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Course Overview

• 12 Lectures
• Topics:

– Digital Signal Processing
– DFT, FFT

– Digital Filters
– Filter Design
– Filter Implementation

– Random signals
– Optimal Filtering
– Signal Modelling

• Books:
– J.G. Proakis and D.G. Manolakis, Digital Signal Processing 3rd edition, Prentice-Hall.
– Statistical digital signal processing and modeling -Monson H. Hayes –Wiley

• Some material adapted from courses by Dr. Malcolm Macleod, Prof. Peter Rayner and Dr. 
Arnaud Doucet



Digital Signal Processing - Introduction

• Digital signal processing (DSP) is the generic term for techniques such as 
filtering or spectrum analysis applied to digitally sampled signals. 

• Recall from 1B Signal and Data Analysis that the procedure is as shown 
below:

• is the sampling period

• is the sampling frequency

• Recall also that low-pass anti-aliasing filters must be applied before A/D 
and D/A conversion in order to remove distortion from frequency 
components higher than              Hz (see later for revision of this).



• Digital signals are signals which are sampled in time (“discrete time”) and 
quantised.

• Mathematical analysis of inherently digital signals (e.g. sunspot data, tide 
data) was developed by Gauss (1800), Schuster (1896) and many others 
since.

• In 1948 A H Reeves proposed Pulse Code Modulation for digital 
transmission of signals.

• Digital storage of sampled analogue signals was used from the 50s, and 
is now common - DAT, CD etc.

• Electronic digital signal processing (DSP) was first extensively applied in 
geophysics (for oil-exploration) then military applications, and is now 
fundamental to communications, broadcasting, and most applications of 
signal and image processing.



There are many advantages in carrying out digital rather than analogue 
processing; among these are flexibility and repeatability. 

The flexibility stems from the fact that system parameters are simply numbers 
stored in the processor. Thus for example, it is a trivial matter to change the cut-
off frequency of a digital filter whereas a lumped element analogue filter would 
require a different set of passive components. Indeed the ease with which 
system parameters can be changed has led to many adaptive techniques 
whereby the system parameters are modified in real time according to some 
algorithm. Examples of this are adaptive equalisation of transmission systems, 
adaptive antenna arrays which automatically steer the nulls in the polar diagram 
onto interfering signals. Digital signal processing enables very Digital signal 
processing enables very complex linear and non-linear processes to be 
implemented which would not be feasible with analogue processing. For 
example it is difficult to envisage an analogue system which could be used to 
perform spatial filtering of an image to improve the signal to noise ratio.

DSP has been an active research area since the late 1960s but applications 
tended to be only in large and expensive systems or in non real-time where a 
general purpose computer could be used. However, the advent of d.s.p chips 
enable real-time processing to be performed at very low cost and already this 
technology is commonplace in domestic products.



Sampling Theorem (revision from 1B)



Sampled Signal Spectra:

Continuous signal g(t)

Sampled signal
(various values of         )

No Aliasing

Aliasing





Sampling Theorem: Summary

• Theorem shows us that we may represent a signal perfectly in the 
digital domain, provided the sampling rate is at least twice the 
maximum frequency component (`bandwidth’) of the signal

• Denote the sampled values of a signal/function using the shorthand:



The DFT and the FFT

• The Discrete Fourier Transform is the standard way to transform a 
block of sampled data into the frequency domain (see IB)

• The Fast Fourier Transform (FFT) is a fast algorithm for 
implementation of the DFT

• The FFT revolutionised Digital Signal Processing. It is an elegant and 
highly effective algorithm that is still the building block used in many 
state-of-the-art algorithms in speech processing, communications, 
frequency estimation, …



The Discrete Time Fourier Transform (DTFT)





The Discrete Fourier Transform (DFT)







[You should check that you can show these results from first principles]



Can think of this as a vector operation:
• Take a vector of samples as input:

• Get a vector of frequency values as output:

Can write this as:

where           is the 
appropriate (NxN)
matrix



The Fast Fourier Transform (FFT)



Derivation

• The FFT derivation relies on redundancy in the calculation of the basic 
DFT

• A recursive algorithm is derived that repeatedly rearranges the problem 
into two simpler problems of half the size

• Hence the basic algorithm operates on signals of length a power of 2, 
i.e.

(for some integer M)

• At the bottom of the tree, we have the classic FFT `butterfly’ structure 
(details later):



First, take the basic DFT equation:

Now, split the summation into two parts: one for even n and one for odd n:







Two complex 
data in 

Two complex 
data out 

Multiplication by Wp 

A 

B 

A + BWp 

A – BWp 

Or, in more compact form: (‘Butterfly’)



Computational load:





A flow diagram for a N=8 DFT is shown below:

Input: Output:









Computational Load of full FFT algorithm:

Direct DFT

FFT

The type of FFT we have considered, where N = 2M, is called a radix-2 FFT.  It has
M = log2 N stages, each using N / 2 butterflies

Since a complex multiplication requires 4 real multiplications and 2 real additions, and 
a complex addition/subtraction requires 2 real additions, a butterfly requires 10 real 
operations.  Hence the radix-2 N-point FFT requires 10( N / 2 )log2 N real operations 
compared to about 8N2 real operations for the DFT.

This is a huge speed-up in typical applications, where N is 128 – 4096:



Input Output



The Inverse FFT (IFFT)

Apart from the scale factor 1 / N, the Inverse DFT has the same form as the DFT, except that the 
conjugate W* replaces W.  Hence the computation algorithm is the same, with a final scaling by 1 / N.

Other types of FFT

There are many FFT variants. The form of FFT we have described is called “decimation in time”; there is 
a form called “decimation in frequency” (but it has no advantages).

The "radix 2" FFT must have length N a power of 2.  Slightly more efficient is the "radix 4" FFT, in which 2-
input 2-output butterflies are replaced by 4-input 4-output units.  The transform length must then be a power 
of 4 (more restrictive).

A completely different type of algorithm, the Winograd Fourier Transform Algorithm (WFTA), can be used 
for FFT lengths equal to the product of a number of mutually prime factors (e.g. 9*7*5 = 315 or 5*16 = 80).  
The WFTA uses fewer multipliers, but more adders, than a similar-length FFT.

Efficient algorithms exist for FFTing real (not complex) data at about 60% the effort of the same-sized 
complex-data FFT.

The Discrete Cosine and Sine Transforms (DCT and DST) are similar real-signal algorithms used in 
image coding.



Applications of the FFT

There FFT is surely the most widely used signal processing algorithm of all

It is the basic building block for a large percentage of algorithms in current usage

Specific examples include:

• Spectrum analysis – used for analysing and detecting signals 
• Coding – audio and speech signals are often coded in the frequency domain using FFT 
variants (MP3, …)
• Another recent application is in a modulation scheme called OFDM, which is used for 
digital TV broadcasting (DVB) and digital radio (audio) broadcasting (DAB).
• Background noise reduction for mobile telephony, speech and audio signals is often 
implemented in the frequency domain using FFTs
….



Case Study: Spectral analysis of a Musical Signal

Extract a short segment:

Note: looks almost 
Periodic over short time
interval 

Sample rate is 
10.025 kHz
(T=1/10,025 s)

Load this into Matlab as a vector x

Take an FFT, N=512:

X=fft(x(1:512));



Note Conjugate symmetry
as data are real: Symmetric

Symmetric Anti-Symmetric





The Effect of data length, N

N=32

N=128

N=1024

FFT

FFT

FFT

Low 
resolution

High
resolution
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The DFT approximation to the DTFT

DTFT at frequency : DFT:

• Ideally the DFT should be a `good’ approximation to the DTFT 
• Intuitively the approximation gets better as the number of data points 

N increases
• This is illustrated in the previous slide – resolution gets better as N 

increases (more, narrower, peaks in spectrum).
• How to evaluate this analytically?

– View the truncation in the summation as a multiplication by a rectangle 
window function

– Then, in frequency domain, multiplication becomes convolution



Analysis:









N=32

Central `Lobe’

Sidelobes

N=4

N=8

N=16

N=32

Lobe width 
inversely
proportional
to N



Now, imagine what happens when the sum of two frequency components is DFT-ed:

The DTFT is given by a train of delta functions:

Hence the windowed spectrum is just the convolution of the window spectrum with
the delta functions:  



Both components 
separately

Both components 
Together

ωΤ

Now consider the DFT for the data:



Summary

• The rectangular window introduces broadening of any frequency components 
(`smearing’)  and sidelobes that may overlap with other frequency components 
(`leakage’). 

• The effect improves as N increases
• However, the rectangle window has poor properties and better choices of wn

can lead to better spectral properties (less leakage, in particular) – i.e. instead 
of just truncating the summation, we can pre-multiply by a suitable window 
function wn that has better frequency domain properties. 

• More on window design in the filter design section of the course – see later



3F3 Digital Signal Processing

Section 2: Digital Filters
• A filter is a device which passes some signals 'more' than others (`selectivity’), 

e.g. a sinewave of one frequency more than one at another frequency.
• We will deal with linear time-invariant (LTI) digital filters.
• Recall that a linear system is defined by the principle of linear superposition:

• If the linear system's parameters (coefficients) are constant, then it is Linear 
Time Invariant (LTI).

[Much of this material is based on material by Dr Malcolm Macleod]



3F3 Digital Signal Processing

Frequency response of a LTI digital system

Rather than write ωT, where ω is in rads/sec and T is the sample interval in seconds,
we will use the normalised radian frequency Ω, where Ω =ωT is in units of rads/sample. 
Hence Ω =2π is the sampling frequency, and Ω = π is half the sampling frequency.

If a single frequency cisoid xn = exp( jn Ω) is input to a linear digital system
(for all time; -∞ < n < ∞), all signals inside the system, including the output signal, will also
have time variation of the form exp( jn Ω).

Thus if 
xn = exp( jn Ω)

then
yn = β(Ω) exp( jn Ω),

where β(Ω) is a complex function of frequency, called the frequency response of the system. 
The 'magnitude' response is simply | β(Ω) |.
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Write the input data sequence as:

And the corresponding output sequence as:

x
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The linear time-invariant digital filter can then be described by the difference 
equation:

 xn 

yn b0 bM 

a1 aN 

= unit delay 
A direct form implementation of (3.1) is:
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The operations shown in the Figure above are the full set of possible linear 
operations:

• constant delays (by any number of samples),

• addition or subtraction of signal paths,

• multiplication (scaling) of signal paths by constants - (incl. -1),

Any other operations make the system non-linear.



3F3 Digital Signal ProcessingMatlab filter functions

Matlab has a filter command for implementation of linear digital filters.

The format is

y = filter( b, a, x);

where 
b = [b0 b1 b2 ... bM ]; a = [ 1  a1 a2 a3 ...  aN ];

So to compute the first P samples of the filter’s impulse response,

y = filter( b, a, [1 zeros(1,P)]);

Or step response,
y = filter( b, a, [ones(1,P)]);

To evaluate the frequency response at n points equally spaced in the normalised frequency
range θ=0 to θ= π,  Matlab's function freqz is used: 

freqz(b,a,n);
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Filtering example:

Generate a Gaussian random noise sequence:

Matlab code:

x=randn(100000,1);
plot(x)
plot(abs(dft(x)))
soundsc(x,44100)

a=[1 -0.99 0.9801];
b=[1 –0.1 –0.56];

y=filter(b,a,x);
plot(y)
plot(abs(dft(y)))
soundsc(y,44100) Selective amplification

Of one frequency





3F3 Digital Signal Processing

Impulse Response
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The roots of the numerator polynomial in H(z) are known as the zeros, and the roots of 
the denominator polynomial as poles. In particular, factorize H(z) top and bottom:

Transfer Function, Poles and Zeros
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Frequency Response
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System has 2 poles (x) 
and 2 zeros (o)Im(z)

X

X

O

unit circle

O
-1 1

Proceed around the 
unit circle with 
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Im(z)

X

X

O

unit circle

O
-1 1

Transfer function:

Frequency response:

C1C2

D1D2
=

C1

C2

D2

D1
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Im(z)

X

X

O

unit circle

O
-1 1C1

C2

D2

D1

The magnitude of the frequency 
response is given by       times the 
product of the distances from the 
zeros to              divided by the 
product of the distances from the 
poles to 

The phase response is given by the 
sum of the angles from the zeros to      
minus the sum of the angles from 
the poles to                 plus a linear 
phase term (M-N)Ω
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Im(z)

X

X

Oω

unit circle

O
-1 1C1

C2

D2

D1

Thus when                   'is close 
to' a pole, the magnitude of the 
response rises (resonance). 

When                    'is close to' a 
zero, the magnitude falls (a 
null).

The phase response – more 
difficult to get “intuition”, but 
similar principle applies
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Calculate frequency response of filter in Matlab:

b=[1 -0.1 -0.56];
a=[1 -0.9 0.81];
freqz(b,a)

Peak close to pole frequency

Troughs at zero frequencies
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Distance from unit 
circle to zero

Distance from unit 
circle to pole
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Design of Filters
The 4 classical standard frequency magnitude responses are:

Lowpass, Highpass, Bandpass,  and Bandstop

Consider e.g. Lowpass:

Gain

1.0

Pass band Stop band

Transition band

0 π
Normalised Frequency

fp fsFrequency band where signal is passed is 
passband

Frequency band where signal is 
removed is stopband
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Ideal Low-pass Filter
• Low-pass: designed to pass low frequencies from zero 

to a certain cut-off frequency and to block high 
frequencies

Ideal Frequency Response
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Ideal High-pass Filter
• High-pass: designed to pass high frequencies from a 

certain cut-off frequency to π and to block low 
frequencies

Ideal Frequency Response
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Ideal Band-pass Filter
• Band-pass: designed to pass a certain frequency range 

which does not include zero and to block other 
frequencies

Ideal Frequency Response
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Ideal Band-stop Filter
• Band-stop: designed to block a certain frequency range 

which does not include zero and to pass other 
frequencies

Ideal Frequency Response
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Ideal Filters – Magnitude Response
Ideal Filters are usually such that they admit a gain of 1 in a given 
passband (where signal is passed) and 0 in their stopband (where 
signal is removed).
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It is impossible to implement the above responses (or any response with finite width constant
magnitude sections).  Any realisable filter can only approximate it. 

[ Another requirement for realisability is that the filter must be causal (i.e. hn=0,  n<0). ]

Hence a typical filter specification must specify maximum permissible deviations from the ideal
- a maximum passband ripple ∂p and a maximum stopband amplitude ∂s 
(or minimum stopband attenuation) :



3F3 Digital Signal Processing

These are often expressed in dB:  

passband ripple = 20 log10 (1+∂p ) dB, 

or peak-to-peak passband ripple ≅ 20 log10 (1+2∂p ) dB;

minimum stopband attenuation = -20 log10 (∂s ) dB.

Example: ∂p = 6%:

peak-to-peak passband ripple ≅ 20 log10 (1+2∂p ) = 1dB;

∂s = 0.01:  

minimum stopband attenuation = -20 log10 (∂s ) = 40dB.

The bandedge frequencies are often called corner frequencies, particularly when
associated with specified gain or attenuation (eg gain = -3dB).
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Other standard responses:

Gain

1.0

Pass band
Stop band

Transition band

0 π

Normalised Frequency

High Pass:

fpfs
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Gain

1.0

0 π

Normalised Frequency

Band Pass:

Pass band

Stop band
Stop band

Transition bands
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Gain

1.0

0 π

Normalised Frequency

Band Stop:
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FIR Filters

The simplest class of digital filters are the Finite Impulse Response 
(FIR) filters, which have the following structure:

 xn 

yn 

b0 bM 

= unit delay

and difference equation:
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Can immediately obtain the impulse response, with xn= δn

Hence the impulse response is of finite length M+1, as required

FIR filters also known as feedforward or non-recursive, or transversal
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Design of FIR filters
Given the desired frequency response D(Ω) of a filter, can compute an 

appropriate inverse DTFT to obtain its ideal impulse response.  Since 
the coefficients of an FIR filter equate to its impulse response, this 
would produce an “ideal” FIR filter.

However, this “ideal” impulse is not actually constrained to be of finite 
length, and it may be non-causal (i.e. have non-zero response at 
negative time).  Somehow we must generate an impulse response 
which is of limited duration, and causal

In order to obtain the coefficients, simply inverse DTFT the desired 
response (since impulse response is inverse DTFT of frequency 
response):
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If the "ideal" filter coefficients dn are to be real-valued, then D(Ω) must be conjugate 
symmetric, i.e. D(-Ω) = D*(Ω) .  We will consider the simplest case, a frequency response 
which is purely real, and therefore symmetric about zero frequency.

For example, consider an ideal lowpass response,  

D(Ω)=1,     |Ω|< Ωc,     
D(Ω)=0, Ωc <|Ω|< π :

Ω-Ωc +Ωc

D(Ω)
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The ideal filter coefficients can in this case be calculated exactly:

This 'sinc' response is symmetric about sample n=0, and infinite in extent :

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n



3F3 Digital Signal Processing

33

To implement an order-M FIR filter, assume we select only a finite length section of dn.

For the sinc response shown above, the best section to select (that is, the one which gives
minimum total squared error) is symmetric about 0, i.e. 

[ The resulting filter is non-causal, but it can be made causal simply by adding delay.]

This selection operation is equivalent to multiplying the ideal coefficients by a
rectangular window extending from -M/2 to M/2.  

We can compute the resulting filter frequency response, which is a 
“truncated Fourier series approximation” of D(Ω), given by
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This is illustrated below for the case M=24 (length 25)
and Ωc= π /2  (cut-off frequency = 0.25 x sample frequency). 

Note the well known Gibb's phenomenon (an oscillatory error, increasing in magnitude
close to any discontinuities in D(Ω) ).
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The actual filter would require an added delay of M/2 samples, which does not affect 
the amplitude response, but introduces a linear phase term to the frequency response.

Now replot the frequency response on a dB amplitude scale.

The sidelobes due to the rectangular window can be clearly seen:
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| D |
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Mainlobe First sidelobe

Sidelobes
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The high sidelobe level close to the passband, and the
slow decay of sidelobe level away from the passband, 
make this an unsatisfactory response for most purposes.

Use of a window function

A good solution is to create the required finite number of 
filter coefficients by multiplying the infinite-length coefficient
vector dn by a finite-length window wn with non-rectangular shape, e.g. the raised 
cosine (Hann or Hanning) window function,
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Leading to a much improved frequency response, illustrated below:

The sidelobes have been greatly reduced, but the transition from 
passband to stopband has been widened.  The -3dB frequency has moved 
from 1.55 rad/sample down to 1.45 rad/sample, illustrating the general point 
that the choice of window affects the frequencies at which specified gains 
are achieved.

Again plotting the response on a dB amplitude scale, we have:
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-80

-60

-40

-20

0

20

0 0.5 1 1.5 2 2.5 3
Normalised radian frequency

| D |
(dB)

Transition band

The greatly reduced first sidelobe level, more rapid decay of sidelobes, 
and the broader transition band, are clearly seen.
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Analysis

Frequency domain 
convolution
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To see the effect of the frequency domain convolution, see the example below, 
for a rectangle window of length 16:
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Example window functions:
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Using the window method for FIR filter design

The window method is conceptually simple and can quickly design filters to 
approximate a given target response.  However, it does not explicitly impose 
amplitude response constraints, such as passband ripple, stopband attenuation, or 
3dB points, so it has to be used iteratively to produce designs which meet such 
specifications.

There are 5 steps in the window design method for FIR filters.

•Select a suitable window function.

•Specify an 'ideal' response D(Ω).

•Compute the coefficients of the “ideal” filter.

•Multiply the ideal coefficients by the window function to give the filter 
coefficients.

•Evaluate the frequency response of the resulting filter, and iterate if necessary
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Example:

Obtain the coefficients of an FIR lowpass digital filter to meet these specifications:

passband edge frequency (1dB attenuation) 1.5 kHz

transition width 0.5 kHz

stopband attenuation >50 dB

sampling frequency 8 kHz
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Step 1 – Select a suitable window function

Numerous window functions available – see Matlab command `Window’

Each offer different tradeoffs of transition width, sidelobe level, …

Examples include:

Rectangle

Hann or Hanning

Hamming,

Blackman,

Kaiser - includes a 'ripple control' parameter ß which allows the designer to 
tradeoff passband ripple against transition width.

Choosing a suitable window function can be done with the aid of published data such 
as this [taken from "Digital Signal Processing" by Ifeachor and Jervis, Addison-
Wesley]:
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Name of 
window 
function

Transition 
width/ sample 
frequency

Passband ripple 
(dB)

Main lobe 
relative to side 
lobe (dB)

Maximum 
stopband 
attenuation 
(dB)

Rectangular 0.9 / N 0.75 13 21

Hann(ing) 3.1/N 0.055 31 44

Hamming 3.3/N 0.019 41 53

Blackman 5.5/N 0.0017 57 74

Kaiser (β=4.54) 2.93/N 0.0274 50

Kaiser (β=8.96) 5.71/N 0.000275 90
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However, the above table is worst-case.

For example, in earlier example the use of a Hanning window achieved a main lobe level 
of –42dB (cf –31 dB) and a normalised transition width of 0.7/2π = 0.11 (cf 3.1/N = 
3.1/25 = 0.124).

Using the table, the required stopband attenuation (50dB) can probably be obtained by 
the use of Hamming, Blackman or Kaiser windows. 

Try a Hamming window.  The table indicates that the transition width (in normalised 
freq.) is 3.3/N.  

Require a normalised transition width of 0.5/8 = 0.0625, so the required N is 52.8 (ie. 
N=53).
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Step 2 – Specify an 'ideal' response D(Ω)

The smearing effect of the window causes the transition region to spread about the 
chosen ideal bandedge:

Hence choose an 'ideal' bandedge A which lies in the middle of the wanted transition 
region, i.e. frequency = 1.5+0.5/2 = 1.75 kHz  

So, A = 1.75/8 x 2π rad/sample.
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Step 3 – Compute the coefficients of the ideal filter 

The ideal filter coefficients dn are given by the inverse Discrete time Fourier transform of 
D(Ω),

For our example this can be done analytically, but in general (for more complex D(Ω) 
functions) it will be computed approximately using an N-point Inverse Fast Fourier 
Transform (IFFT).  

Given a value of N (choice discussed later), create a sampled version of D(Ω):

[ Note frequency spacing 2π/N rad/sample ]
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If the Inverse FFT, and hence the filter coefficients, are to be purely real-valued, the 
frequency response must be conjugate symmetric:

(1)

Since the Discrete Fourier Spectrum is also periodic, we see that

(2)

Equating (1) & (2)  we must set 
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Matlab code:

N=64;          ic = N*1.75/8 + 1;

D=zeros(1,N);

D(1:ic)=ones(1,ic);

D((N-ic+2):N)=ones(1,ic-1);

da=real(ifft(D));

Figure.  Approximate ideal responses, N=64 and N=512.
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The IFFT gives the LH plot in the above Fig. (repeated below)

Observe the time domain aliasing caused by too short a transform, so try N=512.

Now s = 2π/512, so A/s = 56, so fill elements 0 to 56 and 456 to 511 of the discrete 
spectrum with ones, and the rest with zeros.

The first 128 of the 512 samples of the new approximate ideal response are shown in the 
RH plot of the Fig. below
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STEP 4 – Multiply to obtain the filter coefficients

The choice of a zero phase spectrum resulted in an ideal impulse response centred on 
sample 0 of the output, and symmetric

The centre of the window function is therefore to be aligned with sample 0, and the 
negative-indexed samples of the window are moved up to the top end of the block, by 
adding N to their indexes.  (Remember, the DFS is periodic with period N.)

The Figure below shows, on the left, the first 40 samples of the ideal coefficient array, that 
is, the central and RH samples of the ideal impulse response. 

It also shows the central and RH samples of the window function.  The RH plot is their 
product, the central and RH samples of the resulting filter impulse response.
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Step 5 – Evaluate the frequency response and iterate

If the resulting filter does not meet the specifications, either adjust D(Ω) (for example, 
move the band edge) and repeat from step 2, or adjust the filter length and repeat from step 
4, or change the window (and filter length) and repeat from step 4.

The frequency response is computed as the DFT of the filter coefficient vector.

In our example this gives the (Discrete Fourier) spectrum shown below.

The specifications are almost met; the LH plot shows the response is not quite -50dB at 2 
kHz.  However, the RH plot shows that the -1dB frequency is at 1.625 kHz , well above 
the limit of 1.5kHz.  Hence simply reducing the edge frequency A of the ideal response, 
and repeating the design process, is all that is required in this case to meet the 
specification.
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Performance of the window method of FIR filter design

The window method is conceptually simple and easy to use iteratively.  It can be used for 
non-linear-phase as well as linear-phase responses.

However, it is inflexible; for example, if a bandpass filter has different upper and lower 
transition bandwidths, the narrower of them dictates the filter length.  There is no 
independent control over passband ripple and stopband attenuation.  The bandedge 
frequencies are not explicitly controlled by the method.

It has no guaranteed optimality - a shorter filter meeting the specifications can almost 
always be designed.
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Matlab implementation of the window method

Matlab has two routines for FIR filter design by the window method, FIR1 and FIR2.

B = FIR2(N,F,M) designs an Nth order FIR digital filter and returns the filter 
coefficients in length N+1 vector B.

Vectors F and M specify the frequency and magnitude breakpoints for the filter such that 
PLOT(F,M) would show a plot of the desired frequency response.

The frequencies in F must be between 0.0 < F < 1.0, with 1.0 corresponding to half the 
sample rate. They must be in increasing order and start with 0.0 and end with 1.0.

Note the frequency normalisation used by Matlab, where 1.0 equals half the sample rate.

By default FIR2 uses a Hamming window.  Other available windows can be specified as an 
optional trailing argument.  For example, B = FIR2(N,F,M,bartlett(N+1)) uses a 
Bartlett window, or B = FIR2(N,F,M,chebwin(N+1,R)) uses a Chebyshev window.  
Other windows are computed using routines Boxcar, Hanning, Bartlett, 
Blackman, Kaiser and Chebwin.
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Design of FIR filters by optimisation

The second method of FIR design considered is non-linear optimisation.

First consider a classic algorithm devised by Parks and McClellan, which designs linear 
phase (symmetric) filters or antisymmetric filters of any of the standard types.

Digression: Linear Phase Filters
The frequency response of the direct form FIR filter may be rearranged by grouping the 
terms involving the first and last coefficients, the second and next to last, etc.:
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and then taking out a common factor exp( -jMΩ/2):

If the filter length M+1 is odd, then the final term in curly brackets above is the single term 
bM/2, that is the centre coefficient ('tap') of the filter.
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Symmetric impulse response: if we put bM = b0, bM-1 = b1, etc., and note that 
exp(jθ)+exp(-jθ) = 2cos(θ), the frequency response becomes

This is a purely real function (sum of cosines) multiplied by a linear phase term, hence 
the response has linear phase, corresponding to a pure delay of M/2 samples, ie half the 
filter length.

A similar argument can be used to simplify antisymmetric impulse responses in terms of a 
sum of sine functions (such filters do not give a pure delay, although the phase still has a 
linear form π/2-mΩ/2)



3F3 Digital Signal Processing

59

Minimax design of linear phase FIR filters

The filters designed by the Parks and McClellan algorithm have minimised maximum 
error ("minimax error") with respect to a given target magnitude frequency response, 
i.e. minimise the following error with respect to the filter H:

The method uses an efficient algorithm called the Remez exchange algorithm.

In this algorithm (which copes with an arbitrary number of pass- and stop-bands) the 
error (i.e. difference between actual and desired frequency response magnitude) is 
multiplied by a weighting factor which can be different for each band. 

The program then minimises the maximum weighted error.  

The optimum solution has many frequencies (approximately equal in number to half 
the filter length) at which the weighted error equals the minimax value:
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Figure - Overall and passband-only frequency response of length 37 
minimax filter 

Many ripples achieve maximum 
Permitted amplitude

Passband
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The weights can be determined in advance from a minimax specification. 

For example, if a simple lowpass filter has a requirement for the passband gain to be in the 
range 1-∂p to 1+∂p, and the stopband gain to be less than ∂s, the weightings given to the 
passband and stopband errors would be ∂s and ∂p respectively.

Formulae are available for estimating the required filter length (eg Ifeachor and Jervis, 
sec. 6.6.3); these have been devised for specific filter types (lowpass, bandpass), and for 
narrow transition bandwidths.  Unfortunately, they are not reliable for all specifications (as 
shown in the following example).

The method is used iteratively, adjusting the filter length until the specifications are met.

The detailed algorithm is beyond the (time!) constraints of this module.
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Example

Obtain the coefficients of an FIR lowpass digital filter to meet these specifications:

passband edge frequency 1.625 kHz

passband pk-to-pk ripple <1 dB

transition width 0.5 kHz

stopband attenuation >50 dB

sampling frequency 8 kHz

The passband ripple corresponds to ±6%, while the stopband attenuation is 0.32%, hence 
the weighting factors are set to 0.32 and 6.  

Using the relevant length estimation formula gives order N=25.8 hence N=26 was chosen, 
ie length =27.  This proved to be substantially too short, and it was necessary to increase the 
order to 36 (length 37) to meet the specifications.
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The Matlab routine is called as follows:

b = remez(n,f,m) designs an nth order FIR digital filter and returns the filter 
coefficients in length n+1 vector b.  Vectors f and m specify the frequency and magnitude 
breakpoints [as for FIR2].  b = remez(n,f,m,w) uses vector w to specify weighting in 
each of the pass or stop bands in vectors f and m.

Note again the frequency normalisation, where 1.0 equals half the sample rate.

The call which finally met this filter specification was:

h = remez(36,[0 1.625 2 4]/4, [1 1 0 0], [0.32 6]);

The resulting frequency response is as shown previously:
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The Parks-McClellan Remez exchange algorithm is widely available and versatile.

Its main apparent limitation is that linear phase in the stopbands is never a real 
requirement, and in some applications strictly linear phase in the passband is not needed 
either.

The linear phase filters designed by this method are therefore longer than optimum non-
linear phase filters.

However, symmetric FIR filters of length N can be implemented using the folded delay 
line structure shown below, which uses N/2 (or (N+1)/2) multipliers rather than N,so the 
longer symmetric filter may be no more computationally intensive than a shorter non-
linear phase one.

 xn 

b0 b(N-1)/2 

yn 
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Further options for FIR filter design

More general non-linear optimisation (least squared error or minimax) can of course 
be used to design linear or non-linear phase FIR filters to meet more general frequency 
and/or time domain requirements. 

Matlab has suitable optimisation routines.
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IIR filter design

To give an Infinite Impulse Response (IIR), a filter must be recursive, that is, incorporate 
feedback.  (But recursive filters are not necessarily IIR).  The terms "Recursive" or 
"IIR" filter are used to describe filters with both feedback and feedforward terms.  

There are two classes of method for designing IIR filters: 

(i) generation of a digital filter from an analogue prototype,  

(ii) direct non-linear optimisation of the transfer function.

The most useful method in practice is the bilinear transform.
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Design of an IIR transfer function from an analogue prototype

Analogue filter designs are represented as Laplace-domain (s-domain) transfer functions.  
The following methods of generating a digital filter from the analogue prototype are not
much used:

• Impulse invariant design - The digital filter impulse response equals the sampled 
impulse response of the analogue filter.  But the resulting frequency response may be 
significantly different (due to aliasing). 

• Step invariant design – As above but step responses are equal.  Used in control 
system analysis.

• Ramp invariant design – As above but ramp responses are equal.

• Forward difference (Euler) – resulting digital filter may be unstable.

• Backward difference.

The most useful method in practice is the bilinear transform.
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Properties of the bilinear transform

The bilinear transform produces a digital filter whose frequency response has the same 
characteristics as the frequency response of the analogue filter (but its impulse response 
may then be quite different).  

There are excellent design procedures for analogue prototype filters, so it is sensible to 
utilise the analogue technology for digital design.

We define the bilinear transform (also known as Tustin's transformation) as the 
substitution:

•Note 1. Although the ratio could have been written (z-1)/(z+1), that causes unnecessary 
algebra later, when converting the resulting transfer function into a digital filter;

•Note 2. In some sources you will see the factor  (2/T)  multiplying the RHS of the 
bilinear transform; this is an optional scaling, but it cancels and does not affect the final 
result.
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To derive the properties of the bilinear transform, solve for z, and put s = a+jω:

Look at two important cases:

1. The imaginary axis, i.e. a=0. This corresponds to the boundary of stability for the 
analogue filter’s poles.

With a=0, we have 

Hence, the imaginary (frequency) axis in the s-plane maps to the unit circle in the z-plane

2. With a<0, i.e. the left half-plane in the s-plane we have
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Thus we conclude that the bilinear transform maps the Left half s-plane onto the interior of 
the unit circle in the z-plane:

This property will allow us to obtain a suitable frequency response for the digital filter, and 
also to ensure the stability of the digital filter.

s-plane
z-plane

1

1
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Stability of the filter
Suppose the analogue prototype H(s) has a stable pole at a+jω, i.e.

Then the digital filter               is obtained by substituting                          ,

Since H(s) has a pole at a+jω,                          has a pole at                              because

However, we know that                           lies within the unit circle. Hence the filter is 
guaranteed stable provided H(s) is stable.

Bilinear transform
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Frequency Response of the Filter
The frequency response of the analogue filter is

The frequency response of the digital filter is 

Hence we can see that the frequency response is warped by a function 

Analogue Frequency Digital Frequency
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Hence the BLT preserves the following important features of H(jω):

(1) the ω↔Ω mapping is monotonic, and

(2) ω = 0 is mapped to Ω = 0, and ω = ∞ is mapped to Ω = π (half the 
sampling frequency).  Thus, for example, a lowpass response that decays to zero at ω = ∞
produces a lowpass digital filter response that decays to zero at Ω = π.

Figure - Frequency warping

If the frequency response of the analogue filter at frequency ω is H(jω), then the frequency 
response of the digital filter at the corresponding frequency Ω = 2 arctan(ω) is also H(jω).  
Hence -3dB frequencies become -3dB frequencies, minimax responses remain minimax, etc.
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Design using the bilinear transform

The steps of the bilinear transform method are as follows:

1. “Warp” the digital critical (e.g. bandedge or "corner") frequencies Ωi , in other words 
compute the corresponding analogue critical frequencies ωi = tan(Ωi/2).

2. Design an analogue filter which satisfies the resulting filter response specification.

3. Apply the bilinear transform  to the s-domain transfer function of the analogue filter to 
generate the required z-domain transfer function.
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Example – Bilinear Transform

Design  a first order lowpass digital filter with -3dB frequency of 1kHz and a sampling 
frequency of 8kHz

Consider the first order analogue lowpass filter

which has a gain of 1 (0dB) at zero frequency, and a gain of -3dB ( = √0.5 ) at ωc rad/sec (the 
"cutoff frequency ").

First calculate the normalised digital cutoff frequency:

Calculate the equivalent pre-warped analogue filter cutoff frequency:

( ) ( )Cs
sH

ω+
=

1
1



3F3 Digital Signal Processing

76

Apply Bilinear Transform:

Normalise to unity for
recursive implementation

i.e. as a direct form implementation:

Keep 0.2929 factorised to save
one multiply
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Note that the digital filter response at zero frequency equals 1, as for the analogue 
filter, and the digital filter response at Ω = π equals 0, as for the analogue filter at 
ω = ∞.  The –3dB frequency is Ω = π/4, as intended.
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Pole-zero diagram for digital design.

Note that:
a) The filter is stable, as expected
b) The design process has added an extra zero compared to the prototype

- this is typical of filters designed by the bilinear transform.
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There is a Matlab routine BILINEAR which computes the bilinear transformation. 

The example above could be computed, for example, by typing

[NUMd,DENd] = BILINEAR([0.4142],[1 0.4142],0.5)

which returns

NUMd = 

0.2929    0.2929

DENd = 

1.0000   -0.4142
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Analogue filter prototypes   

Analogue designs exist for all the standard filter types (lowpass, highpass, bandpass, 
bandstop).  The common approach is to define a standard lowpass filter, and to use 
standard analogue-analogue transformations from lowpass to the other types, prior to 
performing the bilinear transform. 

It is also possible to transform from lowpass to other filter types directly in the digital 
domain, but we do not study these transformations here.

Important families of analogue filter (lowpass) responses are described in this section, 
including:
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1. Butterworth – maximally flat frequency response near ω=0

2. Chebyshev – equiripple response up to ωc, monotonically decreasing > ωc

3. Elliptic – equiripple in passband, equiripple in stopband.
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Butterworth (maximally flat)

An Nth-order lowpass Butterworth filter has transfer function H(s) satisfying

This has unit gain at zero frequency (s = j0), and a gain of -3dB ( = √0.5 ) at s = jωc.

The poles of H(s)H(-s) are solutions of 

i.e. at 

as illustrated on the right  for N = 3 and N = 4:

N=3 N=4
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Clearly, if λi is a root of H(s), then  - λi is a root of H(-s). 

Thus we can immediately identify the poles of H(s) as those roots lying in the left half-
plane, for a stable filter.

The frequency magnitude response is obtained as:

(*)

Butterworth filters are known as "maximally flat" because the first 2N-1 derivatives of (*) 
w.r.t. ω are 0 at ω = 0.

Matlab routine BUTTER designs digital Butterworth filters (using the bilinear transform):

[B,A] = BUTTER(N,Wn) designs an Nth order lowpass digital Butterworth filter and 
returns the filter coefficients in length N+1 vectors B and A.  The cut-off frequency Wn must 
be 0.0 < Wn < 1.0, with 1.0 corresponding to half the sample rate.
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Butterworth order estimation

Equation (*) can be used for estimating the order of Butterworth filter required to meet a 
given specification.

For example, assume that a digital filter is required with a -3dB point at Ωc = π/4, and it 
must provide at least 40dB of attenuation above Ωs = π/2.

Warping the critical frequencies gives ωc =  tan(π/8) = 0.4142 and ωs =  tan(π/4) = 1.

40dB corresponds to |H(ejΩ)|2 = 10-4, so find N by solving

⇒ 2N>10.45

Hence, since N must be integer, choose N = 6.

Matlab provides a function buttord for calculation of the required Butterworth order

( )
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Other Types of Analogue Filter
There is a wide range of closed form analogue filters.  Some are all-pole; others have zeros.  
Some have monotonic responses; some equiripple. Each involve different degrees of 
flexibility and trade-offs in specifying transition bandwidth, ripple amplitude in 
passband/stopband and phase linearity. 

The meaning of "equiripple" is illustrated in Figure 10.2, which shows a type I Chebyshev 
response which is equiripple in the passband 0<ω <ωc=1, and monotonic in the stopband.

Figure - Type I fourth order Chebyshev LPF frequency response

For a given bandedge frequency, ripple specification, and filter order, narrower transition 
bandwidth can be traded off against worse phase linearity
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Chebyshev filters are characterised by the frequency response:

Where Tn(ω) are so-called Chebyshev polynomials.

Elliptic filters allow for equiripple in both pass and stopbands. They are governed by a similar 
form:

Where E(ω) is a particular ratio of polynomials. 

Other filter types include Bessel filters, which are almost linear phase.
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Transformation between different filter types (lowpass to highpass, etc.)

Analogue prototypes are typically lowpass. In order to convert to other types of filter 
one can first convert the analogue prototype in the analogue domain, then use 
the bilinear transform to move to digital as before. 

The following procedures may be used, assuming a lowpass prototype with cutoff 
frequency equal to 1:

1. Lowpass to Lowpass

2. Lowpass to Highpass

3. Lowpass to Bandpass

4. Lowpass to Bandstop
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Example:  The transfer function of a second order Butterworth lowpass filter with cutoff 
frequency 1 is

From this, a second order highpass filter with cutoff frequency ωc can be designed:

From here, a digital highpass filter can be designed, using the bilinear transform and setting

12
1

2 ++ ss
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Comparison of IIR and FIR filters

If the desired filter is highly selective (that is, its frequency response has small transition 
bandwidths or "steep sides"), then the impulse response will be long in the time domain.  
Examples include narrowband filters and lowpass /highpass /bandpass filters with steep 
cutoffs.

For an FIR filter, a long impulse response means the filter is long (high order), so it requires 
many multiplications, additions and delays per sample.

An IIR filter has active poles as well as zeros.  Poles, acting as high-Q resonators, can provide 
highly selective frequency responses (hence long impulse responses) using much  lower filter 
order than the equivalent FIR filter, hence much lower computational cost.

Although it is still true that a more selective response requires a higher order filter.

On the other hand, the closer to linear the phase is required to be, the higher the order of IIR 
filter that is needed.  Also the internal wordlengths in IIR filters need generally to be higher 
than those in FIR filters; this may increase the implementation cost (e.g in VLSI).

An FIR filter is inherently stable, unlike an IIR filter.  Hence an FIR implementation 
involving inaccurate (finite precision, or 'quantised') coefficients will be stable, whereas an 
IIR one might not.  (However, it is desirable in either case to compute the actual frequency 
response of the filter, using the actual quantised values of the coefficients, to check the 
design.)
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Implementation of digital filters 
 
So far we have designed a digital filter to meet prescribed specifications, with the result expressed 
as a rational transfer function H(z).  We now consider implementation.  Typical options are: 
 
Implementation type Multiplication speed / cost 
1. Pre-1980 high speed hardware 
implementation 

Fixed-point.  Dedicated 
multiplier ICs.  Power-hungry, 
expensive. 

2. Pre-1980 microprocessor Fixed-point.  Microcoded.  
Slow. 

3. Fixed-point DSP IC (cheaper; 
goes faster) 

Take same time as additions 

4. Custom VLSI - fixed-point 
arithmetic IC (faster or less area 
than floating point) 

Either take same time, but 
more IC area, or same area but 
more time 

5. Floating-point μprocessor May take more time than 
additions 

6. Floating-point DSP IC Take same time as additions 
7. Custom VLSI - floating-point 
arithmetic 

Probably take same time as 
additions 

 
If speed is the main concern, then if multiplications take longer than additions, we aim to reduce 
the number of multiplications; otherwise to reduce the total operation count. 
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The use of fixed-point arithmetic takes much less area than floating-point 
(so is cheaper) or can be made to go faster.  The area of a fixed-point 
parallel multiplier is proportional to the product of the coefficient and data 
wordlengths, making wordlength reduction advantageous. 
 
Hence much work has gone into structures which allow reductions in 
• the number of multipliers; or 
• the total operation count (multipliers, adders and perhaps delays); or 
• data or coefficient wordlengths 
 
If power consumption is the concern, then reducing total operation count 
and wordlength are desirable.  Also fixed point is much better than floating 
point.  Since general multiplication takes much more power than addition, 
we try to reduce the number of multiplications, or to replace general 
multiplications by, for example, binary shifts. 
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xn 

yn b0 bM 

a1 aN 

= unit delay 

Recall the Direct Form I implementation considered so far:
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Structures for IIR filters - Cascade and Parallel 
 
Implementing a digital filter in direct form is satisfactory in (for example) Matlab's  filter  
routine, where double precision floating-point is used. 
 
However in fixed point or VLSI implementations direct form is not usually a good idea. 
 

1. alternative structures may decrease multiplications or overall computation load; 
 
2. when fixed-point coefficients are used, the response of alternative structures is much less 

sensitive to coefficient imprecision (coefficient quantisation); and 
 
3. when fixed-point data are used, alternative structures may add less quantisation noise into

the output signal. 
 
 
We therefore consider alternative forms of IIR filter, their operation count and sensitivity to 
finite precision effects. 
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Canonic form IIR sections 
 
The earlier Figure  showed an implementation with separate FIR and IIR stages, called Direct 
Form I. 
 
We can minimise the number of delay stores by putting the feedback stage first and then using 
the same delay stores for both parts.  This is called the canonic form ('canonic' means minimum), 
or Direct Form II. 
 
A canonic form filter can be of arbitrary order, but the following example has 2 poles and 2 
zeros; this is called a biquadratic section: 
  

xn 

yn 

b0 b2 

a1 a2 

X

+

X

X

X 

X 

+

+ + 

b1 [Check for yourself that 
this gives the same output
as the Direct Form I 
structure]
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Sensitivity to coefficient quantisation 
 
If the filter coefficients are quantised, the resulting errors in coefficient value cause errors in 
pole and zero positions, and hence filter response.  Consider a filter with four poles at 
z = -0.9.  If implemented as a direct form filter it would have the following denominator 
polynomial in its transfer function: 
 
(1 + 0.9z-1)4  =  1 + 3.6z-1 + 4.86z-2 + 2.916z-3 + 0.6561z-4 
 
Now let us add an "error" of -0.06 to the third coefficient, changing it from 4.86 to 4.8.  The 
roots of the resulting polynomial are 
 
 -1.5077,  -0.7775+0.4533i,  -0.7775-0.4533i, and -0.5372 
 
They have been hugely modified. The filter is unstable (first pole radius > 1). 
 
If, by contrast, the filter were implemented as a cascade of 4 first-order sections, each 
implementing a denominator term (1 + 0.9z-1), an error of the same size would have much 
less effect.  For example a change of one coefficient from 0.9 to 0.84 clearly just moves one 
root from 0.9 to 0.84: (a) a smaller change, and (b) affecting only one root. 
 
This illustrates the fact that a cascade realisation displays much lower sensitivity to 
coefficient quantisation than a direct realisation. 
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Cascades typically use first and second order sections 
 
To obtain complex (resonant) roots with real filter coefficients requires at least a second-order 
section.  Each complex root, with its inevitable conjugate, can be implemented by a single 
second-order section.  For example, a root at r exp(jΩ) and its conjugate r exp(-jΩ) generate the 
real-coefficient second-order polynomial 
 
 (1 - r exp(jΩ)z-1 )(1 - r exp(-jΩ)z-1 ) = 1 - 2rcos(Ω)z-1 + r2z-2    
 
so, to place zeros at r exp(±jΩ), set b0 = 1,  b1 = -2rcos(Ω),  b2 = r2. 
 

(In principle, b0, b1 & b2 could all be multiplied by a common scale factor, but it is usually 
advantageous to set b0 = 1 throughout, to avoid unnecessary multiplications, and use a 
single overall gain factor.) 
 

Or to place poles at r exp(±jΩ), set          a1 = -2rcos(Ω),  a2 = r2. 
 
Real poles may be implemented by first or second order sections. 
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Zeros on the unit circle 
 
Many filters (IIR and FIR) have zeros on the unit circle.  Hence r = 1 above, so that 
b2 = 1.  This does not require a multiplier. 
 
A biquadratic section with two resonant poles at radius r, frequency Ωp, and two zeros on 
the unit circle at frequency Ωz, is illustrated below. 
 
  

 
 
 
 
 
 
 
 

 
Implementing a high-order filter with many zeros on the unit circle as a cascade of 
biquadratic sections requires fewer total multiplications than a direct form implemention. 
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Parallel form IIR filters 
An IIR filter can be implemented as a parallel summation of low order sections: 
 

H1(z)

H2(z)

H3(z)

 
 
Partial Fraction Expansion is used to compute the numerator coefficients of the parallel form. 
    

( ) ( ) ( ) ( )
1 2 1 1

0 1 2 1 2 1 2
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 21 1 1 1
b b z b z A A z C C zB

a z a z c z c z a z a z c z c z

− − − −

− − − − − − − −

+ + + +
= + +

+ + + + + + + +
K

L
K  

 
The parallel form is little used, because: 
 
• It sometimes has an advantage over the cascade realisation in terms of internally generated 

quantisation noise (see later), but not much. 
• Longer coefficient wordlengths are usually required. 
• Zeros on the unit circle in the overall transfer function are not preserved, therefore no saving 

of multipliers can be obtained for filters having such zeros. 
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Finite wordlength effects in digital filters
 
Many digital filters are implemented using fixed point binary 2's-complement arithmetic.  For a B 
bit representation, with A bits before the binary point and B-A bits after it, all values in the filter are 
quantised to integer multiples of the LSB ( )ABq −−≡ 2  and the number range is 
 
 
 
 
 

     
( ) ( )( ) ( )1 12 2 2A B A Ax kq k− − − −− ≤ ≡ ≡ <

   
 
 
 
 
for example, a B=12 bit number with A=2 bits before the binary point is in the range 
-2048/1024  to  +2047/1024  inclusive.  We will represent such values as (B,A). 
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Overflow, saturation arithmetic, and scaling 
 
If the result of any calculation in the filter exceeds its number range, then overflow occurs.  By default, a value slightly 
greater than the maximum representable positive number becomes a large negative number, and vice versa.  This is 
called wraparound; the resulting error is huge.  In IIR filters it can result in very large amplitude "overflow 
oscillations". 
 
There are two strategies which can be used to avoid problems of overflow. 
 
Scaling can be used to ensure that values can never (or hardly ever) overflow, and/or saturation arithmetic can be 
used to ensure that if overflow occurs its effects are greatly reduced. 
 
In saturation arithmetic, the results of all calculations are first computed to full precision.  For example, the addition of 
2 (B,A) values results in a (B+1,A+1) value; the multiplication of a 
(B,A) value by a (C,D) value results in a (B+C-1,  A+D-1) value. 
 
Then instead of merely masking the true result to a (B,A) field, which causes overflow, the higher order bits of the true 
result are processed to detect overflow.  If overflow occurs, the maximum possible positive value or minimum possible 
negative value is returned as appropriate: 
 
 
 
 
 
 
 
Some DSP ICs incorporate saturation arithmetic hardware. 
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Scaling 
 

l1 scaling 
 
Assume that the input to a filter (or section of a filter) is bounded by |x(n)| < C, and that its 
impulse response is h(k), k=0, 1, ... .  Then its output is bounded by C Σ | h(k) |. 
 
Σ | h(k) | is known as the l1 norm of the filter impulse response.  It often does not have a 
convenient analytical form, but computing it numerically is easy. 
 
Thus if the maximum permissible output magnitude is D, overflow cannot occur provided we 
scale the output by the factor 
 

D/(C Σ | h(k) |); 
 
this is known as l1 scaling. 
 
However if we reduce the magnitude of signals, the ratio of signal power to quantisation noise 
power becomes smaller, so scaling worsens the noise performance of the filter. 
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frequency-response scaling 
 
The input signal which gives rise to the largest possible output is unlikely to occur in practice, 
so a less conservative scaling approach is often used. 
 
If the frequency response of the filter is G(exp(jΩ)), then a sinewave of frequency Ω and peak 
amplitude C at the input will give a sinewave of peak amplitude C | G(exp(jΩ)) | at the output. 
To scale so that a single sinewave cannot overflow, use scale factor 
 
 D  

( C max{ | G(exp(j )) |} )Ω
 

 
this is known as frequency-response scaling. 
 

l2 scaling 

Less conservative scaling still is obtained using the scale factor ( )2

D

C h k⎛ ⎞⎜ ⎟
⎝ ⎠∑ , which is based on 

the rms impulse response; this is known as l2 scaling. 
 

saturation arithmetic is still needed if frequency-response or l2 scaling is used 
 
If frequency response scaling or l2 scaling is used, overflow is still possible, so in IIR filters 
saturation arithmetic must then be used as well. 
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Application of scaling to a single section 
 
Consider the direct form II filter illustrated below: 
 
 
 
 

xn

yn

b0

a1

b3

a3

vn

-
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First, the internal signal vn must be scaled so that it does not overflow the number range. 
 
This is achieved by computing the impulse response from xn to vn (for l1 or l2 scaling) or 
the frequency response from X to V (for frequency response scaling). 
 
To prevent overflow of vn, the signal into the filter must be scaled before the input.  This 
may be implemented as a simple binary shift, by using the next smaller power of 2. 
 
Overflow of the filter output is then prevented by computing the impulse or frequency 
response from the input to y(n) (taking into account any scaling just introduced between 
the input and xn).  Any further scaling required is implemented by scaling all the 
coefficients of the FIR part (b0 ... bM) by the necessary scale factor. 
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Application of scaling to cascade and parallel realisations 
 
The application of scaling to a cascade realisation is based on the process described above; 
however, at each step, you must compute the impulse response or frequency response from 
the input of the overall filter to the point of interest, taking account of all scaling already 
included up to that point. 
 
Again, the scaling at section inputs may be implemented using simple binary shifts, or by 
incorporating it into the FIR coefficient scaling of the preceding section. 
 
For a parallel realisation, scaling is computed independently for each section, but all section 
outputs must be scaled by the same amount, so the overall scaling of each section must be 
made the same.  Finally scaling is applied to the final adder(s) which add together the 
outputs of the parallel sections. 
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Roundoff (quantisation) noise generation 
 
The output of a multiplier has more bits than its inputs (for example, a 16 by 16 two's 
complement multiplier outputs a 31-bit two's complement value).  Therefore to store the 
output it has to be (re)quantised (that is, low order bits have to be thrown away).  Hence
an error called quantisation noise or roundoff noise is added at that point. 
 
The noise variance at the multiplier output, assuming rounding is used, is q2 / 12, 
where q is the LSB size after quantisation.  (The same as for quantisation of analogue 
signals.) 
 
Consider the Direct Form II filter below, and assume that the output of each multiplier is 
individually quantised.   
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It is often assumed that the quantisation noise at each multiplier output is white (independent 
from sample to sample).   And also that it is independent between multipliers, so that the noise 
variances ("powers") add.   

(The assumption of whiteness is actually a very poor model if the signal is narrowband, 
but it is reasonable for large amplitude wideband signals.  The assumption of 
independence can also be poor.) 

 
The quantisation noise from the multipliers of an FIR filter (b0 ... b3 in our example) therefore 
adds white noise directly to the output signal. 
 
In IIR filters, the white quantisation noise from the feedback multipliers filter (a1, a2) is fed to 
the input of the filter, so the resulting noise spectrum at the filter output is coloured; its 
spectrum is proportional to the square of the filter's frequency response magnitude. 
 
Hence roundoff noise level is affected by data wordlengths, filter response, filter structure 
and (to a certain extent) by section ordering in cascade structures.  Further details are in 
specialist texts. 
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Hardware support for reducing quantisation noise 
 
DSP ICs, and some VLSI filters, provide an accumulator store of longer wordlength 
than the data wordlength (e.g. a 32-bit accumulator for a 16-bit DSP).  The multiplier 
outputs are accumulated at the longer wordlength, and then the accumulator output is 
only quantised once.   
 
For example, in the following figure, the three FIR additions would be into the 
accumulator, which then would be quantised to generate yn.  Similarly the two feedback 
(IIR) additions, and possibly the addition of input xn, would be into the accumulator, 
which would be quantised to generate vn.  This approach significantly reduces roundoff 
noise. 
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Limit cycles 
 
Zero-input limit cycles are self-sustaining oscillations, caused by the rounding of the results of 
computations. 
 
For example, consider the second-order filter yn = xn – 0.9 yn-2 
 
This is a stable second order IIR filter with complex poles at ±j√0.9.  If rounding to the nearest LSB is 
used at the output of the multiplier, then when yn-2 = ±1,±2,±3, or ±4 LSB, the computation 0.9yn-2 will 
give the result ±1,±2,±3, or ±4 LSB respectively.   
 
Hence a limit cycle of the form 

y(n) = 4,4,0,0,4,4,0,0,... (or the same pattern with 3,2, or 1) may occur. 
 
Effectively, the reason is that the rounding non-linearity has increased the feedback gain to 1, turning 
the system into an oscillator.  Limit cycles may occur for real or complex poles. 
 
Limit cycles are troublesome in some applications, especially with short data wordlengths, where the 
limit cycle may be relatively large.  With the longer wordlengths of DSP ICs, it is often possible to 
ignore limit cycles. 
 
One solution is to quantise toward 0 (truncation) instead of rounding the multiplier output.  But the 
extra roundoff noise due to truncation may require the data wordlength to be increased by 1 or 2 bits.  
Another solution is to use certain forms of digital filter (such as Wave filters) which do not support 
limit cycles.  However these are computationally more expensive. 
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Deadbands 
 
Consider a simple digital lowpass filter such as is commonly used for smoothing: 
 
 yn = yn-1 + α( xn-yn-1 )  (equivalent to yn = (1 - α)yn-1 + αxn ) 
 

 
 
 

 
 
 
 
The transfer function is H(z) = α / (1 - (1 - α)z-1 ).  This has unit gain at zero frequency (z=1), 
and a pole at (1 - α).  The time constant is approximately (1/α) samples, for α<<1. 
 
If | α( xn-yn-1 ) | < 0.5 LSB, (which implies | ( xn-yn-1 ) | < (0.5/α) ), then the multiplier output 
will round to zero, and the filter output will therefore remain constant.  Hence a constant output 
error, xn-yn-1, known as the deadband, arises.  It can be up to (0.5/α) LSB. 
 
If, for example, (1/α)=10000 to give a time constant of 10000 samples, then the size of the LSB 
of the internal arithmetic must be 5000 times smaller than the permissible size of the deadband.  
This implies 13 extra bits (since 212 = 4096). 
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Coefficient quantisation 
 
We showed earlier that the cascade form is much less sensitive to coefficient quantisation 
than a high order direct form filter.  (This is also true of the parallel form.) 
 
If the filter has zeros on the unit circle, as in this case, the cascade realisation has the 
advantage that these zeros stay on the unit circle (because a coefficient b2 = 1.0 is 
unaffected by quantisation), although their frequencies may be altered. 
 
A traditional way to study the relative merits of different filter structures was to analyse 
the sensitivity of the frequency response magnitude to random (often Gaussian) 
perturbations of the coefficients, and to use this as a measure of the likely sensitivity of a 
given structure to coefficient quantisation.  Various structures, including Lattice and Wave 
filters, give even lower sensitivity to coefficient quantisation than the cascade realisation.  
However, they generally require a substantially increased number of multipliers. 
 
For a specific filter design, you should compute the actual filter response with quantised 
coefficients, and then modify it if necessary. 
 
In dedicated hardware, such as custom ICs, where there are significant benefits from 
reducing coefficient wordlengths, discrete optimisation can be used to search for the 
finite-wordlength filter with the closest response to a given specification.  Some discrete 
optimisation algorithms, including Genetic Algorithms, are available in software libraries. 
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FIR filter implementation by fast convolution 
 
A length-N FIR filter requires in general N multiplications and N-1 additions per output 
sample.  If the filter is symmetric, the number of multiplications may be halved, as 
explained before.  But for a highly selective response (narrow transition band) the filter 
order may be high.  An alternative method of FIR filtering, called fast convolution, uses 
the FFT to reduce the computation load. 
 
The key result is that if 

signal vector x = [x0 x1 ... xN-1] has DFT X = [X0 X1 ... XN-1], 

and vector h = [h0 h1 ... hN-1] has DFT H = [H0 H1 ... HN-1], 

then the inverse DFT y of  H•X = [X0H0,  X1H1, ... XN-1HN-1] is the 

circular convolution of x and h, defined as: 
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[Use separate variables 
n_1 and n_2 to distinguish 
terms in the two summations]

[Reorder summations]

[Summation is a Geometric 
Progression – check you can get 
this result yourself ]

[Required result]
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Now, we show how to use this result to give a fast FIR filtering method. Consider filtering  
a sequence x with a filter h having order M. The required convolution is:

Now, choose a frame length N>>M. We notice that for  M-1<n<N, 

mod(n-m,N)=n-m

In other words, the result of cyclic convolution is the same as that of standard convolution:

This means that we can use fast cyclic convolution methods (based on DFT/FFT) to 
calculate the filtered output for n=M,…,N-1

Standard convolution 
(`filtering’)

Cyclic convolution
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The overlap-save method filters a long sequence of data x in chunks of length N-M, as 
follows: 
 
 
 
STEP 1 
 
hn is the impulse response of the FIR filter, and is of length M+1.  Choose a much longer 
blocklength N, append N-(M+1) zeros to make the vector h and compute its DFT H via 
the FFT.  Note that H only needs to be calculated once. 
 
 
 
 

 

0 
M

N-1

hn
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STEP 2 – For k=0, 1, 2, … 
 
Construct the kth  `frame’ of data xk as follows: 
 
 
 

( ) ( ) ( ) ( )( )1 1 1k k N M M k N M k N M k N Mx x x x− − + − − + + −
⎡ ⎤= ⎣ ⎦x K KK  

 
 
 
 
[When k=0, set previous frame values to zero] 
 
 

 
 
 

 
 

N data points

Last M data points
from previous frame

N-M new data points
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Then compute the DFT Xk of the vector xk, multiply Xk by H sample-by-sample, and IDFT 
the result to give yk.  The last N-M samples of yk are the next N-M filter outputs: 
 
for k=1: ...  % [Note Matlab convention to start at k=1] 
   if k==1 
      X=fft([ zeros(1,M) x((1:N-M))]); 
   else 
      X=fft([ x((k-1)*(N-M)+(1-M:N-M))]); 
   end 
   y=real(ifft(H.*X)); 
   output((k-1)*(N-M)+(1:N-M)) = y(M+1:N); %last N-M samples of y 
end 
 
FIR filter implementation by fast convolution is an example of a block based signal 
processing method. 
 
The saving can be significant - for example if M=100 and N=1024, the FFT-based method 
(assuming efficient FFTs are used for real data) requires about 33% the number of 
operations of the direct method. 
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