
3F3 – Digital Signal Processing
(DSP)

Simon Godsill

www-sigproc.eng.cam.ac.uk/~sjg/teaching

Course Overview

• 12 Lectures
• Topics:

– Digital Signal Processing
– DFT, FFT

– Digital Filters
– Filter Design
– Filter Implementation

– Random signals
– Optimal Filtering
– Signal Modelling

• Books:
– J.G. Proakis and D.G. Manolakis, Digital Signal Processing 3rd edition, Prentice-Hall.
– Statistical digital signal processing and modeling -Monson H. Hayes –Wiley

• Some material adapted from courses by Dr. Malcolm Macleod, Prof. Peter Rayner and Dr.
Arnaud Doucet

Digital Signal Processing - Introduction

• Digital signal processing (DSP) is the generic term for techniques such as
filtering or spectrum analysis applied to digitally sampled signals.

• Recall from 1B Signal and Data Analysis that the procedure is as shown
below:

• is the sampling period

• is the sampling frequency

• Recall also that low-pass anti-aliasing filters must be applied before A/D
and D/A conversion in order to remove distortion from frequency
components higher than Hz (see later for revision of this).

• Digital signals are signals which are sampled in time (“discrete time”) and
quantised.

• Mathematical analysis of inherently digital signals (e.g. sunspot data, tide
data) was developed by Gauss (1800), Schuster (1896) and many others
since.

• In 1948 A H Reeves proposed Pulse Code Modulation for digital
transmission of signals.

• Digital storage of sampled analogue signals was used from the 50s, and
is now common - DAT, CD etc.

• Electronic digital signal processing (DSP) was first extensively applied in
geophysics (for oil-exploration) then military applications, and is now
fundamental to communications, broadcasting, and most applications of
signal and image processing.

There are many advantages in carrying out digital rather than analogue
processing; among these are flexibility and repeatability.

The flexibility stems from the fact that system parameters are simply numbers
stored in the processor. Thus for example, it is a trivial matter to change the cut-
off frequency of a digital filter whereas a lumped element analogue filter would
require a different set of passive components. Indeed the ease with which
system parameters can be changed has led to many adaptive techniques
whereby the system parameters are modified in real time according to some
algorithm. Examples of this are adaptive equalisation of transmission systems,
adaptive antenna arrays which automatically steer the nulls in the polar diagram
onto interfering signals. Digital signal processing enables very Digital signal
processing enables very complex linear and non-linear processes to be
implemented which would not be feasible with analogue processing. For
example it is difficult to envisage an analogue system which could be used to
perform spatial filtering of an image to improve the signal to noise ratio.

DSP has been an active research area since the late 1960s but applications
tended to be only in large and expensive systems or in non real-time where a
general purpose computer could be used. However, the advent of d.s.p chips
enable real-time processing to be performed at very low cost and already this
technology is commonplace in domestic products.

Sampling Theorem (revision from 1B)

Sampled Signal Spectra:

Continuous signal g(t)

Sampled signal
(various values of)

No Aliasing

Aliasing

Sampling Theorem: Summary

• Theorem shows us that we may represent a signal perfectly in the
digital domain, provided the sampling rate is at least twice the
maximum frequency component (`bandwidth’) of the signal

• Denote the sampled values of a signal/function using the shorthand:

The DFT and the FFT

• The Discrete Fourier Transform is the standard way to transform a
block of sampled data into the frequency domain (see IB)

• The Fast Fourier Transform (FFT) is a fast algorithm for
implementation of the DFT

• The FFT revolutionised Digital Signal Processing. It is an elegant and
highly effective algorithm that is still the building block used in many
state-of-the-art algorithms in speech processing, communications,
frequency estimation, …

The Discrete Time Fourier Transform (DTFT)

The Discrete Fourier Transform (DFT)

[You should check that you can show these results from first principles]

Can think of this as a vector operation:
• Take a vector of samples as input:

• Get a vector of frequency values as output:

Can write this as:

where is the
appropriate (NxN)
matrix

The Fast Fourier Transform (FFT)

Derivation

• The FFT derivation relies on redundancy in the calculation of the basic
DFT

• A recursive algorithm is derived that repeatedly rearranges the problem
into two simpler problems of half the size

• Hence the basic algorithm operates on signals of length a power of 2,
i.e.

(for some integer M)

• At the bottom of the tree, we have the classic FFT `butterfly’ structure
(details later):

First, take the basic DFT equation:

Now, split the summation into two parts: one for even n and one for odd n:

Two complex
data in

Two complex
data out

Multiplication by Wp

A

B

A + BWp

A – BWp

Or, in more compact form: (‘Butterfly’)

Computational load:

A flow diagram for a N=8 DFT is shown below:

Input: Output:

Computational Load of full FFT algorithm:

Direct DFT

FFT

The type of FFT we have considered, where N = 2M, is called a radix-2 FFT. It has
M = log2 N stages, each using N / 2 butterflies

Since a complex multiplication requires 4 real multiplications and 2 real additions, and
a complex addition/subtraction requires 2 real additions, a butterfly requires 10 real
operations. Hence the radix-2 N-point FFT requires 10(N / 2)log2 N real operations
compared to about 8N2 real operations for the DFT.

This is a huge speed-up in typical applications, where N is 128 – 4096:

Input Output

The Inverse FFT (IFFT)

Apart from the scale factor 1 / N, the Inverse DFT has the same form as the DFT, except that the
conjugate W* replaces W. Hence the computation algorithm is the same, with a final scaling by 1 / N.

Other types of FFT

There are many FFT variants. The form of FFT we have described is called “decimation in time”; there is
a form called “decimation in frequency” (but it has no advantages).

The "radix 2" FFT must have length N a power of 2. Slightly more efficient is the "radix 4" FFT, in which 2-
input 2-output butterflies are replaced by 4-input 4-output units. The transform length must then be a power
of 4 (more restrictive).

A completely different type of algorithm, the Winograd Fourier Transform Algorithm (WFTA), can be used
for FFT lengths equal to the product of a number of mutually prime factors (e.g. 9*7*5 = 315 or 5*16 = 80).
The WFTA uses fewer multipliers, but more adders, than a similar-length FFT.

Efficient algorithms exist for FFTing real (not complex) data at about 60% the effort of the same-sized
complex-data FFT.

The Discrete Cosine and Sine Transforms (DCT and DST) are similar real-signal algorithms used in
image coding.

Applications of the FFT

There FFT is surely the most widely used signal processing algorithm of all

It is the basic building block for a large percentage of algorithms in current usage

Specific examples include:

• Spectrum analysis – used for analysing and detecting signals
• Coding – audio and speech signals are often coded in the frequency domain using FFT
variants (MP3, …)
• Another recent application is in a modulation scheme called OFDM, which is used for
digital TV broadcasting (DVB) and digital radio (audio) broadcasting (DAB).
• Background noise reduction for mobile telephony, speech and audio signals is often
implemented in the frequency domain using FFTs
….

Case Study: Spectral analysis of a Musical Signal

Extract a short segment:

Note: looks almost
Periodic over short time
interval

Sample rate is
10.025 kHz
(T=1/10,025 s)

Load this into Matlab as a vector x

Take an FFT, N=512:

X=fft(x(1:512));

Note Conjugate symmetry
as data are real: Symmetric

Symmetric Anti-Symmetric

The Effect of data length, N

N=32

N=128

N=1024

FFT

FFT

FFT

Low
resolution

High
resolution

3F3 – Digital Signal Processing

The DFT approximation to the DTFT

DTFT at frequency : DFT:

• Ideally the DFT should be a `good’ approximation to the DTFT
• Intuitively the approximation gets better as the number of data points

N increases
• This is illustrated in the previous slide – resolution gets better as N

increases (more, narrower, peaks in spectrum).
• How to evaluate this analytically?

– View the truncation in the summation as a multiplication by a rectangle
window function

– Then, in frequency domain, multiplication becomes convolution

Analysis:

N=32

Central `Lobe’

Sidelobes

N=4

N=8

N=16

N=32

Lobe width
inversely
proportional
to N

Now, imagine what happens when the sum of two frequency components is DFT-ed:

The DTFT is given by a train of delta functions:

Hence the windowed spectrum is just the convolution of the window spectrum with
the delta functions:

Both components
separately

Both components
Together

ωΤ

Now consider the DFT for the data:

Summary

• The rectangular window introduces broadening of any frequency components
(`smearing’) and sidelobes that may overlap with other frequency components
(`leakage’).

• The effect improves as N increases
• However, the rectangle window has poor properties and better choices of wn

can lead to better spectral properties (less leakage, in particular) – i.e. instead
of just truncating the summation, we can pre-multiply by a suitable window
function wn that has better frequency domain properties.

• More on window design in the filter design section of the course – see later

3F3 Digital Signal Processing

Section 2: Digital Filters
• A filter is a device which passes some signals 'more' than others (`selectivity’),

e.g. a sinewave of one frequency more than one at another frequency.
• We will deal with linear time-invariant (LTI) digital filters.
• Recall that a linear system is defined by the principle of linear superposition:

• If the linear system's parameters (coefficients) are constant, then it is Linear
Time Invariant (LTI).

[Much of this material is based on material by Dr Malcolm Macleod]

3F3 Digital Signal Processing

Frequency response of a LTI digital system

Rather than write ωT, where ω is in rads/sec and T is the sample interval in seconds,
we will use the normalised radian frequency Ω, where Ω =ωT is in units of rads/sample.
Hence Ω =2π is the sampling frequency, and Ω = π is half the sampling frequency.

If a single frequency cisoid xn = exp(jn Ω) is input to a linear digital system
(for all time; -∞ < n < ∞), all signals inside the system, including the output signal, will also
have time variation of the form exp(jn Ω).

Thus if
xn = exp(jn Ω)

then
yn = β(Ω) exp(jn Ω),

where β(Ω) is a complex function of frequency, called the frequency response of the system.
The 'magnitude' response is simply | β(Ω) |.

3F3 Digital Signal Processing

Write the input data sequence as:

And the corresponding output sequence as:

x

3F3 Digital Signal Processing

The linear time-invariant digital filter can then be described by the difference
equation:

 xn

yn b0 bM

a1 aN

= unit delay
A direct form implementation of (3.1) is:

3F3 Digital Signal Processing

The operations shown in the Figure above are the full set of possible linear
operations:

• constant delays (by any number of samples),

• addition or subtraction of signal paths,

• multiplication (scaling) of signal paths by constants - (incl. -1),

Any other operations make the system non-linear.

3F3 Digital Signal ProcessingMatlab filter functions

Matlab has a filter command for implementation of linear digital filters.

The format is

y = filter(b, a, x);

where
b = [b0 b1 b2 ... bM]; a = [1 a1 a2 a3 ... aN];

So to compute the first P samples of the filter’s impulse response,

y = filter(b, a, [1 zeros(1,P)]);

Or step response,
y = filter(b, a, [ones(1,P)]);

To evaluate the frequency response at n points equally spaced in the normalised frequency
range θ=0 to θ= π, Matlab's function freqz is used:

freqz(b,a,n);

3F3 Digital Signal Processing

Filtering example:

Generate a Gaussian random noise sequence:

Matlab code:

x=randn(100000,1);
plot(x)
plot(abs(dft(x)))
soundsc(x,44100)

a=[1 -0.99 0.9801];
b=[1 –0.1 –0.56];

y=filter(b,a,x);
plot(y)
plot(abs(dft(y)))
soundsc(y,44100) Selective amplification

Of one frequency

3F3 Digital Signal Processing

Impulse Response

3F3 Digital Signal Processing

The roots of the numerator polynomial in H(z) are known as the zeros, and the roots of
the denominator polynomial as poles. In particular, factorize H(z) top and bottom:

Transfer Function, Poles and Zeros

3F3 Digital Signal Processing

Frequency Response

3F3 Digital Signal Processing

System has 2 poles (x)
and 2 zeros (o)Im(z)

X

X

O

unit circle

O
-1 1

Proceed around the
unit circle with

3F3 Digital Signal Processing

Im(z)

X

X

O

unit circle

O
-1 1

Transfer function:

Frequency response:

C1C2

D1D2
=

C1

C2

D2

D1

3F3 Digital Signal Processing

Im(z)

X

X

O

unit circle

O
-1 1C1

C2

D2

D1

The magnitude of the frequency
response is given by times the
product of the distances from the
zeros to divided by the
product of the distances from the
poles to

The phase response is given by the
sum of the angles from the zeros to
minus the sum of the angles from
the poles to plus a linear
phase term (M-N)Ω

3F3 Digital Signal Processing

Im(z)

X

X

Oω

unit circle

O
-1 1C1

C2

D2

D1

Thus when 'is close
to' a pole, the magnitude of the
response rises (resonance).

When 'is close to' a
zero, the magnitude falls (a
null).

The phase response – more
difficult to get “intuition”, but
similar principle applies

3F3 Digital Signal Processing

Calculate frequency response of filter in Matlab:

b=[1 -0.1 -0.56];
a=[1 -0.9 0.81];
freqz(b,a)

Peak close to pole frequency

Troughs at zero frequencies

3F3 Digital Signal Processing

Distance from unit
circle to zero

Distance from unit
circle to pole

3F3 Digital Signal Processing

Design of Filters
The 4 classical standard frequency magnitude responses are:

Lowpass, Highpass, Bandpass, and Bandstop

Consider e.g. Lowpass:

Gain

1.0

Pass band Stop band

Transition band

0 π
Normalised Frequency

fp fsFrequency band where signal is passed is
passband

Frequency band where signal is
removed is stopband

3F3 Digital Signal Processing

Ideal Low-pass Filter
• Low-pass: designed to pass low frequencies from zero

to a certain cut-off frequency and to block high
frequencies

Ideal Frequency Response

3F3 Digital Signal Processing

Ideal High-pass Filter
• High-pass: designed to pass high frequencies from a

certain cut-off frequency to π and to block low
frequencies

Ideal Frequency Response

3F3 Digital Signal Processing

Ideal Band-pass Filter
• Band-pass: designed to pass a certain frequency range

which does not include zero and to block other
frequencies

Ideal Frequency Response

3F3 Digital Signal Processing

Ideal Band-stop Filter
• Band-stop: designed to block a certain frequency range

which does not include zero and to pass other
frequencies

Ideal Frequency Response

3F3 Digital Signal Processing

22

Ideal Filters – Magnitude Response
Ideal Filters are usually such that they admit a gain of 1 in a given
passband (where signal is passed) and 0 in their stopband (where
signal is removed).

3F3 Digital Signal Processing

It is impossible to implement the above responses (or any response with finite width constant
magnitude sections). Any realisable filter can only approximate it.

[Another requirement for realisability is that the filter must be causal (i.e. hn=0, n<0).]

Hence a typical filter specification must specify maximum permissible deviations from the ideal
- a maximum passband ripple ∂p and a maximum stopband amplitude ∂s
(or minimum stopband attenuation) :

3F3 Digital Signal Processing

These are often expressed in dB:

passband ripple = 20 log10 (1+∂p) dB,

or peak-to-peak passband ripple ≅ 20 log10 (1+2∂p) dB;

minimum stopband attenuation = -20 log10 (∂s) dB.

Example: ∂p = 6%:

peak-to-peak passband ripple ≅ 20 log10 (1+2∂p) = 1dB;

∂s = 0.01:

minimum stopband attenuation = -20 log10 (∂s) = 40dB.

The bandedge frequencies are often called corner frequencies, particularly when
associated with specified gain or attenuation (eg gain = -3dB).

3F3 Digital Signal Processing

Other standard responses:

Gain

1.0

Pass band
Stop band

Transition band

0 π

Normalised Frequency

High Pass:

fpfs

3F3 Digital Signal Processing

Gain

1.0

0 π

Normalised Frequency

Band Pass:

Pass band

Stop band
Stop band

Transition bands

3F3 Digital Signal Processing

Gain

1.0

0 π

Normalised Frequency

Band Stop:

3F3 Digital Signal Processing

FIR Filters

The simplest class of digital filters are the Finite Impulse Response
(FIR) filters, which have the following structure:

 xn

yn

b0 bM

= unit delay

and difference equation:

3F3 Digital Signal Processing

Can immediately obtain the impulse response, with xn= δn

Hence the impulse response is of finite length M+1, as required

FIR filters also known as feedforward or non-recursive, or transversal

3F3 Digital Signal Processing

Design of FIR filters
Given the desired frequency response D(Ω) of a filter, can compute an

appropriate inverse DTFT to obtain its ideal impulse response. Since
the coefficients of an FIR filter equate to its impulse response, this
would produce an “ideal” FIR filter.

However, this “ideal” impulse is not actually constrained to be of finite
length, and it may be non-causal (i.e. have non-zero response at
negative time). Somehow we must generate an impulse response
which is of limited duration, and causal

In order to obtain the coefficients, simply inverse DTFT the desired
response (since impulse response is inverse DTFT of frequency
response):

3F3 Digital Signal Processing

If the "ideal" filter coefficients dn are to be real-valued, then D(Ω) must be conjugate
symmetric, i.e. D(-Ω) = D*(Ω) . We will consider the simplest case, a frequency response
which is purely real, and therefore symmetric about zero frequency.

For example, consider an ideal lowpass response,

D(Ω)=1, |Ω|< Ωc,
D(Ω)=0, Ωc <|Ω|< π :

Ω-Ωc +Ωc

D(Ω)

3F3 Digital Signal Processing

32

The ideal filter coefficients can in this case be calculated exactly:

This 'sinc' response is symmetric about sample n=0, and infinite in extent :

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n

3F3 Digital Signal Processing

33

To implement an order-M FIR filter, assume we select only a finite length section of dn.

For the sinc response shown above, the best section to select (that is, the one which gives
minimum total squared error) is symmetric about 0, i.e.

[The resulting filter is non-causal, but it can be made causal simply by adding delay.]

This selection operation is equivalent to multiplying the ideal coefficients by a
rectangular window extending from -M/2 to M/2.

We can compute the resulting filter frequency response, which is a
“truncated Fourier series approximation” of D(Ω), given by

3F3 Digital Signal Processing

34

This is illustrated below for the case M=24 (length 25)
and Ωc= π /2 (cut-off frequency = 0.25 x sample frequency).

Note the well known Gibb's phenomenon (an oscillatory error, increasing in magnitude
close to any discontinuities in D(Ω)).

3F3 Digital Signal Processing

35

The actual filter would require an added delay of M/2 samples, which does not affect
the amplitude response, but introduces a linear phase term to the frequency response.

Now replot the frequency response on a dB amplitude scale.

The sidelobes due to the rectangular window can be clearly seen:

-80

-60

-40

-20

0

20

0 0.5 1 1.5 2 2.5 3
Normalised radian frequency

| D |
(dB)

Mainlobe First sidelobe

Sidelobes

3F3 Digital Signal Processing

36

The high sidelobe level close to the passband, and the
slow decay of sidelobe level away from the passband,
make this an unsatisfactory response for most purposes.

Use of a window function

A good solution is to create the required finite number of
filter coefficients by multiplying the infinite-length coefficient
vector dn by a finite-length window wn with non-rectangular shape, e.g. the raised
cosine (Hann or Hanning) window function,

3F3 Digital Signal Processing

37

Leading to a much improved frequency response, illustrated below:

The sidelobes have been greatly reduced, but the transition from
passband to stopband has been widened. The -3dB frequency has moved
from 1.55 rad/sample down to 1.45 rad/sample, illustrating the general point
that the choice of window affects the frequencies at which specified gains
are achieved.

Again plotting the response on a dB amplitude scale, we have:

3F3 Digital Signal Processing

38

-80

-60

-40

-20

0

20

0 0.5 1 1.5 2 2.5 3
Normalised radian frequency

| D |
(dB)

Transition band

The greatly reduced first sidelobe level, more rapid decay of sidelobes,
and the broader transition band, are clearly seen.

3F3 Digital Signal Processing

39

Analysis

Frequency domain
convolution

3F3 Digital Signal Processing

40

To see the effect of the frequency domain convolution, see the example below,
for a rectangle window of length 16:

3F3 Digital Signal Processing

41

Example window functions:

3F3 Digital Signal Processing

42

Using the window method for FIR filter design

The window method is conceptually simple and can quickly design filters to
approximate a given target response. However, it does not explicitly impose
amplitude response constraints, such as passband ripple, stopband attenuation, or
3dB points, so it has to be used iteratively to produce designs which meet such
specifications.

There are 5 steps in the window design method for FIR filters.

•Select a suitable window function.

•Specify an 'ideal' response D(Ω).

•Compute the coefficients of the “ideal” filter.

•Multiply the ideal coefficients by the window function to give the filter
coefficients.

•Evaluate the frequency response of the resulting filter, and iterate if necessary

3F3 Digital Signal Processing

43

Example:

Obtain the coefficients of an FIR lowpass digital filter to meet these specifications:

passband edge frequency (1dB attenuation) 1.5 kHz

transition width 0.5 kHz

stopband attenuation >50 dB

sampling frequency 8 kHz

3F3 Digital Signal Processing

44

Step 1 – Select a suitable window function

Numerous window functions available – see Matlab command `Window’

Each offer different tradeoffs of transition width, sidelobe level, …

Examples include:

Rectangle

Hann or Hanning

Hamming,

Blackman,

Kaiser - includes a 'ripple control' parameter ß which allows the designer to
tradeoff passband ripple against transition width.

Choosing a suitable window function can be done with the aid of published data such
as this [taken from "Digital Signal Processing" by Ifeachor and Jervis, Addison-
Wesley]:

3F3 Digital Signal Processing

45

Name of
window
function

Transition
width/ sample
frequency

Passband ripple
(dB)

Main lobe
relative to side
lobe (dB)

Maximum
stopband
attenuation
(dB)

Rectangular 0.9 / N 0.75 13 21

Hann(ing) 3.1/N 0.055 31 44

Hamming 3.3/N 0.019 41 53

Blackman 5.5/N 0.0017 57 74

Kaiser (β=4.54) 2.93/N 0.0274 50

Kaiser (β=8.96) 5.71/N 0.000275 90

3F3 Digital Signal Processing

46

However, the above table is worst-case.

For example, in earlier example the use of a Hanning window achieved a main lobe level
of –42dB (cf –31 dB) and a normalised transition width of 0.7/2π = 0.11 (cf 3.1/N =
3.1/25 = 0.124).

Using the table, the required stopband attenuation (50dB) can probably be obtained by
the use of Hamming, Blackman or Kaiser windows.

Try a Hamming window. The table indicates that the transition width (in normalised
freq.) is 3.3/N.

Require a normalised transition width of 0.5/8 = 0.0625, so the required N is 52.8 (ie.
N=53).

3F3 Digital Signal Processing

47

Step 2 – Specify an 'ideal' response D(Ω)

The smearing effect of the window causes the transition region to spread about the
chosen ideal bandedge:

Hence choose an 'ideal' bandedge A which lies in the middle of the wanted transition
region, i.e. frequency = 1.5+0.5/2 = 1.75 kHz

So, A = 1.75/8 x 2π rad/sample.

-80

-60

-40

-20

0

20

0 0.5 1 1.5 2 2.5 3
Normalised radian frequency

| D |
(dB)

Transition band

A

3F3 Digital Signal Processing

48

Step 3 – Compute the coefficients of the ideal filter

The ideal filter coefficients dn are given by the inverse Discrete time Fourier transform of
D(Ω),

For our example this can be done analytically, but in general (for more complex D(Ω)
functions) it will be computed approximately using an N-point Inverse Fast Fourier
Transform (IFFT).

Given a value of N (choice discussed later), create a sampled version of D(Ω):

[Note frequency spacing 2π/N rad/sample]

3F3 Digital Signal Processing

49

If the Inverse FFT, and hence the filter coefficients, are to be purely real-valued, the
frequency response must be conjugate symmetric:

(1)

Since the Discrete Fourier Spectrum is also periodic, we see that

(2)

Equating (1) & (2) we must set

3F3 Digital Signal Processing

50

Matlab code:

N=64; ic = N*1.75/8 + 1;

D=zeros(1,N);

D(1:ic)=ones(1,ic);

D((N-ic+2):N)=ones(1,ic-1);

da=real(ifft(D));

Figure. Approximate ideal responses, N=64 and N=512.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60
sample

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100
sample

(First 128 of 512 samples only)

N=64 N=512

3F3 Digital Signal Processing

51

The IFFT gives the LH plot in the above Fig. (repeated below)

Observe the time domain aliasing caused by too short a transform, so try N=512.

Now s = 2π/512, so A/s = 56, so fill elements 0 to 56 and 456 to 511 of the discrete
spectrum with ones, and the rest with zeros.

The first 128 of the 512 samples of the new approximate ideal response are shown in the
RH plot of the Fig. below

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60
sample

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100
sample

(First 128 of 512 samples only)

N=64 N=512

3F3 Digital Signal Processing

52

STEP 4 – Multiply to obtain the filter coefficients

The choice of a zero phase spectrum resulted in an ideal impulse response centred on
sample 0 of the output, and symmetric

The centre of the window function is therefore to be aligned with sample 0, and the
negative-indexed samples of the window are moved up to the top end of the block, by
adding N to their indexes. (Remember, the DFS is periodic with period N.)

The Figure below shows, on the left, the first 40 samples of the ideal coefficient array, that
is, the central and RH samples of the ideal impulse response.

It also shows the central and RH samples of the window function. The RH plot is their
product, the central and RH samples of the resulting filter impulse response.

0 10 20 30 40
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

sample
0 10 20 30 40

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

sample

 window function

 ideal response

 windowed response

3F3 Digital Signal Processing

53

Step 5 – Evaluate the frequency response and iterate

If the resulting filter does not meet the specifications, either adjust D(Ω) (for example,
move the band edge) and repeat from step 2, or adjust the filter length and repeat from step
4, or change the window (and filter length) and repeat from step 4.

The frequency response is computed as the DFT of the filter coefficient vector.

In our example this gives the (Discrete Fourier) spectrum shown below.

The specifications are almost met; the LH plot shows the response is not quite -50dB at 2
kHz. However, the RH plot shows that the -1dB frequency is at 1.625 kHz , well above
the limit of 1.5kHz. Hence simply reducing the edge frequency A of the ideal response,
and repeating the design process, is all that is required in this case to meet the
specification.

3F3 Digital Signal Processing

54

Performance of the window method of FIR filter design

The window method is conceptually simple and easy to use iteratively. It can be used for
non-linear-phase as well as linear-phase responses.

However, it is inflexible; for example, if a bandpass filter has different upper and lower
transition bandwidths, the narrower of them dictates the filter length. There is no
independent control over passband ripple and stopband attenuation. The bandedge
frequencies are not explicitly controlled by the method.

It has no guaranteed optimality - a shorter filter meeting the specifications can almost
always be designed.

3F3 Digital Signal Processing

55

Matlab implementation of the window method

Matlab has two routines for FIR filter design by the window method, FIR1 and FIR2.

B = FIR2(N,F,M) designs an Nth order FIR digital filter and returns the filter
coefficients in length N+1 vector B.

Vectors F and M specify the frequency and magnitude breakpoints for the filter such that
PLOT(F,M) would show a plot of the desired frequency response.

The frequencies in F must be between 0.0 < F < 1.0, with 1.0 corresponding to half the
sample rate. They must be in increasing order and start with 0.0 and end with 1.0.

Note the frequency normalisation used by Matlab, where 1.0 equals half the sample rate.

By default FIR2 uses a Hamming window. Other available windows can be specified as an
optional trailing argument. For example, B = FIR2(N,F,M,bartlett(N+1)) uses a
Bartlett window, or B = FIR2(N,F,M,chebwin(N+1,R)) uses a Chebyshev window.
Other windows are computed using routines Boxcar, Hanning, Bartlett,
Blackman, Kaiser and Chebwin.

3F3 Digital Signal Processing

56

Design of FIR filters by optimisation

The second method of FIR design considered is non-linear optimisation.

First consider a classic algorithm devised by Parks and McClellan, which designs linear
phase (symmetric) filters or antisymmetric filters of any of the standard types.

Digression: Linear Phase Filters
The frequency response of the direct form FIR filter may be rearranged by grouping the
terms involving the first and last coefficients, the second and next to last, etc.:

3F3 Digital Signal Processing

57

and then taking out a common factor exp(-jMΩ/2):

If the filter length M+1 is odd, then the final term in curly brackets above is the single term
bM/2, that is the centre coefficient ('tap') of the filter.

3F3 Digital Signal Processing

58

Symmetric impulse response: if we put bM = b0, bM-1 = b1, etc., and note that
exp(jθ)+exp(-jθ) = 2cos(θ), the frequency response becomes

This is a purely real function (sum of cosines) multiplied by a linear phase term, hence
the response has linear phase, corresponding to a pure delay of M/2 samples, ie half the
filter length.

A similar argument can be used to simplify antisymmetric impulse responses in terms of a
sum of sine functions (such filters do not give a pure delay, although the phase still has a
linear form π/2-mΩ/2)

3F3 Digital Signal Processing

59

Minimax design of linear phase FIR filters

The filters designed by the Parks and McClellan algorithm have minimised maximum
error ("minimax error") with respect to a given target magnitude frequency response,
i.e. minimise the following error with respect to the filter H:

The method uses an efficient algorithm called the Remez exchange algorithm.

In this algorithm (which copes with an arbitrary number of pass- and stop-bands) the
error (i.e. difference between actual and desired frequency response magnitude) is
multiplied by a weighting factor which can be different for each band.

The program then minimises the maximum weighted error.

The optimum solution has many frequencies (approximately equal in number to half
the filter length) at which the weighted error equals the minimax value:

3F3 Digital Signal Processing

60

Figure - Overall and passband-only frequency response of length 37
minimax filter

Many ripples achieve maximum
Permitted amplitude

Passband

3F3 Digital Signal Processing

61

The weights can be determined in advance from a minimax specification.

For example, if a simple lowpass filter has a requirement for the passband gain to be in the
range 1-∂p to 1+∂p, and the stopband gain to be less than ∂s, the weightings given to the
passband and stopband errors would be ∂s and ∂p respectively.

Formulae are available for estimating the required filter length (eg Ifeachor and Jervis,
sec. 6.6.3); these have been devised for specific filter types (lowpass, bandpass), and for
narrow transition bandwidths. Unfortunately, they are not reliable for all specifications (as
shown in the following example).

The method is used iteratively, adjusting the filter length until the specifications are met.

The detailed algorithm is beyond the (time!) constraints of this module.

3F3 Digital Signal Processing

62

Example

Obtain the coefficients of an FIR lowpass digital filter to meet these specifications:

passband edge frequency 1.625 kHz

passband pk-to-pk ripple <1 dB

transition width 0.5 kHz

stopband attenuation >50 dB

sampling frequency 8 kHz

The passband ripple corresponds to ±6%, while the stopband attenuation is 0.32%, hence
the weighting factors are set to 0.32 and 6.

Using the relevant length estimation formula gives order N=25.8 hence N=26 was chosen,
ie length =27. This proved to be substantially too short, and it was necessary to increase the
order to 36 (length 37) to meet the specifications.

3F3 Digital Signal Processing

63

The Matlab routine is called as follows:

b = remez(n,f,m) designs an nth order FIR digital filter and returns the filter
coefficients in length n+1 vector b. Vectors f and m specify the frequency and magnitude
breakpoints [as for FIR2]. b = remez(n,f,m,w) uses vector w to specify weighting in
each of the pass or stop bands in vectors f and m.

Note again the frequency normalisation, where 1.0 equals half the sample rate.

The call which finally met this filter specification was:

h = remez(36,[0 1.625 2 4]/4, [1 1 0 0], [0.32 6]);

The resulting frequency response is as shown previously:

3F3 Digital Signal Processing

64

The Parks-McClellan Remez exchange algorithm is widely available and versatile.

Its main apparent limitation is that linear phase in the stopbands is never a real
requirement, and in some applications strictly linear phase in the passband is not needed
either.

The linear phase filters designed by this method are therefore longer than optimum non-
linear phase filters.

However, symmetric FIR filters of length N can be implemented using the folded delay
line structure shown below, which uses N/2 (or (N+1)/2) multipliers rather than N,so the
longer symmetric filter may be no more computationally intensive than a shorter non-
linear phase one.

 xn

b0 b(N-1)/2

yn

3F3 Digital Signal Processing

65

Further options for FIR filter design

More general non-linear optimisation (least squared error or minimax) can of course
be used to design linear or non-linear phase FIR filters to meet more general frequency
and/or time domain requirements.

Matlab has suitable optimisation routines.

3F3 Digital Signal Processing

66

IIR filter design

To give an Infinite Impulse Response (IIR), a filter must be recursive, that is, incorporate
feedback. (But recursive filters are not necessarily IIR). The terms "Recursive" or
"IIR" filter are used to describe filters with both feedback and feedforward terms.

There are two classes of method for designing IIR filters:

(i) generation of a digital filter from an analogue prototype,

(ii) direct non-linear optimisation of the transfer function.

The most useful method in practice is the bilinear transform.

3F3 Digital Signal Processing

67

Design of an IIR transfer function from an analogue prototype

Analogue filter designs are represented as Laplace-domain (s-domain) transfer functions.
The following methods of generating a digital filter from the analogue prototype are not
much used:

• Impulse invariant design - The digital filter impulse response equals the sampled
impulse response of the analogue filter. But the resulting frequency response may be
significantly different (due to aliasing).

• Step invariant design – As above but step responses are equal. Used in control
system analysis.

• Ramp invariant design – As above but ramp responses are equal.

• Forward difference (Euler) – resulting digital filter may be unstable.

• Backward difference.

The most useful method in practice is the bilinear transform.

3F3 Digital Signal Processing

68

Properties of the bilinear transform

The bilinear transform produces a digital filter whose frequency response has the same
characteristics as the frequency response of the analogue filter (but its impulse response
may then be quite different).

There are excellent design procedures for analogue prototype filters, so it is sensible to
utilise the analogue technology for digital design.

We define the bilinear transform (also known as Tustin's transformation) as the
substitution:

•Note 1. Although the ratio could have been written (z-1)/(z+1), that causes unnecessary
algebra later, when converting the resulting transfer function into a digital filter;

•Note 2. In some sources you will see the factor (2/T) multiplying the RHS of the
bilinear transform; this is an optional scaling, but it cancels and does not affect the final
result.

3F3 Digital Signal Processing

69

To derive the properties of the bilinear transform, solve for z, and put s = a+jω:

Look at two important cases:

1. The imaginary axis, i.e. a=0. This corresponds to the boundary of stability for the
analogue filter’s poles.

With a=0, we have

Hence, the imaginary (frequency) axis in the s-plane maps to the unit circle in the z-plane

2. With a<0, i.e. the left half-plane in the s-plane we have

()
() 22

22
2

1
1 hence ;

1
1

1
1

ω
ω

ω
ω

+−
++

=
−−
++

=
−
+

=
a
az

ja
ja

s
sz

3F3 Digital Signal Processing

70

Thus we conclude that the bilinear transform maps the Left half s-plane onto the interior of
the unit circle in the z-plane:

This property will allow us to obtain a suitable frequency response for the digital filter, and
also to ensure the stability of the digital filter.

s-plane
z-plane

1

1

3F3 Digital Signal Processing

71

Stability of the filter
Suppose the analogue prototype H(s) has a stable pole at a+jω, i.e.

Then the digital filter is obtained by substituting ,

Since H(s) has a pole at a+jω, has a pole at because

However, we know that lies within the unit circle. Hence the filter is
guaranteed stable provided H(s) is stable.

Bilinear transform

3F3 Digital Signal Processing

72

Frequency Response of the Filter
The frequency response of the analogue filter is

The frequency response of the digital filter is

Hence we can see that the frequency response is warped by a function

Analogue Frequency Digital Frequency

3F3 Digital Signal Processing

73

Hence the BLT preserves the following important features of H(jω):

(1) the ω↔Ω mapping is monotonic, and

(2) ω = 0 is mapped to Ω = 0, and ω = ∞ is mapped to Ω = π (half the
sampling frequency). Thus, for example, a lowpass response that decays to zero at ω = ∞
produces a lowpass digital filter response that decays to zero at Ω = π.

Figure - Frequency warping

If the frequency response of the analogue filter at frequency ω is H(jω), then the frequency
response of the digital filter at the corresponding frequency Ω = 2 arctan(ω) is also H(jω).
Hence -3dB frequencies become -3dB frequencies, minimax responses remain minimax, etc.

0

1

2

3

0 1 2 3 4 5 6 7
w (rad/sec)

Ω
(rad/
sample)

3F3 Digital Signal Processing

74

Design using the bilinear transform

The steps of the bilinear transform method are as follows:

1. “Warp” the digital critical (e.g. bandedge or "corner") frequencies Ωi , in other words
compute the corresponding analogue critical frequencies ωi = tan(Ωi/2).

2. Design an analogue filter which satisfies the resulting filter response specification.

3. Apply the bilinear transform to the s-domain transfer function of the analogue filter to
generate the required z-domain transfer function.

3F3 Digital Signal Processing

75

Example – Bilinear Transform

Design a first order lowpass digital filter with -3dB frequency of 1kHz and a sampling
frequency of 8kHz

Consider the first order analogue lowpass filter

which has a gain of 1 (0dB) at zero frequency, and a gain of -3dB (= √0.5) at ωc rad/sec (the
"cutoff frequency ").

First calculate the normalised digital cutoff frequency:

Calculate the equivalent pre-warped analogue filter cutoff frequency:

() ()Cs
sH

ω+
=

1
1

3F3 Digital Signal Processing

76

Apply Bilinear Transform:

Normalise to unity for
recursive implementation

i.e. as a direct form implementation:

Keep 0.2929 factorised to save
one multiply

3F3 Digital Signal Processing

77

Note that the digital filter response at zero frequency equals 1, as for the analogue
filter, and the digital filter response at Ω = π equals 0, as for the analogue filter at
ω = ∞. The –3dB frequency is Ω = π/4, as intended.

3F3 Digital Signal Processing

78

Pole-zero diagram for digital design.

Note that:
a) The filter is stable, as expected
b) The design process has added an extra zero compared to the prototype

- this is typical of filters designed by the bilinear transform.

3F3 Digital Signal Processing

79

There is a Matlab routine BILINEAR which computes the bilinear transformation.

The example above could be computed, for example, by typing

[NUMd,DENd] = BILINEAR([0.4142],[1 0.4142],0.5)

which returns

NUMd =

0.2929 0.2929

DENd =

1.0000 -0.4142

3F3 Digital Signal Processing

80

Analogue filter prototypes

Analogue designs exist for all the standard filter types (lowpass, highpass, bandpass,
bandstop). The common approach is to define a standard lowpass filter, and to use
standard analogue-analogue transformations from lowpass to the other types, prior to
performing the bilinear transform.

It is also possible to transform from lowpass to other filter types directly in the digital
domain, but we do not study these transformations here.

Important families of analogue filter (lowpass) responses are described in this section,
including:

3F3 Digital Signal Processing

81

1. Butterworth – maximally flat frequency response near ω=0

2. Chebyshev – equiripple response up to ωc, monotonically decreasing > ωc

3. Elliptic – equiripple in passband, equiripple in stopband.

3F3 Digital Signal Processing

82

Butterworth (maximally flat)

An Nth-order lowpass Butterworth filter has transfer function H(s) satisfying

This has unit gain at zero frequency (s = j0), and a gain of -3dB (= √0.5) at s = jωc.

The poles of H(s)H(-s) are solutions of

i.e. at

as illustrated on the right for N = 3 and N = 4:

N=3 N=4

3F3 Digital Signal Processing

83

Clearly, if λi is a root of H(s), then - λi is a root of H(-s).

Thus we can immediately identify the poles of H(s) as those roots lying in the left half-
plane, for a stable filter.

The frequency magnitude response is obtained as:

(*)

Butterworth filters are known as "maximally flat" because the first 2N-1 derivatives of (*)
w.r.t. ω are 0 at ω = 0.

Matlab routine BUTTER designs digital Butterworth filters (using the bilinear transform):

[B,A] = BUTTER(N,Wn) designs an Nth order lowpass digital Butterworth filter and
returns the filter coefficients in length N+1 vectors B and A. The cut-off frequency Wn must
be 0.0 < Wn < 1.0, with 1.0 corresponding to half the sample rate.

() () ()
() N

C

jHjHjH 2

2

1
1
ωω

ωωω
+

==−

3F3 Digital Signal Processing

84

Butterworth order estimation

Equation (*) can be used for estimating the order of Butterworth filter required to meet a
given specification.

For example, assume that a digital filter is required with a -3dB point at Ωc = π/4, and it
must provide at least 40dB of attenuation above Ωs = π/2.

Warping the critical frequencies gives ωc = tan(π/8) = 0.4142 and ωs = tan(π/4) = 1.

40dB corresponds to |H(ejΩ)|2 = 10-4, so find N by solving

⇒ 2N>10.45

Hence, since N must be integer, choose N = 6.

Matlab provides a function buttord for calculation of the required Butterworth order

()
4

2
1 10

1 N
S Cω ω

−<
+

3F3 Digital Signal Processing

85

Other Types of Analogue Filter
There is a wide range of closed form analogue filters. Some are all-pole; others have zeros.
Some have monotonic responses; some equiripple. Each involve different degrees of
flexibility and trade-offs in specifying transition bandwidth, ripple amplitude in
passband/stopband and phase linearity.

The meaning of "equiripple" is illustrated in Figure 10.2, which shows a type I Chebyshev
response which is equiripple in the passband 0<ω <ωc=1, and monotonic in the stopband.

Figure - Type I fourth order Chebyshev LPF frequency response

For a given bandedge frequency, ripple specification, and filter order, narrower transition
bandwidth can be traded off against worse phase linearity

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
normalised digital frequency Ω

am
pl

itu
de

 re
sp

on
se

3F3 Digital Signal Processing

86

Chebyshev filters are characterised by the frequency response:

Where Tn(ω) are so-called Chebyshev polynomials.

Elliptic filters allow for equiripple in both pass and stopbands. They are governed by a similar
form:

Where E(ω) is a particular ratio of polynomials.

Other filter types include Bessel filters, which are almost linear phase.

3F3 Digital Signal Processing

87

Transformation between different filter types (lowpass to highpass, etc.)

Analogue prototypes are typically lowpass. In order to convert to other types of filter
one can first convert the analogue prototype in the analogue domain, then use
the bilinear transform to move to digital as before.

The following procedures may be used, assuming a lowpass prototype with cutoff
frequency equal to 1:

1. Lowpass to Lowpass

2. Lowpass to Highpass

3. Lowpass to Bandpass

4. Lowpass to Bandstop

3F3 Digital Signal Processing

88

Example: The transfer function of a second order Butterworth lowpass filter with cutoff
frequency 1 is

From this, a second order highpass filter with cutoff frequency ωc can be designed:

From here, a digital highpass filter can be designed, using the bilinear transform and setting

12
1

2 ++ ss

() () 22

2

2 212
1

ss
s

ss cccc ++
=

++ ωωωω

3F3 Digital Signal Processing

89

Comparison of IIR and FIR filters

If the desired filter is highly selective (that is, its frequency response has small transition
bandwidths or "steep sides"), then the impulse response will be long in the time domain.
Examples include narrowband filters and lowpass /highpass /bandpass filters with steep
cutoffs.

For an FIR filter, a long impulse response means the filter is long (high order), so it requires
many multiplications, additions and delays per sample.

An IIR filter has active poles as well as zeros. Poles, acting as high-Q resonators, can provide
highly selective frequency responses (hence long impulse responses) using much lower filter
order than the equivalent FIR filter, hence much lower computational cost.

Although it is still true that a more selective response requires a higher order filter.

On the other hand, the closer to linear the phase is required to be, the higher the order of IIR
filter that is needed. Also the internal wordlengths in IIR filters need generally to be higher
than those in FIR filters; this may increase the implementation cost (e.g in VLSI).

An FIR filter is inherently stable, unlike an IIR filter. Hence an FIR implementation
involving inaccurate (finite precision, or 'quantised') coefficients will be stable, whereas an
IIR one might not. (However, it is desirable in either case to compute the actual frequency
response of the filter, using the actual quantised values of the coefficients, to check the
design.)

3F3 Digital Signal Processing

90

Implementation of digital filters

So far we have designed a digital filter to meet prescribed specifications, with the result expressed
as a rational transfer function H(z). We now consider implementation. Typical options are:

Implementation type Multiplication speed / cost
1. Pre-1980 high speed hardware
implementation

Fixed-point. Dedicated
multiplier ICs. Power-hungry,
expensive.

2. Pre-1980 microprocessor Fixed-point. Microcoded.
Slow.

3. Fixed-point DSP IC (cheaper;
goes faster)

Take same time as additions

4. Custom VLSI - fixed-point
arithmetic IC (faster or less area
than floating point)

Either take same time, but
more IC area, or same area but
more time

5. Floating-point μprocessor May take more time than
additions

6. Floating-point DSP IC Take same time as additions
7. Custom VLSI - floating-point
arithmetic

Probably take same time as
additions

If speed is the main concern, then if multiplications take longer than additions, we aim to reduce
the number of multiplications; otherwise to reduce the total operation count.

3F3 Digital Signal Processing

91

The use of fixed-point arithmetic takes much less area than floating-point
(so is cheaper) or can be made to go faster. The area of a fixed-point
parallel multiplier is proportional to the product of the coefficient and data
wordlengths, making wordlength reduction advantageous.

Hence much work has gone into structures which allow reductions in
• the number of multipliers; or
• the total operation count (multipliers, adders and perhaps delays); or
• data or coefficient wordlengths

If power consumption is the concern, then reducing total operation count
and wordlength are desirable. Also fixed point is much better than floating
point. Since general multiplication takes much more power than addition,
we try to reduce the number of multiplications, or to replace general
multiplications by, for example, binary shifts.

3F3 Digital Signal Processing

92

xn

yn b0 bM

a1 aN

= unit delay

Recall the Direct Form I implementation considered so far:

3F3 Digital Signal Processing

93

Structures for IIR filters - Cascade and Parallel

Implementing a digital filter in direct form is satisfactory in (for example) Matlab's filter
routine, where double precision floating-point is used.

However in fixed point or VLSI implementations direct form is not usually a good idea.

1. alternative structures may decrease multiplications or overall computation load;

2. when fixed-point coefficients are used, the response of alternative structures is much less

sensitive to coefficient imprecision (coefficient quantisation); and

3. when fixed-point data are used, alternative structures may add less quantisation noise into

the output signal.

We therefore consider alternative forms of IIR filter, their operation count and sensitivity to
finite precision effects.

3F3 Digital Signal Processing

94

Canonic form IIR sections

The earlier Figure showed an implementation with separate FIR and IIR stages, called Direct
Form I.

We can minimise the number of delay stores by putting the feedback stage first and then using
the same delay stores for both parts. This is called the canonic form ('canonic' means minimum),
or Direct Form II.

A canonic form filter can be of arbitrary order, but the following example has 2 poles and 2
zeros; this is called a biquadratic section:

xn

yn

b0 b2

a1 a2

X

+

X

X

X

X

+

+ +

b1 [Check for yourself that
this gives the same output
as the Direct Form I
structure]

3F3 Digital Signal Processing

95

Sensitivity to coefficient quantisation

If the filter coefficients are quantised, the resulting errors in coefficient value cause errors in
pole and zero positions, and hence filter response. Consider a filter with four poles at
z = -0.9. If implemented as a direct form filter it would have the following denominator
polynomial in its transfer function:

(1 + 0.9z-1)4 = 1 + 3.6z-1 + 4.86z-2 + 2.916z-3 + 0.6561z-4

Now let us add an "error" of -0.06 to the third coefficient, changing it from 4.86 to 4.8. The
roots of the resulting polynomial are

 -1.5077, -0.7775+0.4533i, -0.7775-0.4533i, and -0.5372

They have been hugely modified. The filter is unstable (first pole radius > 1).

If, by contrast, the filter were implemented as a cascade of 4 first-order sections, each
implementing a denominator term (1 + 0.9z-1), an error of the same size would have much
less effect. For example a change of one coefficient from 0.9 to 0.84 clearly just moves one
root from 0.9 to 0.84: (a) a smaller change, and (b) affecting only one root.

This illustrates the fact that a cascade realisation displays much lower sensitivity to
coefficient quantisation than a direct realisation.

3F3 Digital Signal Processing

96

Cascades typically use first and second order sections

To obtain complex (resonant) roots with real filter coefficients requires at least a second-order
section. Each complex root, with its inevitable conjugate, can be implemented by a single
second-order section. For example, a root at r exp(jΩ) and its conjugate r exp(-jΩ) generate the
real-coefficient second-order polynomial

 (1 - r exp(jΩ)z-1)(1 - r exp(-jΩ)z-1) = 1 - 2rcos(Ω)z-1 + r2z-2

so, to place zeros at r exp(±jΩ), set b0 = 1, b1 = -2rcos(Ω), b2 = r2.

(In principle, b0, b1 & b2 could all be multiplied by a common scale factor, but it is usually
advantageous to set b0 = 1 throughout, to avoid unnecessary multiplications, and use a
single overall gain factor.)

Or to place poles at r exp(±jΩ), set a1 = -2rcos(Ω), a2 = r2.

Real poles may be implemented by first or second order sections.

3F3 Digital Signal Processing

97

Zeros on the unit circle

Many filters (IIR and FIR) have zeros on the unit circle. Hence r = 1 above, so that
b2 = 1. This does not require a multiplier.

A biquadratic section with two resonant poles at radius r, frequency Ωp, and two zeros on
the unit circle at frequency Ωz, is illustrated below.

Implementing a high-order filter with many zeros on the unit circle as a cascade of
biquadratic sections requires fewer total multiplications than a direct form implemention.

X
1-1

O

X

O

r
Ωp

Ωz

xn

yn

 r

-2cos(Ω z)

2
-2rcos(Ω p)

3F3 Digital Signal Processing

98

Parallel form IIR filters
An IIR filter can be implemented as a parallel summation of low order sections:

H1(z)

H2(z)

H3(z)

Partial Fraction Expansion is used to compute the numerator coefficients of the parallel form.

() () () ()
1 2 1 1

0 1 2 1 2 1 2
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 21 1 1 1
b b z b z A A z C C zB

a z a z c z c z a z a z c z c z

− − − −

− − − − − − − −

+ + + +
= + +

+ + + + + + + +
K

L
K

The parallel form is little used, because:

• It sometimes has an advantage over the cascade realisation in terms of internally generated

quantisation noise (see later), but not much.
• Longer coefficient wordlengths are usually required.
• Zeros on the unit circle in the overall transfer function are not preserved, therefore no saving

of multipliers can be obtained for filters having such zeros.

3F3 Digital Signal Processing

99

Finite wordlength effects in digital filters

Many digital filters are implemented using fixed point binary 2's-complement arithmetic. For a B
bit representation, with A bits before the binary point and B-A bits after it, all values in the filter are
quantised to integer multiples of the LSB ()ABq −−≡ 2 and the number range is

() ()() ()1 12 2 2A B A Ax kq k− − − −− ≤ ≡ ≡ <

for example, a B=12 bit number with A=2 bits before the binary point is in the range
-2048/1024 to +2047/1024 inclusive. We will represent such values as (B,A).

3F3 Digital Signal Processing

100

Overflow, saturation arithmetic, and scaling

If the result of any calculation in the filter exceeds its number range, then overflow occurs. By default, a value slightly
greater than the maximum representable positive number becomes a large negative number, and vice versa. This is
called wraparound; the resulting error is huge. In IIR filters it can result in very large amplitude "overflow
oscillations".

There are two strategies which can be used to avoid problems of overflow.

Scaling can be used to ensure that values can never (or hardly ever) overflow, and/or saturation arithmetic can be
used to ensure that if overflow occurs its effects are greatly reduced.

In saturation arithmetic, the results of all calculations are first computed to full precision. For example, the addition of
2 (B,A) values results in a (B+1,A+1) value; the multiplication of a
(B,A) value by a (C,D) value results in a (B+C-1, A+D-1) value.

Then instead of merely masking the true result to a (B,A) field, which causes overflow, the higher order bits of the true
result are processed to detect overflow. If overflow occurs, the maximum possible positive value or minimum possible
negative value is returned as appropriate:

Some DSP ICs incorporate saturation arithmetic hardware.

3F3 Digital Signal Processing

101

Scaling

l1 scaling

Assume that the input to a filter (or section of a filter) is bounded by |x(n)| < C, and that its
impulse response is h(k), k=0, 1, Then its output is bounded by C Σ | h(k) |.

Σ | h(k) | is known as the l1 norm of the filter impulse response. It often does not have a
convenient analytical form, but computing it numerically is easy.

Thus if the maximum permissible output magnitude is D, overflow cannot occur provided we
scale the output by the factor

D/(C Σ | h(k) |);

this is known as l1 scaling.

However if we reduce the magnitude of signals, the ratio of signal power to quantisation noise
power becomes smaller, so scaling worsens the noise performance of the filter.

3F3 Digital Signal Processing

102

frequency-response scaling

The input signal which gives rise to the largest possible output is unlikely to occur in practice,
so a less conservative scaling approach is often used.

If the frequency response of the filter is G(exp(jΩ)), then a sinewave of frequency Ω and peak
amplitude C at the input will give a sinewave of peak amplitude C | G(exp(jΩ)) | at the output.
To scale so that a single sinewave cannot overflow, use scale factor

 D

(C max{ | G(exp(j)) |})Ω

this is known as frequency-response scaling.

l2 scaling

Less conservative scaling still is obtained using the scale factor ()2

D

C h k⎛ ⎞⎜ ⎟
⎝ ⎠∑ , which is based on

the rms impulse response; this is known as l2 scaling.

saturation arithmetic is still needed if frequency-response or l2 scaling is used

If frequency response scaling or l2 scaling is used, overflow is still possible, so in IIR filters
saturation arithmetic must then be used as well.

3F3 Digital Signal Processing

103

Application of scaling to a single section

Consider the direct form II filter illustrated below:

xn

yn

b0

a1

b3

a3

vn

-

3F3 Digital Signal Processing

104

First, the internal signal vn must be scaled so that it does not overflow the number range.

This is achieved by computing the impulse response from xn to vn (for l1 or l2 scaling) or
the frequency response from X to V (for frequency response scaling).

To prevent overflow of vn, the signal into the filter must be scaled before the input. This
may be implemented as a simple binary shift, by using the next smaller power of 2.

Overflow of the filter output is then prevented by computing the impulse or frequency
response from the input to y(n) (taking into account any scaling just introduced between
the input and xn). Any further scaling required is implemented by scaling all the
coefficients of the FIR part (b0 ... bM) by the necessary scale factor.

3F3 Digital Signal Processing

105

Application of scaling to cascade and parallel realisations

The application of scaling to a cascade realisation is based on the process described above;
however, at each step, you must compute the impulse response or frequency response from
the input of the overall filter to the point of interest, taking account of all scaling already
included up to that point.

Again, the scaling at section inputs may be implemented using simple binary shifts, or by
incorporating it into the FIR coefficient scaling of the preceding section.

For a parallel realisation, scaling is computed independently for each section, but all section
outputs must be scaled by the same amount, so the overall scaling of each section must be
made the same. Finally scaling is applied to the final adder(s) which add together the
outputs of the parallel sections.

3F3 Digital Signal Processing

106

Roundoff (quantisation) noise generation

The output of a multiplier has more bits than its inputs (for example, a 16 by 16 two's
complement multiplier outputs a 31-bit two's complement value). Therefore to store the
output it has to be (re)quantised (that is, low order bits have to be thrown away). Hence
an error called quantisation noise or roundoff noise is added at that point.

The noise variance at the multiplier output, assuming rounding is used, is q2 / 12,
where q is the LSB size after quantisation. (The same as for quantisation of analogue
signals.)

Consider the Direct Form II filter below, and assume that the output of each multiplier is
individually quantised.

xn

yn

b0 b2

a1 a2

X

+

X

X

X

X

+

+ +

b1

3F3 Digital Signal Processing

107

It is often assumed that the quantisation noise at each multiplier output is white (independent
from sample to sample). And also that it is independent between multipliers, so that the noise
variances ("powers") add.

(The assumption of whiteness is actually a very poor model if the signal is narrowband,
but it is reasonable for large amplitude wideband signals. The assumption of
independence can also be poor.)

The quantisation noise from the multipliers of an FIR filter (b0 ... b3 in our example) therefore
adds white noise directly to the output signal.

In IIR filters, the white quantisation noise from the feedback multipliers filter (a1, a2) is fed to
the input of the filter, so the resulting noise spectrum at the filter output is coloured; its
spectrum is proportional to the square of the filter's frequency response magnitude.

Hence roundoff noise level is affected by data wordlengths, filter response, filter structure
and (to a certain extent) by section ordering in cascade structures. Further details are in
specialist texts.

3F3 Digital Signal Processing

108

Hardware support for reducing quantisation noise

DSP ICs, and some VLSI filters, provide an accumulator store of longer wordlength
than the data wordlength (e.g. a 32-bit accumulator for a 16-bit DSP). The multiplier
outputs are accumulated at the longer wordlength, and then the accumulator output is
only quantised once.

For example, in the following figure, the three FIR additions would be into the
accumulator, which then would be quantised to generate yn. Similarly the two feedback
(IIR) additions, and possibly the addition of input xn, would be into the accumulator,
which would be quantised to generate vn. This approach significantly reduces roundoff
noise.

xn

yn

b0 b2

a1 a2

X

+

X

X

X

X

+

+ +

b1

3F3 Digital Signal Processing

109

Limit cycles

Zero-input limit cycles are self-sustaining oscillations, caused by the rounding of the results of
computations.

For example, consider the second-order filter yn = xn – 0.9 yn-2

This is a stable second order IIR filter with complex poles at ±j√0.9. If rounding to the nearest LSB is
used at the output of the multiplier, then when yn-2 = ±1,±2,±3, or ±4 LSB, the computation 0.9yn-2 will
give the result ±1,±2,±3, or ±4 LSB respectively.

Hence a limit cycle of the form

y(n) = 4,4,0,0,4,4,0,0,... (or the same pattern with 3,2, or 1) may occur.

Effectively, the reason is that the rounding non-linearity has increased the feedback gain to 1, turning
the system into an oscillator. Limit cycles may occur for real or complex poles.

Limit cycles are troublesome in some applications, especially with short data wordlengths, where the
limit cycle may be relatively large. With the longer wordlengths of DSP ICs, it is often possible to
ignore limit cycles.

One solution is to quantise toward 0 (truncation) instead of rounding the multiplier output. But the
extra roundoff noise due to truncation may require the data wordlength to be increased by 1 or 2 bits.
Another solution is to use certain forms of digital filter (such as Wave filters) which do not support
limit cycles. However these are computationally more expensive.

3F3 Digital Signal Processing

110

Deadbands

Consider a simple digital lowpass filter such as is commonly used for smoothing:

 yn = yn-1 + α(xn-yn-1) (equivalent to yn = (1 - α)yn-1 + αxn)

The transfer function is H(z) = α / (1 - (1 - α)z-1). This has unit gain at zero frequency (z=1),
and a pole at (1 - α). The time constant is approximately (1/α) samples, for α<<1.

If | α(xn-yn-1) | < 0.5 LSB, (which implies | (xn-yn-1) | < (0.5/α)), then the multiplier output
will round to zero, and the filter output will therefore remain constant. Hence a constant output
error, xn-yn-1, known as the deadband, arises. It can be up to (0.5/α) LSB.

If, for example, (1/α)=10000 to give a time constant of 10000 samples, then the size of the LSB
of the internal arithmetic must be 5000 times smaller than the permissible size of the deadband.
This implies 13 extra bits (since 212 = 4096).

xn

yn
α

+ X +

3F3 Digital Signal Processing

111

Coefficient quantisation

We showed earlier that the cascade form is much less sensitive to coefficient quantisation
than a high order direct form filter. (This is also true of the parallel form.)

If the filter has zeros on the unit circle, as in this case, the cascade realisation has the
advantage that these zeros stay on the unit circle (because a coefficient b2 = 1.0 is
unaffected by quantisation), although their frequencies may be altered.

A traditional way to study the relative merits of different filter structures was to analyse
the sensitivity of the frequency response magnitude to random (often Gaussian)
perturbations of the coefficients, and to use this as a measure of the likely sensitivity of a
given structure to coefficient quantisation. Various structures, including Lattice and Wave
filters, give even lower sensitivity to coefficient quantisation than the cascade realisation.
However, they generally require a substantially increased number of multipliers.

For a specific filter design, you should compute the actual filter response with quantised
coefficients, and then modify it if necessary.

In dedicated hardware, such as custom ICs, where there are significant benefits from
reducing coefficient wordlengths, discrete optimisation can be used to search for the
finite-wordlength filter with the closest response to a given specification. Some discrete
optimisation algorithms, including Genetic Algorithms, are available in software libraries.

3F3 Digital Signal Processing

112

FIR filter implementation by fast convolution

A length-N FIR filter requires in general N multiplications and N-1 additions per output
sample. If the filter is symmetric, the number of multiplications may be halved, as
explained before. But for a highly selective response (narrow transition band) the filter
order may be high. An alternative method of FIR filtering, called fast convolution, uses
the FFT to reduce the computation load.

The key result is that if

signal vector x = [x0 x1 ... xN-1] has DFT X = [X0 X1 ... XN-1],

and vector h = [h0 h1 ... hN-1] has DFT H = [H0 H1 ... HN-1],

then the inverse DFT y of H•X = [X0H0, X1H1, ... XN-1HN-1] is the

circular convolution of x and h, defined as:

3F3 Digital Signal Processing

113

[Use separate variables
n_1 and n_2 to distinguish
terms in the two summations]

[Reorder summations]

[Summation is a Geometric
Progression – check you can get
this result yourself]

[Required result]

3F3 Digital Signal Processing

114

Now, we show how to use this result to give a fast FIR filtering method. Consider filtering
a sequence x with a filter h having order M. The required convolution is:

Now, choose a frame length N>>M. We notice that for M-1<n<N,

mod(n-m,N)=n-m

In other words, the result of cyclic convolution is the same as that of standard convolution:

This means that we can use fast cyclic convolution methods (based on DFT/FFT) to
calculate the filtered output for n=M,…,N-1

Standard convolution
(`filtering’)

Cyclic convolution

3F3 Digital Signal Processing

115

The overlap-save method filters a long sequence of data x in chunks of length N-M, as
follows:

STEP 1

hn is the impulse response of the FIR filter, and is of length M+1. Choose a much longer
blocklength N, append N-(M+1) zeros to make the vector h and compute its DFT H via
the FFT. Note that H only needs to be calculated once.

0
M

N-1

hn

3F3 Digital Signal Processing

116

STEP 2 – For k=0, 1, 2, …

Construct the kth `frame’ of data xk as follows:

() () () ()()1 1 1k k N M M k N M k N M k N Mx x x x− − + − − + + −
⎡ ⎤= ⎣ ⎦x K KK

[When k=0, set previous frame values to zero]

N data points

Last M data points
from previous frame

N-M new data points

3F3 Digital Signal Processing

117

Then compute the DFT Xk of the vector xk, multiply Xk by H sample-by-sample, and IDFT
the result to give yk. The last N-M samples of yk are the next N-M filter outputs:

for k=1: ... % [Note Matlab convention to start at k=1]
 if k==1
 X=fft([zeros(1,M) x((1:N-M))]);
 else
 X=fft([x((k-1)*(N-M)+(1-M:N-M))]);
 end
 y=real(ifft(H.*X));
 output((k-1)*(N-M)+(1:N-M)) = y(M+1:N); %last N-M samples of y
end

FIR filter implementation by fast convolution is an example of a block based signal
processing method.

The saving can be significant - for example if M=100 and N=1024, the FFT-based method
(assuming efficient FFTs are used for real data) requires about 33% the number of
operations of the direct method.

	3F3 – Digital Signal Processing (DSP).pdf
	3F3 – Digital Signal Processing (DSP)
	Course Overview
	Digital Signal Processing - Introduction
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Sampling Theorem: Summary
	The DFT and the FFT
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	The Fast Fourier Transform (FFT)
	Derivation
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Case Study: Spectral analysis of a Musical Signal
	Slide Number 35
	Slide Number 36
	The Effect of data length, N
	The DFT approximation to the DTFT
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Summary
	Section 2: Digital Filters
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Design of FIR filters
	Slide Number 69
	Slide Number 70

	3F3 – Digital Signal Processing (DSP) 2011 47-end.pdf
	Section 2: Digital Filters
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Ideal Low-pass Filter
	Ideal High-pass Filter
	Ideal Band-pass Filter
	Ideal Band-stop Filter
	Ideal Filters – Magnitude Response
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Design of FIR filters
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117

