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Section 1

Linear Systems & Impulse Response

•We motivate the study of linear time-invariant
systems.

• The principle of superposition is explained.

• Step functions and delta functions are introduced,
together with their corresponding responses.

• Examples are given to illustrate the use of the step
response with superposition.

• The sifting theorem is stated and illustrated with
some examples.
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Motivation

Many engineering problems concern linear systems.

In a linear system the output (y(t)) is computed as some
linear combination of the input (x(t)) (including inputs
from the past, if we are considering a system with a
time-varying input and output).

y(t) = α1y1(t) + α2y2(t) = F (α1x1(t) + α2x2(t))

where yi(t) = F (xi(t)).
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Linear Systems

x(t) y(t)Linear

System

We will first of all consider Linear Time Invariant Systems

– define these:

1. Linear time-invariant (LTI) systems satisfy the principle
of superposition.

If input x1(t) → output y1(t)
and input x2(t) → output y2(t)

then
input αx1(t) + βx2(t) → output αy1(t) + βy2(t)
where α and β are any constants.

2. LTI systems have the special property that if we shift
the input we shift the output, ie

x(t − t0)→ y(t − t0)

x(t − t0) y(t − t0)

Linear

System
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Linear Systems – Again!

x(t) y(t)Linear

System

1. Linear time-invariant (LTI) systems satisfy the principle
of superposition.

If input x1(t) → output y1(t)
and input x2(t) → output y2(t)

then
input αx1(t) + βx2(t) → output αy1(t) + βy2(t)
where α and β are any constants.

2. LTI systems have the special property that a sine wave
at the input leads to a sine wave of the same frequency
at the output, but with possible changes in amplitude
and phase.

sine wave sine wave with
amplitude or phase
changed

Linear

System

These 2 definitions of LTI systems are equivalent.
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Step Function

H(t)

t

H(t) =

{
0 t < 0
1, t > 0

H(t) r(t)

step response

Linear

System
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Superposition Example

Linear

System

H(t)

t

r(t)

t

H(t − 1)

1 t

r(t − 1)

1 t

−H(t − 1)

t

−r(t − 1)

t

H(t)− H(t − 1)

1 t

r(t)− r(t − 1)

1 t
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Calculation of Superposition

Find the output of a linear system
with step response:

r(t) =

{
0 t < 0
1− e−5t t ≥ 0

when the input is the pulse f (t).

f (t)

1 t

2

From our principle of superposition we know that since
our pulse can be written as: f (t) = 2H(t)− 2H(t − 1)
then our output y(t) is given by

y(t) = 2r(t)− 2r(t − 1)

which we visualise as:

t

2r(t)− 2r(t − 1)

t

Thus, since, for t ≥ 1,

2r(t)− 2r(t − 1) = 2
[

1− e−5t − 1 + e−5(t−1)
]

y(t) =

{
2(1− e−5t) 0 ≤ t < 1
2
(

e5− 1
)

e−5t t ≥ 1
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The Dirac Delta Function

f (t) height = 1/w

w/2 t−w/2

As w → 0 the pulse f (t) becomes narrower and taller. In
the limit as w → 0 the pulse f (t) becomes a delta
function: δ(t).

The delta function is a spike with unit area. It tends to
infinity when its argument tends to zero.

δ(t) = 0 except at t = 0∫ b

a
δ(t)dt = 1 provided a < 0 and b > 0

δ(t) impulse responseLinear

System
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Integrating the Delta Function

From the previous page∫ b

a
δ(t) dt = 1 provided a < 0 and b > 0

thus

∫ T

−∞
δ(t) dt =

{
0 T < 0
1 T > 0

= H(T )

Thus, the integral of a delta function is a step function.

Conversely, the derivative of a step function is a delta
function.

differentiate

integrate

Step
Function
H(t)

Delta
Function
δ(t)
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Impulse Response

From this relation between δ(t) and the step function
H(t), and what we know about LTI systems, we can
deduce:

differentiate

integrate

Step
Response
r(t)

Impulse
Response
g(t)

Example: Find the output, g(t) of a linear system with
step response r(t) = 1− e−5t when the input is the
delta function δ(t).

r(t) = 1− e−5t

g(t) =
dr

dt
= 5e−5t

So the impulse response of the system is 5e−5t.
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Sifting Theorem

δ(t − b)

δ(t − b)× f (t)

a b c t b t

f (t)

a b c t

∫ c

a
δ(t − b)dt = 1 provided a < b and c > b

Thus∫ c

a
δ(t − b)f (t)dt = f (b) provided a < b and c > b

14 / 64



Introduction Linear Systems Convolution Convolution Integrals

Sifting Examples

∫ π

−π
cos(2t) δ(t) dt = cos(0) = 1

∫ π

−π
cos(2t) δ

(
t − π

2

)
dt = cos(π) = −1

∫ 0

−π
cos(2t) δ

(
t − π

2

)
dt = 0

∫ π

−π
t δ
(
t +

π

2

)
dt = −π

2

∫ π

0
t δ
(
t +

π

2

)
dt = 0
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Section 1: Summary

Superposition (for linear systems):

If input f1(t) → output y1(t)

and input f2(t) → output y2(t) then

input αf1(t) + βf2(t) → output αy1(t) + βy2(t)

where α and β are any constants.

Sifting:

∫ c

a
δ(t − b)f (t)dt = f (b) provided a < b and c > b

• Step function and step response.

• Impulse function and impulse response.

• Finding the system response to a pulse by combining
scaled and delayed step responses using superposition.
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Section 2

Differential Equations to describe

Linear Systems

We motivate the convolution integral, which will be
presented in Section 3, using an example of a car going
up a step.

A technique is described for solving a linear differential
equation to obtain the step response of the system. We
set the input to 1, and solve with initial conditions
y = ẏ = 0 for t = 0. The impulse response can then be
obtained by differentiating the step response.

The utility of this technique, when used together with
convolution, is outlined.
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Differential Equations

Linear systems are often described using differential
equations. For example:

d2y

dt2
+ 5

dy

dt
+ 6y = f (t)

where f (t) is the input to the system and y(t) is the
output.

We know how to solve for y given a specific input f .

We now cover an alternative approach:

solve

Impulse Response

convolution

Differential
Equation

Any input Corresponding
output
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Solving for Impulse Response

We cannot (given our current knowledge) solve for the
impulse response directly so we solve for the step
response and then differentiate it to get the impulse

response.

Differential
Equation solve

Step Response

differentiate

Impulse Response

Any input Corresponding
output

convolution
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Motivation: Convolution

If we know the response of a linear system to a step
input, we can calculate the impulse response and hence
we can find the response to any input by convolution
(this is an assertion at present!).

Suppose we want to know how a car’s suspension
responds to lots of different types of road surface.

We measure how the suspension responds to a step input
(or calculate the step response from a theoretical model
of the system).

We can then find the impulse response and use
convolution to find the car’s behaviour for any road
surface profile.
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Solving for Step Response

Suppose we want to find the step response of

dy

dt
+ 5y = f (t)

where f is the input and y is the output. It would be nice
if we could put f (t) = H(t) and solve. Unfortunately we
don’t know of a way to do this directly. So we

1. set f (t) = 1, and solve for just t ≥ 0

2. set the boundary condition y(0) = 0 (also ẏ(0) = 0
for second order equations). Note then that if we
assume we have a causal system in which y(t) = 0 for
t < 0, we require f (t) = 0 for t < 0.

We thus have a solution to our step function input,
because y = 0 for t < 0, and we have found y for all
t ≥ 0.
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Boundary Condition Justification

Prove that y = 0 at t = 0 by contradiction.

We know that y(t) = 0 for all t < 0. Therefore the
only way for y to equal something other than zero at
t = 0 is if there is a step discontinuity in y at t = 0 .

Assume that y has a step of height h at t = 0 . If y

has a step discontinuity at t = 0 then dy
dt must have a

delta function at t = 0.

So we have:

• f (t) is a step function so |f (t)| ≤ 1 for all t.

• |y | ≤ h at t = 0.

•
∣∣∣dydt ∣∣∣→ ∞ at t = 0.

Which violates the original equation at t = 0.

dy

dt
= f (t)− 5y

As the RHS is finite but the LHS is infinite. Therefore y

must be continuous at t = 0, and we can use the initial
condition y(0) = 0.
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Step Response Example

Step 1: set f (t) = 1, and solve for just t ≥ 0.

dy

dt
+ 5y = 1

Complementary function: ẏ + 5y = 0⇒ y = Ae−5t

Particular Integral: try y = λ (some constant) ⇒ y = 1
5

General Solution: y = Ae−5t + 1
5

Step 2: set the boundary condition y = 0 at t = 0

y(0) = 0⇒ A+ 1
5 = 0⇒ A = −1

5

So step response is y(t) = 1
5

(
1− e−5t

)
for t ≥ 0.
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Step −→ Impulse Response

differentiate

integrate

Step
Response

Impulse
Response
g(t)

Step response is y(t) = 1
5

(
1− e−5t

)
for t ≥ 0.

Impulse response g(t) is given by:

g(t) =


0, t < 0

d

dt

[
1

5

(
1− e−5t

)]
= e−5t t ≥ 0
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Find the Impulse Response

d2y

dt2
+ 13

dy

dt
+ 12y = f (t)

1. Find the General Solution with f (t) = 1

Complementary function is y = Ae−12t + Be−t

Particular integral is y = 1
12

General solution is y = 1
12 + Ae−12t + Be−t

2. Set boundary conditions y(0) = ẏ(0) = 0 to get the
step response.

1
12 + A+ B = 0
−12A− B = 0
⇒ A = 1

132 and B = − 1
11

Thus Step Response is y = 1
12 +

e−12t
132 −

e−t
11

3. Differentiate the step response to get the impulse
response.

g(t) =
dy

dt
=

e−t − e−12t

11
(t ≥ 0)
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Using the Impulse Response

If we have a system input composed of impulses,

f (t) = 3δ(t − 1) + 4δ(t − 2)

we can find the corresponding system output using
superposition.

y(t) = 3g(t − 1) + 4g(t − 2)

Thus:

=



0 t < 1

3
[
e−(t−1)−e−12(t−1)

11

]
1 ≤ t ≤ 2

3
[
e−(t−1)−e−12(t−1)

11

]
+ 4

[
e−(t−2)−e−12(t−2)

11

]
t > 2
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More General Input

Suppose our input is composed of lots of delta functions:

f (t) = ∑
n

pn δ(t − qn)

Then the corresponding system output will be

y(t) = ∑
n

pn g(t − qn)
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Section 2: Summary

Differential Equation
aÿ + bẏ + cy + d = f (t)

solve
aÿ + bẏ + cy + d = 1

with boundary conditions
y(0) = 0 and ẏ(0) = 0

Step Response

differentiate

Impulse Response

Any input
Corresponding
outputconvolution
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Section 3

Convolution

In this section we derive the convolution integral and
show its use in some examples.
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Convolution

Our goal is to calculate the output, y(t), of a linear
system (and we will assume it is an LTI system) using the
input, f (t), and the impulse response of the system,
g(t).

An impulse at time t = 0 produces the impulse response.

δ(t) g(t)Linear

System

t t

An impulse delayed to time t = τ produces a delayed
impulse response starting at time τ.

δ(t − τ) g(t − τ)Linear

System

t
τ

t
τ
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A scaled impulse at time t = 0 produces a scaled impulse
response.

kδ(t) kg(t)Linear

System

t t

An impulse that has been scaled by k and delayed to time
t = τ produces an impulse response scaled by k and
starting at time τ.

kδ(t − τ) kg(t − τ)Linear

System

t
τ

t
τ
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The following sketches the derivation of the convolution
integral.
From the sifting property of the delta function (see
earlier), we know that we can write an input f (t) as

f (t) =
∫ ∞

−∞
f (τ)δ(t − τ) dτ = lim

∆τ→0
∑
n

f (n∆τ)δ(t − n∆τ)∆τ

ie we write it as a sum of scaled and shifted delta
functions. Therefore our output is a sum of scaled and
shifted impulse responses.

y(t) = lim
∆τ→0

∑
n

f (n∆τ)g(t − n∆τ)∆τ =
∫ ∞

−∞
g(t − τ)f (τ)dτ

Our general convolution integral, giving the output y

given the input f , is therefore:

y(t) =
∫ ∞

−∞
g(t − τ)f (τ)dτ (1)
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If we require that there is no response for t < 0, which
implies g(t − τ) = 0 for t − τ < 0, ie for τ > t, then
we can rewrite equation 1 as:

y(t) =
∫ t

−∞
g(t − τ)f (τ)dτ (2)

In addition, if we have a causal input, ie f (t) = 0 for
t < 0, this reduces to

y(t) =
∫ t

0
g(t − τ)f (τ)dτ (3)

Equations 1,2,3 are all examples of the convolution
integral. Note that equation 1 is the more general
integral form, which reduces to equation 2 if we have no
response for t < 0 and to equation 3 if both f and g are
zero for t < 0.
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To summarise:

y(t) =
∫ ∞

−∞
g(t − τ)f (τ)dτ

or

y(t) =
∫ t

−∞
g(t − τ)f (τ)dτ

or

y(t) =
∫ t

0
g(t − τ)f (τ)dτ

Points to note:

• Treat t as a constant when evaluating the integral.
The integration variable is τ.

• t is time as it relates to the output of the system y(t).

• τ is time as it relates to the input of the system f (τ).
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Convolution Example 1

Consider a system with impulse response

g(t) =

{
0 t < 0
e−5t t ≥ 0

Find the output for input f (t) = H(t) (step function).

y(t) =
∫ ∞

−∞
g(t − τ)f (τ)dτ

=
∫ t

−∞
e−5(t−τ)H(τ)dτ

=
∫ t

0
e−5(t−τ)dτ

=

[
1

5
e−5(t−τ)

]t
0

=
1

5

(
1− e−5t

)
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Convolution Example 2

For the same system (g(t) = e−5t, t ≥ 0), find the
output for input

f (t) =

 0 t < 0
v 0 < t < k

0 t > k

f (t)

k t

v

Using the convolution integral, the answer is given by

y(t) =
∫ ∞

−∞
g(t − τ)f (τ)dτ =

∫ t

−∞
g(t − τ)f (τ)dτ

=



∫ t
−∞ g(t − τ)× 0 dτ t < 0∫ 0
−∞ g(t − τ)× 0 dτ

+
∫ t

0 g(t − τ) v dτ 0 < t < k∫ 0
−∞ g(t − τ)× 0 dτ

+
∫ k

0 g(t − τ) v dτ

+
∫ t
k g(t − τ)× 0 dτ t > k
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Case (a): t < 0∫ t
−∞ g(t − τ)× 0 dτ = 0 so y(t) = 0 for all t < 0.

Case (b): 0 < t < k

y(t) =
∫ t

0
g(t − τ) v dτ =

∫ t

0
e−5(t−τ) v dτ

=
v

5

[
e−5(t−τ)

]t
0

=
v

5

(
1− e−5t

)
Case (c): t > k

y(t) =
∫ k

0
g(t − τ) v dτ =

∫ k

0
e−5(t−τ) v dτ

=
v

5

[
e−5(t−τ)

]k
0

=
v

5

(
e5k − 1

)
e−5t

y(t)

k(b)(a) (c) t
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Convolution Example 3

For the same system (g(t) = e−5t, t ≥ 0), find the
output for input

f (t) =

{
0 t < 0
sin(ωt) t ≥ 0

f (t)

t

Using the convolution integral, the answer is given by

y(t) =
∫ ∞

−∞
g(t − τ)f (τ)dτ =

∫ t

−∞
g(t − τ)f (τ)dτ

=


∫ t
−∞ g(t − τ)× 0 dτ t < 0∫ 0
−∞ g(t − τ)× 0 dτ

+
∫ t

0 g(t − τ) sin(ωτ) dτ t > 0
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Case (a): t < 0∫ t
−∞ g(t − τ)× 0 dτ = 0 so y(t) = 0 for all t < 0.

Case (b): t > 0

y(t) =
∫ t

0
g(t − τ) sin(ωτ) dτ

=
∫ t

0
e−5(t−τ) sin(ωτ) dτ

= Im

{∫ t

0
e−5(t−τ)e iωτ dτ

}
= Im

e−5t

[
e(5+iω)τ

5 + iω

]t
0


= Im

{
e iωt − e−5t

5 + iω

}
=

5 sin(ωt)−ω cos(ωt) + ωe−5t

25 + ω2

[Note: the output contains only terms of the same
frequency as the input]
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Convolution: Summary

Differential Equation
aÿ + bẏ + cy + d = f (t)

solve
aÿ + bẏ + cy + d = 1

with boundary conditions
y(0) = 0 and ẏ(0) = 0

Step Response

differentiate

Impulse Response: g(t)

Any
input: f (t)

Corresponding
output: y(t)convolution

y(t) =
∫ ∞

−∞
g(t − τ) f (τ) dτ
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Complete Example

Find the impulse response of

d2y

dt2
+ 3

dy

dt
+ 2y = f (t)

hence find the output when the input f (t) = H(t)e−t.

1. Find the General Solution with f (t) = 1

Complementary function is y = Ae−t + Be−2t

Particular integral is y = 1
2

General solution is y = 1
2 + Ae−t + Be−2t

2. Set boundary conditions y(0) = ẏ(0) = 0 to get the
step response.

1
2 + A+ B = 0
−A− 2B = 0
⇒ A = −1 and B = 1

2

Thus Step Response is y = 1
2 − e−t + e−2t

2
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3. Differentiate the step response to get the impulse
response.

g(t) =
dy

dt
= e−t − e−2t

4. Use the convolution integral to find the output for
the required input.

The required input is f (t) = e−t , t > 0.

y(t) =
∫ ∞

−∞
g(t − τ)f (τ)dτ =

∫ t

−∞
g(t − τ)f (τ)dτ

=
∫ t

0

(
e−(t−τ)− e−2(t−τ)

)
e−τ dτ

=
∫ t

0
e−t − eτ−2t dτ

=
[
τe−t − eτ−2t

]t
0

= (t − 1) e−t + e−2t

42 / 64



Introduction Linear Systems Convolution Convolution Integrals

Section 3: Summary

Convolution integral (memorise this):

f (t) = input

g(t) = impulse response

y(t) = output

y(t) =
∫ ∞

−∞
g(t − τ) f (τ) dτ

or

y(t) =
∫ t

−∞
g(t − τ)f (τ)dτ

or

y(t) =
∫ t

0
g(t − τ)f (τ)dτ

Way to find the output of a linear system, described by a
differential equation, for an arbitrary input:

• Find general solution to equation for input = 1.

• Set boundary conditions y(0) = ẏ(0) = 0 to get the
step response.

• Differentiate to get the impulse response.

• Use convolution integral together with the impulse
response to find the output for any desired input.
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Section 4

Evaluating Convolution Integrals

A way of rearranging the convolution integral is described
and illustrated.

The differences between convolution in time and space
are discussed and the concept of causality is introduced
(although we have already seen this).

The concept of a spatially-varying impulse is introduced
and the section ends with an example of spatial
convolution with a spatially-varying impulse response.
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Convolution: Summary

Differential Equation
aÿ + bẏ + cy + d = f (t)

solve
aÿ + bẏ + cy + d = 1

with boundary conditions
y(0) = 0 and ẏ(0) = 0

Step Response

differentiate

Impulse Response: g(t)

Any
input: f (t)

Corresponding
output: y(t)convolution

y(t) =
∫ ∞

−∞
g(t − τ) f (τ) dτ
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Splitting up Integrals

Suppose we have a function:

f (t) =

 a t < 0
b 0 < t < k

c t > k

and we want to evaluate the integral
∫ t
−∞ f (τ) dτ, we

can split it up as follows:

∫ t
−∞ a dτ t < 0∫ 0
−∞ a dτ +

∫ t
0 b dτ 0 < t < k∫ 0

−∞ a dτ +
∫ k

0 b dτ +
∫ t
k c dτ t > k
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Example

Find the impulse response of

d2y

dt2
+ 9y = f (t)

hence find the output for (i) input f (t) = t, t > 0 and
(ii) input f (t) = H(t)− H(t − 1) (ie a pulse).

1. Find the General Solution with f (t) = 1 (t ≥ 0).

Complementary function is y = A cos(3t) + B sin(3t)

Particular integral is y = 1
9

General solution is y = 1
9 + A cos(3t) + B sin(3t)

2. Set boundary conditions y(0) = ẏ(0) = 0 to get the
step response.

1
9 + A = 0
3B = 0
⇒ A = −1

9 and B = 0

Thus the Step Response is

y =
1

9
(1− cos(3t))
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3. Differentiate the step response to get the impulse
response.

g(t) =
dy

dt
=

1

3
sin(3t)

4. Use the convolution integral to find the output for the
required input.

For part (i) the required input is a ramp starting at the
origin: f (t) = t when t > 0 and f (t) = 0 otherwise.

y(t) =
∫ ∞

−∞
g(t − τ)f (τ) dτ =

∫ t

0
g(t − τ)f (τ) dτ

=
∫ t

0

1

3
sin(3(t − τ))× τ dτ

=
t

9
− sin(3t)

27
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For part (ii) the required input is a pulse of unit height
and unit duration: f (t) = H(t)− H(t − 1).

y(t) =
∫ ∞

−∞
g(t − τ)f (τ)dτ =

∫ t

−∞
g(t − τ)f (τ)dτ

=



∫ t
−∞ g(t − τ)× 0 dτ t < 0∫ 0
−∞ g(t − τ)× 0 dτ

+
∫ t

0 g(t − τ)× 1 dτ 0 < t < 1∫ 0
−∞ g(t − τ)× 0 dτ

+
∫ 1

0 g(t − τ)× 1 dτ

+
∫ t

1 g(t − τ)× 0 dτ t > 1
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Case (a): t < 0∫ t
−∞ g(t − τ)× 0 dτ = 0 so y(t) = 0 for all t < 0.

Case (b): 0 < t < 1

y(t) =
∫ t

0
g(t − τ)× 1 dτ =

∫ t

0

1

3
sin(3(t − τ)) dτ

=
1

9
(1− cos(3t))

Case (c): t > 1

y(t) =
∫ 1

0
g(t − τ)× 1 dτ =

∫ 1

0

1

3
sin(3(t − τ)) dτ

=

[
1

9
cos(3(t − τ))

]1

0

=
1

9
{cos(3(t − 1))− cos(3t)}
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Part (ii) Another Way

The input for part (ii) is composed of two step functions.
We can therefore calculate the output using the step
response, r(t) = 1

9(1− cos(3t)).

Input = H(t)− H(t − 1)⇒ Output = r(t)− r(t − 1)

Hence, for t > 1,

y(t) =
1

9
(1− cos(3t))− 1

9
(1− cos(3(t − 1)))

=
1

9
{cos(3(t − 1))− cos(3t)}
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Alternative Convolution Integral

The normal convolution integral

y(t) =
∫ ∞

−∞
g(t − τ) f (τ) dτ

can be inconvenient to compute when we have a
complicated expression for g(t).

We would therefore like to derive an alternative version of
the convolution integral that has a term of the form
g(τ) rather than g(t − τ) as this will be easier to
calculate in cases where g is a complicated expression.
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Arguments of f and g

Substitute u = t − τ in the convolution formula. We
have −du = dτ,

∫ ∞

−∞
g(t − τ)f (τ)dτ = −

∫ −∞

∞
g(u)f (t − u)du

=
∫ ∞

−∞
g(u)f (t − u)du

As u is the variable of integration, we can call it anything,
as it disappears when the integration has been evaluated.
We therefore choose to rename u as τ. Hence:

∫ ∞

∞
g(t − τ)f (τ)dτ =

∫ ∞

−∞
g(τ)f (t − τ)dτ

Note: if both functions are zero for t < 0, we can also
write ∫ t

0
g(t − τ)f (τ)dτ =

∫ t

0
g(τ)f (t − τ)dτ

So it does not matter which way round we have the
arguments to the functions in the convolution integral.
(Causal form requires both functions to be zero for
t < 0).
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Example

Consider a linear system with impulse response

g(t) =

{
3t2− 4t + 7 t > 0
0 otherwise

Find the output for the input f (t) = t, (t ≥ 0) and
f (t) = 0, (t < 0).

Note that everything is zero for t < 0, so that

y(t) =
∫ ∞
−∞ f (t − τ)g(τ) dτ =

∫ t
0 f (t − τ)g(τ) dτ.

y(t) =
∫ t

0
f (t − τ)g(τ) dτ

=
∫ t

0
(t − τ)× (3τ2− 4τ + 7) dτ

=
t4

4
− 2t3

3
+

7t2

2
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Spatial Convolution

Systems with time-varying input & output.

Causal: no output before the input that causes it.
g(t) = 0, t < 0

Systems with input, output a function of
position.

An input can affect the output on either side. g(x) can
be non-zero for any x .

Consider a one-dimensional strip of a material that is
known to deform linearly according to

g(x) =
1

cosh(x)

g(x)

x

when subject to a unit force at x = 0.

This is a spatial impulse response.
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Spatial Convolution Example

Calculate the deformation of a strip
of material with spatial impulse re-
sponse as described on the pre-
vious page in response to a uni-
form load of f (x) = 1 applied
from x = 0 to x = 2.

f (x)

2 x

1

Use a rather than τ as the integration variable:

y(x) =
∫ ∞

−∞
g(x − a)f (a) da

=
∫ 0

−∞

1

cosh(x − a)
× 0 da

+
∫ 2

0

1

cosh(x − a)
× 1 da

+
∫ ∞

2

1

cosh(x − a)
× 0 da

=
∫ 2

0

1

cosh(x − a)
da

= 2
{

arctan
(
e2−x)− arctan

(
e−x
)}
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Variable Impulse Response

Consider a taut string suspended between two points a
distance L apart. It is subject to a uniform loading of K
per unit length which results in a small displacement.

If we knew the deformation caused by a point load, we
could integrate in a style similar to the convolution
integral to find the shape under the distributed load.

If it was possible to have a spatial impulse response g(x)

then we could say y(x) =
∫ L

0 g(x − a)F (a) da

where F is the loading.
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But a normal impulse response is not possible because
the shape of g changes depending on the position of the
point load along the string. We have a function g(x , a)
where the point load is at position a. The function g that
gives the displacement under a point load depends on
both the position of the load, a, and the position at
which you want to know the displacement, x .
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If we can find this g(x , a) we can work out the complete
displacement under the continuous load K using

y(x) =
∫ L

0
g(x , a)F (a) da =

∫ L

0
g(x , a)K da

To find g(x , a) we first work out the maximum
displacement, d , for a point load, F = 1, at position a.

Resolve horizontally: T1 cos(r1) = T2 cos(r2)

Use the approximation: cos(r1) ≈ cos(r2) ≈ 1
[for small displacements]

This gives us: T1 = T2. Call this tension T .
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Now resolve vertically: T (sin(r1) + sin(r2)) = 1

Again approximate: cos(r1) ≈ cos(r2) ≈ 1
so that tan(ri) ≈ cos(ri)

This gives us: T (tan(r1) + tan(r2)) = 1

⇒
(
d

a
+

d

L− a

)
=

1

T

⇒ Ld

a(L− a)
=

1

T

so d =
a(L− a)

TL

This enables us to write down equations for the two
straight segments of the g(x , a) function.

Segment 1: x < a

g(x , a) =
(x
a

)
d =

x

a

[
a(L− a)

TL

]
=

x(L− a)

TL

Segment 2: x > a

g(x , a) =

(
L− x

L− a

)
d =

L− x

L− a

[
a(L− a)

TL

]
=

a(L− x)

TL
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Finally, we work out the shape of a string of length L

with tension T under a uniform load of K per unit length.

y(x) =
∫ L

0
g(x , a)F (a) da

=
∫ L

0
g(x , a)K da

=
∫ x

0
g seg 2 × K da+

∫ L

x
g seg 1 × K da

=
∫ x

0

a(L− x)K

TL
da+

∫ L

x

x(L− a)K

TL
da

=

(
K

2T

)
x(L− x)

Note: the above holds because when viewed as a function
of a, g(x , a) is given by

g(x , a) =


a(L−x)

TL a < x

x(L−a)
TL a > x

61 / 64



Introduction Linear Systems Convolution Convolution Integrals

Section 4: Summary

The convolution integral is:∫ ∞

−∞
g(t − τ)f (τ)dτ =

∫ ∞

−∞
g(τ)f (t − τ)dτ

If f (t) = g(t) = 0 for all t < 0 then

∫ t

0
g(t − τ)f (τ)dτ =

∫ t

0
g(τ)f (t − τ)dτ

Systems for which g(t) = 0 for t < 0 are called causal
systems.

Systems with time-varying inputs and outputs are causal.

Systems that have inputs and outputs that vary as a
function of spatial location can have g(x) 6= 0 for any x .

We have learnt how to handle a spatially-varying impulse
response.
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Selected bits of Sections 1-4

We discuss a few things here that require a little more
explanation than was given on the first run-through
(won’t necessarily go through in lectures).

LTI Systems

Recall that in Section 1 we asserted that if we define an
LTI system via the property that a linear system which
behaves such that a shifted input produces a shifted
output, then an equivalent definition is that sine in =⇒
sine out, ie an input of a sine wave of frequency ω
produces an output which may have a phase and
amplitude change, but no frequency change.

x(t − t0)

sine in

y(t − t0)

sine outLTI

System
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Suppose, for example, that an input of sin(ωt) is passed
through an LTI system and produces an output of
sin(ωt) + sin(2ωt), ie that the frequency of the input is
not preserved in the output:

sin(ωt) −→ sin(ωt) + sin(2ωt)

Now we know that the periodic nature of sine means that
(where n is odd)

sin(ωt + nπ) ≡ sin(ω(t + nπ/ω)) = − sin(ωt)

But the shift invariance property of the LTI system
implies that

sin(ωt + nπ) = − sin(ωt) → sin(ωt + nπ) + sin(2ω(t + nπ/ω))

→ − sin(ωt) + sin(2ωt + 2nπ))

→ − sin(ωt) + sin(2ωt))

But

sin(ωt + nπ) = − sin(ωt) → − sin(ωt)− sin(2ωt)

And the two above expressions are incompatible, thus
giving us a contradiction. We therefore conclude that
there can be no frequency component other than ω in
the output if sin(ωt) is input. (This proof by
contradiction can be made more rigorous).
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