by a train of delta functions:

X (e7T) =20 37 §(wT + 2nm — wiT) + 6(wT + 2nm — wyT)

Hence the windowed spectrum is just the convolution of the window spectrum with
the delta functions:

Now consider the DFT for the data:

Both components

separately s

Componenti—__ (1 |1 componen

Both components

Together s

Companent 2

Summary

The rectangular window introduces broadening of any frequency components
(‘smearing’) and sidelobes that may overlap with other frequency components
(‘leakage’).

The effect improves as N increases

However, the rectangle window has poor properties and better choices of w,
can lead to better spectral properties (less leakage, in particular) —i.e. instead
of just truncating the summation, we can pre-multiply by a suitable window
function w,, that has better frequency domain properties.

More on window design in the filter design section of the course — see later

