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Course Organisation

I 4 lectures
I Course material: lecture notes (4 Sections, 2 parts)
I 1 examples paper
I Exam material: only what’s in the notes, examples!
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Course contents

1. Introduction to Information Theory
2. Good Variable Length Codes
3. Higher Order Sources (and Communication Channels)
4. Sources with Continuous Variables
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This lecture

I A bit of history. . .
I Hartley’s measure of information
I Shannon’s uncertainty / entropy
I Properties of Shannon’s entropy
I Variable length and prefix-free codes
I Kraft’s Inequality
I Path Length Lemma and Leaf Entropy Theorem
I Converse source coding theorem
I Questions for next time
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Shannon’s paper, 1948
Reprinted with corrections fromThe Bell System Technical Journal,
Vol. 27, pp. 379–423, 623–656, July, October, 1948.

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

T
HE recent development of various methods of modulation such as PCM and PPM which exchange
bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A

basis for such a theory is contained in the important papers of Nyquist1 and Hartley2 on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. Frequently the messages havemeaning; that is they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual
message is oneselected from a setof possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any monotonic function of this number
can be regarded as a measure of the information produced when one message is chosen from the set, all
choices being equally likely. As was pointed out by Hartley the most natural choice is the logarithmic
function. Although this definition must be generalized considerably when we consider the influence of the
statistics of the message and when we have a continuous range of messages, we will in all cases use an
essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. It is practically more useful. Parameters of engineering importance such as time, bandwidth, number
of relays, etc., tend to vary linearly with the logarithm of the number of possibilities. For example,
adding one relay to a group doubles the number of possible states of the relays. It adds 1 to the base 2
logarithm of this number. Doubling the time roughly squares the number of possible messages, or
doubles the logarithm, etc.

2. It is nearer to our intuitive feeling as to the proper measure. This is closely related to (1) since we in-
tuitively measures entities by linear comparison with common standards. One feels, for example, that
two punched cards should have twice the capacity of one for information storage, and two identical
channels twice the capacity of one for transmitting information.

3. It is mathematically more suitable. Many of the limiting operations are simple in terms of the loga-
rithm but would require clumsy restatement in terms of the number of possibilities.

The choice of a logarithmic base corresponds to the choice of a unit for measuring information. If the
base 2 is used the resulting units may be called binary digits, or more brieflybits, a word suggested by
J. W. Tukey. A device with two stable positions, such as a relay or a flip-flop circuit, can store one bit of
information.N such devices can storeN bits, since the total number of possible states is 2N and log22N = N.
If the base 10 is used the units may be called decimal digits. Since

log2M = log10M= log102

= 3:32log10M;

1Nyquist, H., “Certain Factors Affecting Telegraph Speed,”Bell System Technical Journal,April 1924, p. 324; “Certain Topics in
Telegraph Transmission Theory,”A.I.E.E. Trans.,v. 47, April 1928, p. 617.

2Hartley, R. V. L., “Transmission of Information,”Bell System Technical Journal,July 1928, p. 535.
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Shannon’s paper, 1948
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Fig. 1—Schematic diagram of a general communication system.

a decimal digit is about 313 bits. A digit wheel on a desk computing machine has ten stable positions and
therefore has a storage capacity of one decimal digit. In analytical work where integration and differentiation
are involved the basee is sometimes useful. The resulting units of information will be called natural units.
Change from the basea to baseb merely requires multiplication by logba.

By a communication system we will mean a system of the type indicated schematically in Fig. 1. It
consists of essentially five parts:

1. An information sourcewhich produces a message or sequence of messages to be communicated to the
receiving terminal. The message may be of various types: (a) A sequence of letters as in a telegraph
of teletype system; (b) A single function of timef (t) as in radio or telephony; (c) A function of
time and other variables as in black and white television — here the message may be thought of as a
function f (x;y; t) of two space coordinates and time, the light intensity at point(x;y) and timet on a
pickup tube plate; (d) Two or more functions of time, sayf (t), g(t), h(t) — this is the case in “three-
dimensional” sound transmission or if the system is intended to service several individual channels in
multiplex; (e) Several functions of several variables — in color television the message consists of three
functionsf (x;y; t), g(x;y; t), h(x;y; t) defined in a three-dimensional continuum — we may also think
of these three functions as components of a vector field defined in the region — similarly, several
black and white television sources would produce “messages” consisting of a number of functions
of three variables; (f) Various combinations also occur, for example in television with an associated
audio channel.

2. A transmitterwhich operates on the message in some way to produce a signal suitable for trans-
mission over the channel. In telephony this operation consists merely of changing sound pressure
into a proportional electrical current. In telegraphy we have an encoding operation which produces
a sequence of dots, dashes and spaces on the channel corresponding to the message. In a multiplex
PCM system the different speech functions must be sampled, compressed, quantized and encoded,
and finally interleaved properly to construct the signal. Vocoder systems, television and frequency
modulation are other examples of complex operations applied to the message to obtain the signal.

3. Thechannelis merely the medium used to transmit the signal from transmitter to receiver. It may be
a pair of wires, a coaxial cable, a band of radio frequencies, a beam of light, etc.

4. Thereceiverordinarily performs the inverse operation of that done by the transmitter, reconstructing
the message from the signal.

5. Thedestinationis the person (or thing) for whom the message is intended.

We wish to consider certain general problems involving communication systems. To do this it is first
necessary to represent the various elements involved as mathematical entities, suitably idealized from their

2

UNIVERSITY OF CAMBRIDGE
Department of Engineering 3F1 Information Theory c©Jossy Sayir



Organisation History Entropy 7 / 14

Claude Elwood Shannon (1916-2001)
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R.V.L. Hartley (1888-1970)
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One Unit of Information?
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Uncertainty (Entropy)

Shannon Entropy

For a discrete random variable X ,

H(X )
def
= −

∑
x∈supp PX

PX (x) logb PX (x) = E[− logb PX (X )]

Properties

If X is defined over an alphabet of size N,

0 ≤ H(X ) ≤ logb N

with equality on the left if and only if | supp PX | = 1 and on the right if
and only if PX (x) = 1/N for all x .
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IT-Inequality
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Lemma (IT-Inequality)

loge(x) ≤ x − 1

with equality if and only if x = 1.
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Binary Entropy Function h(p)
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Good to remember:

h(.11) ≈ 1
2

UNIVERSITY OF CAMBRIDGE
Department of Engineering 3F1 Information Theory c©Jossy Sayir



Organisation History Entropy 13 / 14

Ternary Probabilities
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Ternary Entropy
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