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Summary of last lecture

I Block Coding of Memoryless Sources
I Arithmetic Coding
I Sources with Memory

Shannon’s converse Source Coding Theorem for a
Discrete Stationary Source

E [W ]

N
≥ H∞(X )

log D

where H∞(X ) = limN→∞ H(XN |X1 . . .XN−1) = limN→∞
1
N H(X1 . . .XN)

I Shannon’s twin experiment

UNIVERSITY OF CAMBRIDGE
Department of Engineering 3F1 Information Theory c©Jossy Sayir



Markov Example Communication Channels Mutual information and Capacity Coding Theorems Continuous Information Theory 3 / 28

Markov Chain

Andrey Andreyevivich Markov

I Stationary state random process
S1,S2, . . .

I P(sN |s1 . . . sN−1) = P(sN |sN−1)

I Markov information source: states Si
are mapped into source symbols Xi

I Unifilar information source: from any
state, all neighbouring states map to
distinct symbols
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Unifilar Markov Source

0 1
0.9

0.2
0.1 0.8

I PX2|X1 (1|0) = 1− PX2|X1 (0|0) = 0.9
I PX2|X1 (1|1) = 1− PX2|X1 (0|1) = 0.8
I Can we compute PX1 (1) = 1− PX1 (0)?
I Stationarity implies PX1 (1) = PX2 (1) and thus

PX1 (1) = PX2 (1) = PX1X2 (01) + PX1X2 (11)

= PX2|X1 (1|0)PX1 (0) + PX2|X1 (1|1)PX1 (1)
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Unifilar Markov Source

0 1
0.9

0.2
0.1 0.8

I Define the matrix

T =

[
PX2|X1 (0|0) PX2|X1 (0|1)
PX2|X1 (1|0) PX2|X1 (1|1)

]
and the vector P = [PX1 (0),PX1 (1)]T , then we are looking for the
solution P to the equation

P = TP,

i.e., the eigenvector of T for the eigenvalue 1. Note that since T
is a stochastic matrix (its columns sum to 1), it will always have 1
as an eigenvalue.
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Unifilar Markov Source
0 1

0.9

0.2
0.1 0.8

I P =

[
0.1 0.2
0.9 0.8

]
P implies[

−0.9 0.2
0.9 −0.2

]
P = 0

which, together with the constraint [11]P = 1 (probabilities sum
to 1) yields [

−0.9 0.2
1 1

]
P =

[
0
1

]
and finally

P =

[
PX1 (0)
PX1 (1)

]
=

[
0.1818
0.8182

]
I Entropy rate of the source:

H∞(X ) = lim
N→∞

H(XN |X1 . . .XN−1) = H(XN |XN−1) = H(X2|X1)

= H(X2|X1 = 0)PX1 (0) + H(X2|X1 = 1)PX1 (1)

= 0.1818h(0.1) + 0.8182h(0.2) = 0.6759 bits
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Encoding a unifilar Markov Source

0 1
0.9

0.2
0.1 0.8

I Encode source output sequence: 0,1,1,1,1,1,1,1

0.0

1.0

0.1818
“0”

“1”
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Encoding a unifilar Markov Source
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0.1 0.8

I Encode source output sequence: 0,1,1,1,1,1,1,1

0.0

1.0

0.1818
“0”

“1”

�
�
�
�
�
�
�
�
�
��

0.0

0.1818

0.0182 = 0.1 × 0.1818
“0”

“1”
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Encoding a unifilar Markov Source
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Encoding a unifilar Markov Source
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Encoding a unifilar Markov Source
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Encoding a unifilar Markov Source
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Encoding a unifilar Markov Source
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Encoding a unifilar Markov Source
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Encoding a unifilar Markov Source
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Determining the codeword
I Source interval [0.1389,0.1818] in binary:

[0.00100011,0.00101110]b
I The probability of the source sequence is

PX1...X8 (0,1,1,1,1,1,1,1) = 0.1818− 0.1389 = 0.042896
I − log2 PX1...X8 (0,1,1,1,1,1,1,1) = 4.543, therefore we can

either truncate after 5 or 6 digits, depending if the resulting code
sequence is contained in the source interval

I No 5 digit code sequence corresponds to a code interval
contained in our source interval:

Source interval: 0.1389 0.1818

Length 5 codeword intervals: 0.125 0.15625 0.1875
I The 6 digit code sequence 001010 corresponds to the code

interval

[0.001010,0.001011]b = [0.15625,0.171875]

which is fully contained in the source interval and therefore
satisfies the prefix condition

UNIVERSITY OF CAMBRIDGE
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Decoding a unifilar Markov Source
I Decode code sequence: 0,0,1,0,1,0

corresponding to interval
[0.15625,0.171875]

0 1
0.9

0.2
0.1 0.8

I Decoding rule: always pick sub-interval that contains the
codeword interval

, result: 0,1,1,1,1,1,1,1

0.0

1.0

0.1818
“0”

“1”
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Channel Coding

Source - Source
Encoder

- Channel
Encoder

X1,X2, . . .XN

?

Discrete
Memoryless

Channel

�
Y1,Y2, . . .YN

Channel
Decoder

�Source
Decoder

�Sink

I Discrete Memoryless Channel (DMC):

P(y1 . . . yN |x1 . . . xN) =
∏

i

P(yi |xi )
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Two common DMCs

Binary Symmetric Channel
(BSC)

q

q

q

q

-�
�
�3
�
�
�
�
�
�

-
Q
Q
Qs
Q
Q
Q
Q
Q
Q

X Y

1− ε

1− ε

ε

ε

0

1

0

1

PY |X (1|0) = 1− PY |X (0|0)

= 1− PY |X (1|1)

= PY |X (0|1) = ε

Binary Erasure Channel
(BEC)

q

q

q

q
q

-��
�1�

��
��

�

-PPPqPPPPPPX Y

1− δ

1− δ

δ

δ

0

1

0

1

ε

PY |X (1|1) = PY |X (0|0) = 1− δ
PY |X (1|0) = PY |X (1|0) = 0
PY |X (ε|0) = PY |X (ε|1) = δ
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Chain rule of entropies

Two random variables

H(XY ) = H(X ) + H(Y |X ) = H(Y ) + H(X |Y )

Follows directly from our definition of H(Y |X )

Any number of random variables

H(X1X2 . . .XN) = H(X1) + H(X2|X1) + . . .+ H(XN |X1 . . .XN)

Follows from recursive application of the two variable chain rule

UNIVERSITY OF CAMBRIDGE
Department of Engineering 3F1 Information Theory c©Jossy Sayir



Markov Example Communication Channels Mutual information and Capacity Coding Theorems Continuous Information Theory 11 / 28

Mutual Information

Definition

I(X ; Y ) = H(X )− H(X |Y )

Mutual information is mutual:

I(X ; Y ) = H(X ) + H(Y )− H(XY ) = H(Y )− H(Y |X )
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Positivity of Mutual Information
Theorem

I(X ; Y ) ≥ 0

with equality if and only if X and Y are independent

Equivalent to H(X |Y ) ≤ H(X ),i.e., conditioning on a random variable
can only reduce uncertainty. This was stated without proof in the
previous lecture, so we prove it here:

−I(X ; Y ) = H(XY )− H(X )− H(Y )

=
∑
x,y

P(x , y) log
P(x)P(y)

P(x , y)

≤
∑
x,y

P(x , y)

[
P(x)P(y)

P(x , y)
− 1
]

(IT-inequality)

=
∑
x,y

P(x)P(y)−
∑
x,y

P(x , y) = 0
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Block coding and coding rate

Block
Encoder

- -U1 . . .UK X1 . . .XN

I Block coding rate: RB
def
= K/N

I Channel information rate (independently of the coding method
used):

R def
=

H(X1 . . .XN)

N

I If the block code is applied to a uniformly distributed source and
all codewords are distinct, the two rates coincide
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Channel Capacity

Definition

C = max
PX

I(X ; Y )

UNIVERSITY OF CAMBRIDGE
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Weak Converse Coding Theorem
H(X1 . . .XN |Y1 . . .YN) =H(X1 . . .XNY1 . . .YN)− H(Y1 . . .YN)

=H(X1 . . .XN) + H(Y1 . . .YN |X1 . . .XN)

− H(Y1 . . .YN)

=NR + NH(Y1|X1)− NH(Y1) + NH(Y1)

− H(Y1 . . .YN)

≤NR − NI(X ; Y ) (since HN(Y ) decreases with N)
≤N(R − C) (since I(X ; Y ) ≤ C)

Weak Converse

H(X1 . . .XN |Y1 . . .YN) ≥ N(R − C)

In other words, if R > C, there is necessarily a residual uncertainty
about the input block after observing the output of the channel.

Note that we have implicitly assumed that Y1 . . .YN is stationary for
the proof, which is not generally true, but a similar result can be
shown for non stationary output blocks
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Shannon’s Coding Theorem
Converse
If information bits from a binary symmetric source are sent to their
destination at rate R (in bits per use) via the DMC of capacity C (in
bits per use) without feedback, then bit error probability Pb at the
destination satisfies

Pb ≥ h−1(1− C/R) , if R > C.

Direct part

Consider transmitting information bits from a binary symmetric source
to their destination at rate R = K/N using block coding with
blocklength N via a DMC of capacity C (in bits per use) used without
feedback. Then, given any ε > 0, provided that R < C, one can
always, by choosing N sufficiently large and designing appropriate
encoders and decoders, achieve a block error probability

PB < ε.
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Capacity of two common channels
I Binary erasure channel:

I(X ; Y ) = H(X )− H(X |Y )

= H(X )− δH(X |Y = ε)− (1− δ)H(X |Y 6= ε)

= H(X )− δ
which is maximised when PX (0) = PX (1) = 1/2 for, so

CBEC = h(1/2)− δ = 1− δ bits per use

I Binary symmetric channel:

I(X ; Y ) = H(Y )− H(Y |X )

= H(Y )− H(Y |X = 0)PX (0)− H(Y |X = 1)PX (1)

= H(Y )− h(ε(PX (0) + PX (1))

which again is maximises when PX (0) = PX (1) = 1/2 for which
PY (0) = PY (1) = 1/2 and thus

CBSC = 1− h(ε) bits per use
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An interesting continuous channel?

����+- -
?

X Y

Z ∼ N (0, σ2)

I X and Y continuous random variables
I Z is a continuous normal distributed random variable with mean

0 and variance σ2

I Question: how much information can be transmitted over this
channel?

I Answer: as much as desired! To transmit N bits, pick a density
for X such that E [X ] = 0 and E [X 2] >> σ2 so that Y ≈ X to
within N bits of accuracy with sufficiently high probability

I Conclusion: this is not an interesting communication problem
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Additive White Gaussian Noise (AWGN) channel

����+- -
?

X

E [(X − E [X ])2] ≤ γ

Y

Z ∼ N (0, σ2)

I Power constraint now makes it an interesting problem, unlike the
problem on the previous page

I Power constraint often stated as E [X 2] ≤ γ,E [X ] = 0, which is
essentially equivalent

I To understand this channel, we need an information theory of
continuous variables
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Information theory of continuous variables

I How much is our uncertainty/entropy about a continuous random
variable?

I Infer from the discrete case: how many binary digits do we need
on average to represent the outcome of a continuous random
variable

I Example: the variable takes on the value π = 3.141592 . . . How
many binary (or decimal) digits do we need to represent π?

I Answer: infinitely many
I Conclusion: the (discrete) entropy of a continuous random

variable in general is∞
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Differential (or relative) Entropy

Nonetheless, in analogy to discrete entropy, Shannon defined:

Definition
The differential entropy of a continuous random variable X with
probability density function (pdf) fX (.) is

h(X )
def
= −

∫
supp fX

fX (x) log fX (x)dx .

I retains most properties of discrete entropy (see next page)
I however: differential entropy can be negative and is not invariant

under coordinate transformations. It is relative to a coordinate
system (hence the appelation relative entropy.)
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Properties of differential entropy and mutual
information

I The differential entropy of joint distributions, conditional
differential entropy or equivocation, and mutual information are
defined in the same manner as for their discrete counterparts,
and satisfy the same properties:

h(XY ) ≤ h(X ) + h(Y )

h(X |Y ) ≤ h(X )

I(X ; Y )
def
= h(X )− h(X |Y )

= h(Y )− h(Y |X ) ≥ 0

I For a given support of fX (.), h(X ) is maximised by the uniform
density on supp fX and equal to log V , where V is the volume of
supp fX (or length of the support interval for scalar X ).
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Differential entropy and quantisation
Let us quantise supp fX into regular bins of size ∆. By the mean value
theorem, there exists a value xi in each bin such that

fX (xi )∆ =

∫ (i+1)∆

i∆
fX (x)dx .

Let us define a discrete random variable Y that takes on the values xi
with probabilities PY (xi ) = fX (xi )∆. Then

H(Y ) = −
∑

i

fX (xi )∆ log(fX (xi )∆)

= −
∑

i

∆fX (xi ) log fX (xi )− log ∆.

By the definition of the Riemann integral,

lim
∆→0

[
−
∑

i

fX (xi ) log fX (xi )∆

]
= −

∫
fX (xi ) log fX (xi )dx = h(X ).

Thus, for small ∆, H(Y ) ≈ h(X )− log ∆.
UNIVERSITY OF CAMBRIDGE
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Differential entropy and quantisation

If Y is an n bit quantisation of X , then ∆ = 2−n and H(Y ) ≈ h(X ) + n.
Thus,

Source coding of continuous variables

h(X ) + n provides a lower bound for the average codeword length of
a prefix-free code to reproduce X with n bit precision, which can be
approached using Huffman or Shannon-Fano coding.

Examples:
I fX uniform over [0,1], h(X ) = −

∫ 1
0 1 log 1 = 0. A block code of

length n can reproduce X with n bit accuracy.

I fX uniform over [0,1/2], h(X ) = −
∫ 1/2

0 2 log 2 = −1. A block
code of length n − 1 can reproduce X with n bit accuracy, since
the first digit of X is necessarily 0 and does not need to be
encoded.
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Normal Distribution
Differential entropy

For X Gaussian/Normal distributed, fX (x) = 1
σ
√

2π
e
−x2

2σ2 ,

h(X ) = −
∫

fX (x) log fX (x)dx

=

∫
fX (x) log

√
2πσ2 +

1
2σ2

∫
fX (x)x2dx

=
1
2

log(2πσ2) +
σ2

2σ2

=
1
2

log(2πeσ2)

where we used natural logarithms in the derivation, but the final result
can revert to any desired base.

I If σ = 1, h(X ) = 2.0471 bits, thus 2.0471 + n binary digits suffice
on average to reproduce an N (0,1) r.v. with n bit accuracy.
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Normal Distribution
Let X be normal distributed with mean 0 and variance σ2 and Y have
any distribution with the same mean and variance. Note that

−
∫

fY (z) log fX (z)dz = −
∫

fX (z) log fX (z)dz (1)

as can be verified by repeating the derivation on the previous page
replacing the fX by fY and remembering that

∫
y2fY (y)dy = σ2.

h(Y )− h(X ) = −
∫

fY (z) log fY (z)dz +

∫
fX (z) log fX (z)dz

=

∫
fY (z) log

fX (z)

fY (z)
dz (using (1))

≤
∫

fY (z)

(
fX (z)

fY (z)
− 1
)

dz = 0 (IT-inequality)

Maximum Entropy

The normal distribution maximises the differential entropy among all
distributions with a given variance σ2.
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Capacity of the AWGN Channel

Continuous Capacity

C def
= max

fX∈P
I(X ; Y ) = max

fX∈P
(h(Y )− h(Y |X ))

where P is the set of permissible input distributions, e.g., for the
AWGN channel the set of input distributions satisfying the power
constraint E [X 2] ≤ γ. A coding theorem can be proved for continuous
channels analogous to the one we stated for discrete channels and
the capacity remains the supremum of rates achievable with arbitrary
reliability.

UNIVERSITY OF CAMBRIDGE
Department of Engineering 3F1 Information Theory c©Jossy Sayir



Markov Example Communication Channels Mutual information and Capacity Coding Theorems Continuous Information Theory 28 / 28

Capacity of the AWGN Channel
For the AWGN channel, h(Y |X ) = h(Z ) = 1

2 log(2πeσ2) is
independent of the choice of fX . Therefore, maximising I(X ; Y ) is
equivalent to maximising h(Y ). Since X and Z are independent and
zero mean, Y has zero mean and variance E [Y 2] = E [X 2] + σ2. h(Y )
is maximised when Y has a normal distirbution, which is the case
when X is normal. Let us denote σ2

X
def
= E [X 2], then

Capacity of the AWGN channel

CAWGN =
1
2

log(2πe(σ2
x + σ2))− 1

2
log(2πeσ2)

=
1
2

log
(

1 +
σ2

X
σ2

)
[bits/channel use]

where σ2
X/σ

2 is called the signal-to-noise ratio.

Communication engineers prefer to express capacity in bits/second,
obtained by multiplying the above by the symbol rate.
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